
Mathematica Bohemica

Bohdan Zelinka
Representation of undirected graphs by anticommutative conservative groupoids

Mathematica Bohemica, Vol. 119 (1994), No. 3, 231–237

Persistent URL: http://dml.cz/dmlcz/126168

Terms of use:
© Institute of Mathematics AS CR, 1994

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/126168
http://dml.cz


119 (1994) MATHEMATICA BOHEMICA No. 3, 231-237 

REPRESENTATION OF UNDIRECTED GRAPHS 

BY ANTICOMMUTATIVE CONSERVATIVE GROUPOIDS 

BOHDAN ZELINKA, Liberec 

(Received September 21, 1992) 

Summary. The paper studies tolerances and congruences on anticommutative conserva­
tive groupoids. These groupoids can be assigned in a one-to-one way to undirected graphs. 
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Various authors have studied graphs by algebraic methods. Among these meth­
ods there was also assigning certain algebraic structures to graphs in a one-to-one 
way. But usually only special classes of graphs were considered, e.g. directed graphs 
assigned to unary algebras. Representation of trees by certain ternary algebras was 
done by L. Nebesky [2], G. F. McNulty and C. R. Shallon [1] and R. Poschel [3] have 
represented directed graphs by groupoids. In this case the support of the groupoid 
was equal to the union of the vertex set of the graph with some one-element set 
and thus not to the vertex set itself. Here we shall study another way of expressing 
graphs algebraically, namely by anticommutative conservative groupoids. 

The multiplication in a groupoid will be denoted by simple juxtaposition and 
a groupoid will be identified with its support. Graphs will be always undirected, 
without loops and multiple edges. 

A groupoid T is called anticommutative, if 

xy = yx =>• x = y 

for any #, y of V. 
A groupoid T is called conservative, if 

xy = a; V xy = y 
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for any x, y of T. 
Obviously every conservative groupoid is idempotent. 
Let T be an anticommutative conservative groupoid, let x, y be two elements of 

T. Then either xy = x and yx = y, or xy = y and yx = x. Therefore we may intro­
duce a one-to-one correspondence between undirected graphs and anticommutative 
conservative groupoids. 

Let G be an undirected graph. Define the groupoid T(G) on the vertex set V(G) 
of G in such a way that xx = x for each x G V(G), xy = x for any two adjacent 
vertices x, y of G and xy = y for any two distinct non-adjacent vertices x, y of G. 
On the other hand, to every anticommutative conservative groupoid we may assign 
an undirected graph in such a way that the vertices of the graph are the elements of 
the groupoid and two vertices x, y are adjacent if and only if x 7- y and xy = x. 

Theorem 1. Let G be an undirected graph. The groupoid T(G) is a semigroup 
if and only if G is either a complete graph, or a totally disconnected graph. 

R e m a r k . A graph is called totally disconnected, if it has no edges. 

Proof . If G is a complete graph, then for any three elements x, y, z of T(G) 
we have 

(xy)z = xz = x = xy = x(yz) 

and the multiplication is associative. If G is a totally disconnected graph, then 

(xy)z = yz = z = xz = x(yz) 

and the multiplication is again associative. 
Now suppose that G is neither complete, nor totally disconnected. Then there 

exist three distinct vertices x, y, z of G such that x, y are adjacent, while x, z are 
not. If y, z are adjacent, then 

(xy)z = xz = z^x = xy = x(yz). 

If y, z are not adjacent, then 

(xz)y = zy = y^x = xy = x(zy). 

We shall study tolerances and congruences on anticommutative conservative 
groupoids. A tolerance on a groupoid T is a reflexive and symmetric binary relation 
T on T with the property that (xi,yi) € T, (x2,y2) e T imply (xix2,yiy2) £ T 
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for any four elements x\, x2, y\, y2 of T. If moreover T is transitive, it is called a 
congruence on T. 

Let a groupoid T and a tolerance T on it be given. A subset B of T is called a 
block of T, if (x,y) G T for any two elements of B and B is a maximal set with 
this property (it is not a proper subset of another set with this property). If T is a 
congruence, then its blocks are called congruence classes. 

We shall prove a lemma. 

Lemma. Let G be a graph, let T be a tolerance on T(G). Let M be a subset of 

a block ofT. Let u G T(G) - M, let u be adjacent to at least one vertex of M and 

non-adjacent to at least one vertex of M in G. Then (u,x) G T for each x G M. 

P r o o f . Let X (or 7 ) be the set of all vertices of M which are adjacent (or 
non-adjacent respectively) to u. According to the assumption X ^ 0, Y ^ 0. Let 
x G X, y G Y. As both x, y are in M, we have (x,y) G T. By reflexivity (u,u) G T. 
Then (ux,uy) = (u,y) G T, (xu,yu) = (x,u) G T and by symmetry (u,x) G T. The 
vertex x was chosen arbitrarily in X, the vertex y was chosen arbitrarily in Y and 
X U Y = M, which proves the assertion. D 

Now we prove a theorem. 

