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Summary. A necessary and sufficient condition is given for 
a) a principal left ideal L(s,t) in S xT to be equal to the direct product of the corre­

sponding principal left ideals L(s) x L(t), 
b) an Sf-class £(4,1) to be equal to the direct product of the corresponding Sf-classes 

Ls x Lt. 

Keywords: direct product of two semigroups, principal left ideal, Jif-class, maximal Jjf-
class 

AMS classification: 20M10, 20M12 

It is well known that if L\ is a left ideal of a semigroups 5, L2 is a left ideal of a 
semigroup T, then the direct product L\ x L2 is a left ideal of the direct product of 
two semigroups S xT. If s E 5, t E -T, then by L(s), L(t) we denote the principal 
left ideal of 5 and of T, respectively, and by L(s, t) the principal left ideal of S x T. 
L(s) x L(t) is a left ideal of S x T, but it need not be the principal left ideal of S x T. 

Let Ls be an JJf-class of S containing s G 5 , let Lt be an JSf-class of T containing 
t e T, and let L ( M ) be an JSf-class of SxT containing (s, t) € (S x T). 

The aim of the note is 
a) to investigate the mutual relation between L(s, t) and L(s) x L(t) and to find 

conditions under which L(stt) = L(s) x L(t)r 

b) to investigate the mutual relation between £(*,*) and Ls x Lt and to find con­
ditions under which £(j,t) = Ls x Lt. 

All results are given for principal left ideals and JSf-classes, because for principal 
right ideals and ^-classes they are similar. For all notions and notation, which we 
use and do not define, we refer to [2]. 

Lemma 1. Let ( 5 , t ) e S x T . Then L(s,t) C L(s) x L(t). 
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P r o o f . L(syt) = (s,*)U(5s x Tt) C (s,t)U(s x Tt)U(5s x i ) u (5 s x Tt) = 
(s U Ss) x(tU Tt) = L(s) x L(t). D 

Theorem 1. L(syt) = L(s) x L(t) iff at least one of the following conditions is 
satisfied: 

1)5« = {«}, 
2) Tt = {t}t 

3)seSs andte Tt. 

Proof , a) If 1) holds, then L(s) = {s} and L(s) x L(t) = {s} x (t U Tt) = 
(s, t) U (s x Tt) = (s, 0 U (Ss x Tt) = L(sy t). 

If 2) holds, we proceed analogously. 
If 3) holds, then L(s) = Ss, L(t) = Tt. Hence L(s) x L(t) = (5s x Tt) = 

(s,*)U(5sxTt)==L(s,0. 
b) Let none of the conditions hold. This is possible only in two cases: 
a) s$Ss and Tt £ {t}; 
fi) {s} ± Ss and t $ Tt. 
If a) holds then there exists h £ t such that tx € Tt. Then (s, h) e L(s) x L(t)y but 

(s, *i) / (s, t), so (s, *i) g (Ss x Tt), since s g 5s. Then (s, ̂ ) g (s, t) U (5s x Tt) = 
L(s,*). Therefore, L(s,t) £ L(s) x L(t). 

The notion of a projection is used in the usual way ([5]): The function l is : SxT —> 
5 defined by (s, t)IIs = s for all (5,0 €(S xT) is the projection of 5 x T onto 5, 
similarly II is onto T. D 

R e m a r k 1. It is easy to see that L(s,*)IIs = L(s) in 5, L(s,*)nT = L(t) in T. 

Theorem 2. Let ( « , . ) 6 5 x T 6e any element. Then 
1) L (# | t ) CL9x Lt. 
2) If L(# t ) C L9xLti then L9 x Lt is the union of at least two Sf-classes in SxT. 

P r o o f . 1) Let (ti,v) € L ( M ) . Then L(u,t/) = L(s,t) and L(u) = L(s) in 
5, L(v) = L(0 in T, hence ti € L,, t; € Lt and therefore (u,t>) € L9 x Lt, so 
£(#,«) C L, x L t. 

2) Let (ti,v) € L9x Lt - L ( M ) . Then u € L,, v € Lt, Ltt = L,, L„ = L t. Then 
^(ttf») C Lu x Lv — L9 x L t. D 

Corollary. If L, = {s}, Lt = {*}, then L(f | t) = L, x L t. 

Lemma 2. If («, f) i (Ss x Tt), then L ( M ) - {(«, t)}. 

Proof . L(s,t) = («,*) U(5« x Tt) and for any (ufv) € L(s,t), (uyV) £ (8yt)y 

(u,v) € (Ss x Tt) C L(s,t). Then L(u,v) C (Ss x Tt) C L(«,0, hence L(uyv) ? 
L(«,<), therefore L(#|() as {(«,*)}. D 
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Theorem 3. L(s$t) = Lsx Lt in S xT iff at least one of the following conditions 
holds: 

1) Ls = {s} in S, and Lt = {t} in T. 
2) sESs andteTt. 

Proof, a) Let L(,)t) = Ls x Lt. We shall consider two possibilities: 

0) h..t) = {(*.*)}. ' 
(ii) | I ( , , 0 | > 1. 
If (i) holds, then --.(«,t) = {(«>0) implies Ls = {«}, Lt = {t}, therefore 1) holds. 
If (ii) holds, then there is (ti,t;) ^ (s,t) such that (u,v) G L(,(t). Then (ti,v) U 

(Sti x Tv) = (s,t) U (5s x Tt), thence (ti,v) 6 (Ss x Tt) and ($,<) G (Sti x Tv). 
Hence we have (Ss x Tt) = (Sti x Tv) and (s,t) G (S* x T*); therefore, s e Ss and 
t € Tt, so 2) holds. 

b) Now, if 1) holds, the £(,.t) = Ls x Lt by Corollary of Theorem 2. 
If 2) holds, then s G Ss and t £ Tt, then (*,*) € (Ss x Tt). Let (ti,v) £ Ls x Lt 

so u £ LSy v € Lt. It is easy to show that Sti = Ss, and Tv = Tt and then 
Sti x Tv = Ss x Tt. Then I(s,t) = Ss x Tt = Sti x Tv = L(u,t;), therefore 
(ti, t/) G -&(*,«)• !*» implies that Ls x Lt C L(Jft). Since by Theorem 2 L(,|t) CL, xL<, 
we conclude L(Jf<) = Ls x Lt. O 

Theorem 4. If \LS\ > 1 in S and |Lt| > 1 in T, then 
1) s G Ss andte Tt, 
2) L(M) = LsxLt in SxT. 

Proof. 1) Since \LS\ > 1 and \Lt\ > 1, there is ti G Ls, u £ s and v G Lt, 
v ^ t, such that L(tt) = L(s) in S and L(v) = I(t) in T. Then ti U Sti = s U Ss and 
vUTv = tUTt. It implies ti G Ss and s G Sti and similarly v G Tt and t G Tv. Thus 
we have Sti C Ss and Ss C Sti, which gives Sti = Ss and Tv = Tt and it implies 
s£Ss,teTt. 

2) It implies from Theorem 3. D 

Corollary. If Ls xLt inSxT is a union of at least two Sf-classes, then necessarily 
either \LS\ > 1 and Lt = {t}, or Ls = {s} and \Lt\ > 1. 

Theorem 5. Ls x Lt is the union of at least two Jif-classes in S xT iff either 
\LS\ > 1 and Lt = {t}, t g Tt, or I , = {s}, s g Ss and \Lt\ > 1. 

Proof, a) If Ls x Lt is the union of at least two JSf-classes, then by Corollary of 
Theorem 4 either \LS\ > 1 and Lt = {t} or Ls = {s} and |Lt| > 1. If \LS\ > 1, then 
by Theorem 4 s € Ss, Lt — {t} and t £Tt, because otherwise s G Ss and t G Tt 
implies L(Sft) = La x Lt by Theorem 3, which contradicts the hypothesis, so t ^ Tt. 

In the case Ls = {s} and |Lt| > 1 we proceed analogously. 
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b) Conversely, let | I t | > 1 and Lt = {t}> t £ Tt. Let u G L$y u £ s, then 
(#,0 € L9 x Lt as Well as (u,0 G i , x Lt. Moreover, (s,0 £ (Ss x Tt) and 
(u,0 g (Su x TO as i £ T«, therefore by Lemma 2 L(ttt) = {(s,0), £(„,*) = {(M)} 
and both £(#,t) C L9 x Lt and L(u,t) Q L9 x Lt. 