Theorem 2. Let G be a graph, let B be a non-empty subset ofT(G). Then the 

following two assertions are equivalent: 

(i) Each vertex x G T(G) — B is either adjacent to all vertices ofB, or non-adjacent 

to all vertices of B. 

(ii) There exists a tolerance T on T(B) such that B is a block ofT. 

P r o o f . (i)=i>(ii). Let (i) be satisfied. Let us define a tolerance T such that 
(x,y) G T if and only if either x = y, or x G B and y G B. Evidently T is reflexive 
and symmetric (and moreover transitive). Let x\, y\, x2, y2 be four elements of 
V(B) such that (xi,yi) G T, (x2,y2) G T. If xx = yu x2 = y2, then (xxx2,yiy2) = 
(x\x2,xix2) G T. Suppose x\ G B, t/i G B, x2 = y2 £ B. Then by (i) either 
x2 -= y2 is adjacent to all vertices of B, or non-adjacent to all of them. In the first 
case (xix2,yiy2) = (xi,yi) G T, in the second case (x\x2,yiy2) = (x2,x2) G T. 
Analogously in the case where x\ = y\ £ B, x2 G B, y2 G B. If all the elements x\, 

#2,2/1,2/2 are in B, then so are the products x\x2, yiy2, because T(G) is conservative; 
again (x\x2,yiy2) G T and T is a tolerance on T(G). 

(ii)=t>(i). Suppose that there exists x G T(G) — B adjacent to at least one vertex 
of B and non-adjacent to at least one vertex of B. Then, by Lemma, the set Bu{x} 

has the property that any two of its elements are in T and thus B is not maximal 
with this property, i.e. it is not a block of T. • 
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The family of all non-empty subsets of T(G) satisfying the condition (i) will be 
denoted by B(G). 

We shall prove a theorem concerning B(G). 

Theorem 3. Let G bean undirected graph. Then S(G)U{0} is a complete lattice 
with respect to set inclusion. 

Proof . Let C be a non-empty subset of B(G) and consider the intersection 
D = f] C. If D = 0, then D G B(G) U {0}. If D £ 0, then let x G T(G) - D. 

cec 
Then there exists Go G C such that x G T(G) - Go- As G0 G B(G), the vertex a: 
is either adjacent to all vertices of Go and thus also to all vertices of D C Go, or 
non-*adjacent to all of them; we have proved that D G B(G). Therefore there exists 
the meet /\ C = f| C. Now consider the set V of all elements of B(G) which 

cec cec 
contain (J G as a subset; this set is non-empty, because T(G) G V. There exists 

cec 
the meet /\ D = f| D a n d t h i s i s V c - n 

D€£> D€D CGC 

Theorem 4. Let G be an undirected graph, let B G B(G), C G B(G), Bf\C ^ 0. 
Then B V G = B U G. 

Proof . Let x G T(G) - (BUC). Then x G T(G) - B a n d x E T(G) - C. As 
£ G T(G) — B, it is either adjacent to all vertices of B, or non-adjacent to all vertices 
of B. In the first case it is adjacent to all vertices of B fl G C B. As B n G ?- 0, it is 
adjacent to at least one vertex of G and, as G G #(G), to all vertices of G and hence 
also to all vertices of B U G. In the second case it is non-adjacent to all vertices of 
BUG. Therefore BUG G #(G) and B V G = B U C. • 

Proposition 1. The lattice B(G) U {0} is not distributive in general, but each of 
its complete sublattices not containing 0 as an element is distributive. 

Proof . Let the vertex set of G be V(G) = {v,x,y,z}, let G have exactly one 
edge vx. Evidently each one-element subset of V(G) is in B(G) and thus the sets 
{z}> {y}> {*} **e in 6(G). Evidently 

{*}v({y}A{z}) = {x}V0 = {:r}. 

The set {x} V {y} is the least set which contains x and y and is in B(G). The vertex 
v is adjacent to a; and not to y, therefore v G {x} V {y}. The set {v,x,y} G B(G) 
and therefore {x} V {y} = {v,x,y}. Analogously {x} V {z} = {v,x,z}. We have 

({x} V {y}) A ({*} V {z}) = {i;, x, y} n {«, s, z} = {v, x} ? {x} 
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and the lattice B(G) U {0} is not distributive. 
Now let G be an arbitrary undirected graph. Let B0 be a sublattice of B(G) U {0} 

which does not contain 0. Let Bo be the meet of all elements of Bo; as BQ is complete, 
B0 is the least element of BQ and Bo ^ 0. Any two elements of BQ have a non-empty 
intersection, because they both contain S0- Therefore the join in Bo is equal to 
the set union and Bo is a sublattice of the lattice of all subsets of T(G), hence it is 
distributive. D 

Note that B(G) contains always the set T(G) and all of its one-element subsets. 

Proposition 2. Let G be an undirected graph with at least two vertices. Then 
the lattice B(G) U {0} is generated by its atoms. 

Proof . As it was mentioned above, every one-element subset of T(G) is in B(G) 
and therefore the set of all atoms of B(G) U {0} is equal to the set of all one-element 
subsets of T(G). If B e B(G), then evidently B = V x. If x, y are two different 

xeB 
elements of T(G), then {x} A {y} = 0. This implies the assertion. D 

Now we shall study the lattice Tol (T(G)) of all tolerances on T(G). 