In the case L, = {s}, 8 $ Ss and |Xt| > 1 we proceed analogously. 
In the next part we want to characterize maximal JSf-classes in S x T and their 

mutual relation to maximal JSf-classes in S and in T, respectively. 
An JSf-class L9(L(9ti)) in S (S x T) is maximal, if there is no element u £ S 

((u,v) £SxT) such that L(s) C L(u) (L(s,t) C L(utv)). 
An element s G S is indecomposable if s G S — S2. D 

Remark 2. It is evident that 
1) If s G S is indecomposable, then s $ Ss and i 5 = {s}. 
2) An element (s, 0 € S x T is indecomposable iff either s G S or t G T is 

indecomposable. 

Lemma 3. 1) If (S x T)2 C S x T, then for any (s,t) G S x T - (S x T)2, 
£(#,*) ^ {(*>0) '-* maxima/J5f-class in S. 

2) IfL{9tt) = {(*,0) -» a maximal Sf-class ofSxTand (s,t) £ (Ss x Tt), then 
(*, t) is indecomposable. 

Proof . 1) Let (s,t) £ (S x T) - (S x T)2. If L(syt) C L(u,v) for some 
(ti, v)eSxT, then (s,0 £ (Su x-Ti>) C (S2 xT2), which contradicts the hypothesis. 

2) Let L($ti) == {(M)} fae a maximal JSf-class of S x T and (s,<) g (Ss x Tt). If 
(#,<) G (Su x Tv) for (u,t>) €SxT, (u,v)#(s,0> then L(s,0 C I(u,i/) in S x T. 
£.(*,0 ss L(u,v) cannot be satisfied, since £(,,t) == {(s,0}> hence £(s ,0 C £(u,v) 
and this contradicts the fact that £(#,*) is a maximal .if-class in S x T. Consequently 
for any (u, v)e(Sx T) we have (s, I) g (Su x Tv), therefore either s $ S2 or t$ T2, 
or both s g S2 and t g T2. Hence (s, 0 € (S x T) ^ (S x t)2. D 

Theorem 6. let (s ,0 6 (̂ * x Tt). Then L($tt) = £# x £, is a maximal Jf-class 
iff L9 is a maximal &-class in S and at the same time Lt is a maximal Sf-class in T. 

Proof, a) The equality L(9tt) = L9 x Lt follows from Theorem 3. Let e.g. L$ 

be no maximal 3t?-class. Then there is u G S such that L(s) C L(u). If u G Sut 

then from the relation L(s) C L(u) we have L(s) C Su and u $ L(s). Moreover, 
(u, 0 $ L{*)x L(t) s £(*, I). However, u G 5u, t G T* implies £(«, t) s= £(u) x £(0 « 
St* x T O £(*) x 1(0 = £(M), s i n c e («>0 £ ^W x (̂0- lt means that £ ( M ) is 
not a maximal '-class in S x T. 

If u i Su, then £(#) C L(u) implies that £(s) C Su and u £ £(*)• Moreover 
(u, 0 * £(*) x 1(0 =s £(*, t). But u£Su,t€Tt implies that £(u, I) =s (u, 0U [Su x 
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L(t)] D (utt)UL(s) x L(t) D L(s) x L(t) = L(stt)t since (u,t) $ L(s) x L(t). We 
get again that L($tt) is no maximal JSf-class in S x T. 

b) Conversely, let L(9tt) = L9 x Lt be no maximal JSf-class in 5 x T. Then there 
is (utv) €(SxT)~ L(9tt) such that L(stt) = L(s) x L(t) = Ss x Tt C L(utv) C 
L(u) x L(v). It implies L(s) C L(u) in S, L(<) C I(v) in T. However, (n, t>) g 2,(s, *), 
hence either u £ L(s) or v $ L(t). Therefore, either L(s) C L(u) in S, or L(t) C L(v) 
in T. It means that either L9 is no maximal JSf-class in S, or Lt is no maximal JSf-
class in T. D 

Theorem 7. Let (stt) $ (Ss x Tt). Then L(9>i) is a maximal JSf-class in S xT 
iff either s £ S - S2, ort € T - T2 or both of them. 