Theorem 5. Let G bean undirected graph. The lattice Tol (T(G)) is a sublattice 
of the lattice of all reflexive and symmetric binary relations on T(G). 

Proof . Let Ti, T2 be two tolerances on T(G). It is well-known that the meet 
of two tolerances on an algebra is equal to their intersection, Ti A T2 = Ti fl T2. 

Consider the relation T\ UT2. Let (#1,2/1) € Ti UT2 and (x2,y2) ET\UT2. If they 
both belong to Ti or they both belong to T2, it is evident that (#1 #2,2/12/2) eT\l)T2. 
Thus suppose (x\,y\) e T\, (x2,y2) £ T2. If x\ is adjacent to x2 or x\ = x2 and 
2/i is adjacent to 2/2 or y\ = y2, then (x\x2,2/12/2) = (#1,2/1) € T\ C Ti UT2. If 
x\ is non-adjacent to x2 or x\ = x2 and 2/1 is non-adjacent to 2/2 or 2/1 =2/2, then 
(#i#2,2/12/2) = (#2,2/2) € T2 C Ti U T2. Now suppose that x\ is adjacent to x2 and 
2/i is non-adjacent to y2. Then (#1 #.2,2/12/2) = (#1,2/2)- If #1 is adjacent to 2/2, then 
(#1,2/2) = (#12/2,2/12/2) € Ti C Ti UT2. If x\ is non-adjacent to y2, then (#1,2/2) = 
(#12/1, #12/2) GT2C TI UT2. If x\ = y2, then by reflexivity (xx,y2) E Ti UT2. Hence 
Ti U T2 G Tol (T(G)) and T\ V T2 = Ti U T2. We have proved that Tol (T(G)) is a 
sublattice of the lattice of all reflexive and symmetric relations on T(G). • 

Let x, y be two distinct elements of T(G). By T(x,y) we shall denote the least 
tolerance on T(G) containing the pair (x,y), i.e. the intersection of all tolerances on 
T(G) containing that pair. 
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Theorem 6. Let G be an undirected graph, let x, y be two distinct vertices ofG. 

Then T(x,y) is a congruence on T(G) which has exactly one class with more thhn 

one element. 

P r o o f . Let B(x, y) be the set of all elements of B(G) which contain the vertices 
x, y. This set is non-empty, because T(G) G B(x,y). Let B0(x,y) be the intersection 
of all elements of B(x, y), i.e. their meet in the lattice B(G) U {0}. Obviously {x, y} C 
B0(x,y). In any tolerance T every pair of elements being in T belongs to at least 
one block of T. Therefore there exists a block B of T(x, y) such that {x, y} C B. By 
Theorem 2 we have B G B(G) and hence B0(x, y) C B. We have then (u, v) £ T(x, y) 

whenever u G Bo(x,y) and v G Bo(x,y). On the other hand, let the relation To be 
defined so that (u,v) G T0 if and only if either u G B0(x,y) and v G B0(x,y), or 
u = v. Then by Theorem 2 the relation To is a tolerance on T(G); hence To C T(x, y) 

and by the minimality of T(x,y) we have To = T(x,y). Prom the definition of To it 
is clear that it has the required properties. • 

At the end we shall prove a theorem concerning the relationship between different 
blocks of a tolerance. 

Theorem 7. Let G be an undirected graph, let T G Tol(r(G)), let B\, B2 be 

two distinct blocks ofT. Then B\ - 2?2 7-= 0, B2- f?i 7- 0 and either all vertices of 

B\ — B2 are adjacent to all vertices of B2 and all vertices of B2 - B\ are adjacent 

to all vertices of B\, or all vertices of B\ — B2 are non-adjacent to all vertices of B2 

and all vertices of B2 - B\ are non-adjacent to all vertices of B\. 

P r o o f . We have B\ — B2^Q and B2-B\^ 0, because no block of a tolerance 
is a proper subset of another block. Let x\ G B\ - B2, x2 G B2 — B\. If x\ is adjacent 
to x2, then it is adjacent to all vertices of B2, because B2 G B(G). But then x2 is 
adjacent to x\ and thus x2 is adjacent to all vertices of B\, because B\ G B(G). As 
#i> #2 were chosen arbitrarily, the assertion holds. If x\ is non-adjacent to x2, the 
proof is analogous. D 

We shall add some final remarks. 

We may introduce a factor-graph G/T of the graph G by the tolerance T G 
Tol (r(G)) in such a way that the vertex set of G/T is the set of all blocks of T and 
two such blocks B\, B2 are adjacent in G/T if and only if all vertices of B\ - B2 

aire adjacent to all vertices of B2. The corresponding groupoid T(G/T) is called the 
factor-groupoid of V(G) by T and may be denoted by T(G)/T. If T is a congruence, 
this is the factor-groupoid of T(G) by T in the usual sense. 

Note that conservative groupoids do not form a variety; the direct product of two 
conservative groupoids need not be conservative. 
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