Proof , a) Let (s, t) £ (Ss x Tt) and let L(9tt) be a maximal JSf-class in S x T. 
Then by Lemma 3 and Remark 2 we have (stt) e(SxT)- (S2 x T2), hence either 
s € S - S2 or t € T - T2, or both s € S - S2 and t € T - T2. 

b) If s 6 S - S 2 , * € T, then (s,*) € SxT and (s,*) $S2xT2 since * £ S2, hence 
(s,*) €(S xT)- (S2 x T2) and by Lemma 3 L(9fi) = {(stt)} is a maximal JSf-class 
in S x T. 

Theorem 1 presents conditions under which L(stt) = L(s) x L(t)t Theorem 3 
presents conditions under which L(9tt) = L9xLt for a given element (stt) € (S x T). 

The next statements express conditions under which L(st t) = L(s) x L(t)t L(9fi) = 
L9 xLt for any (*,*) € (SxT). D 

From Theorem 1 we immediately get 

Theorem 8. L(stt) = L(s) x L(t) for any (stt) e(SxT) iff at least one of the 
following conditions holds: 

1) Ss = {s} for any s 6 S; 
2) Tt = {t} for any t£T; 
3) seSs andteTt for anys€S,t£T. 

Theorem 9. L($tt) = L9xLtfor any (st f) € SxT iff at least one of the following 
conditions holds: 

1) s 6 Ss andteTt for anys€S,t€T. 
2) Either for any s £ S, s £ Ss, L9 = {s}, there is at least one element t € T such 

that t i Tt> orformyt£T,t£ Tt, Lt = {0 , there is at least one element s£S 
such that s £ Ss. 

3) L9 = {*}, Lt = {<} for any s e S, t 6 T. 

Proof, a) Let JL(tt) - L9 x L% for any (sft) e S xT. As we know from 
Theorem 5, JL ( M ) C I , x Lt iff either * g S* and |L t | > 1> or \L9 \ > 1 and t g Tt. 
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If we suppose that L(#,t) = Lt x Lt, then we have to eliminate the conditions under 
which £(#,t) C l # x Lt. 

In our procedure the following cases are considered: 
a) Neither S nor T contain elements s € S, t € T such that s £ Ss, t £Tt. 
0) Just one of the semigroups S, T contains at least one element s 6 S or t 6 T, 

respectively such that s £ Ss, t $Tt. 
?) Both S and T contain at least one element s € S, t € T such that s £ Ss, 

t£Tt. 
If a) holds, then any s 6 S, t E T satisfy seSs,t£ Tt, and this is 1). 
If /?) holds and s € S, s $ Ss, then for any element t G T we have t £ Tt 

and Lt = {*}> because if it were |Lt| > 1. then for (s,t) € Ls x Lt we would have 
L(a,t) C Ls x Lt. Hence, Lt = {t} for any t E T. In the case that T contains such 
element t € T, t $ Tt, we proceed analogously obtaining Ls = {s} for any s € 5, 
and this is 2). 

7) Let S contain at least one element s 6 S such that s ^ 5s, and let T contain 
at least one element t € T such that t £Tt. Then /?) implies that Lt = {<} for any 
* € T and L, = {s} for any « G S , and this is 3). 

b) Conversely, if 1) holds, then by Theorem 3 L(,)<) = Ls x Lt. 
If fy holds, then for any * € S, s € Ss, Ls = {s} there is at least one t\ € T 

such that ti g Tti. Let < G T be any element. If t € T*, then the condition 2) 
of Theorem 3 is satisfied and therefore L(,>t) = Ls x Lt. If t £ Tt, then Lt = {*} 
(Lemma 2), L, = {s} for any s € S, so L(5)<) •= Ls x Lt. In the second possibility 
we proceed analogously. 

If 3) holds, then Ls = {«}, L* = { 0 for any s G 5, t € T. Then L ( M ) = L, x Lt. 
• 
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