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Summary. In th i s p a p e r we invest igate abel ian convergence ^-groups wi th zero radica l 

ich t h a t each b o u n d e d sequence has a convergent subsequence . 
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Sequentially compact convergence groups were studied by Dikranjan [3]; cf. also 

the references given there. 

All ^-groups (= lattice ordered groups) dealt with in the present paper are assumed 

to be abelian. 

For convergence ^-groups we apply the same definitions and notation as in [6]. 

Let G be a convergence £-group. The corresponding convergence will be denoted 

by a; thus if a sequence (xn) converges to x in G, then we express this fact by writing 

Xn -+a X. 

If every sequence in G has a converging subsequence, then G is said to be sequen­

tially compact. 

It turns out that the role of the notion of sequential compactness for convergence 

^-groups is rather modest. Namely, G is sequentially compact if and only if G = {()}. 

If every bounded sequence in G has a converging subsequence, then G will be 

called 6-sequentially compact. 

We use the notion of the radical of an £-group as in Conrad [2] (the definition is 

recalled in Section 1 below); c'-groups with zero radical were investigated in [1] in 

connection with the lateral completion of ^-groups. 

S u p p o r t e d by G r a n t G A SAV 1230/1995 
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In the present article we deal with the case when G satisfies the following condi­
tions: 

(a) the radical of G is zero; 
(b) G is 6-sequentially compact. 

The symbols Z and R denote the additive group of all integers or of all reals, 
respectively, with the natural linear order. 

The notion of o-convergence has the usual meaning; we apply the notation 
xn - > B W x. 

The ^-group G is said to satisfy the condition (F) if each bounded disjoint subset 
of G is finite (cf. [2]). 

We prove the following results. 
Let G be a convergence £-group satisfying the Urysohn axiom. 

(A) Suppose that G satisfies the conditions (a) and (b). Then G is a completely 
subdirect product of ^-groups Gi (i 6 /) such that 

(i) for each i G /, Gi is isomorphic either to Z or to R; 
(ii) if xn —ta x holds in G and if i 6 /, then for the natural projection 

Pi of G onto Gi the relation pi(xn) ->„(<,) Pi(x) is valid. 
(B) Suppose that G is a completely subdirect product of ^-groups Gi (i 6 /) such 

that the conditions (i) and (ii) from (A) are satisfied. Further suppose that 
the condition (F) is valid. Then G is 6-sequentially compact and its radical 
is zero. 

By an example we show that the assumption on the validity of (F) cannot be 
cancelled in the above theorem. 

1. PRELIMINARIES; SEQUENTIAL PRECOMPACTNESS 

In what follows, H denotes the set of all positive integers. For the sake of com­
pleteness we recall the following definitions from [6]. 

Let G be an £-group, g € G and (gn) 6 GN . If gn = g for each n £ M, then we 
write (gn) = const g. For (hn) 6 GN we set (hn) ~ (gn) if there is m 6 N such that 
hn = gn for each n €N with n ^ m. 

The set GN is an £-group under the obvious definition of the partial order and of 
the operation +. Let a be a convex subsemigroup of the lattice ordered semigroup 
(GN )+ such that the following conditions are satisfied: 

(I) If (gn) 6 a, then each subsequence of (gn) belongs to a. 
(IF) Let (gn) g Q and (hn) g (GN)+. If (hn) ~ (gn), then (hn) € a. 
(Ill) Let g 6 G. Then const g belongs to a if and only if g = 0. 

64 



Under these conditions a is said to be a convergence on G. 

For (gn) 6 GN and g 6 G we put gn ->•„ </ if and only if (|<?n - g\) G a. It is easy 

to verify that gn —>Q 0 if and only if (gn) G a. 

We denote by convG the set of all convergences on G. 

Let a(o) be the set of all sequences (gn) in G+ having the property that there exists 

(hn) G (GN)+ such that (i) hn+l ^ hn for each n e N; (ii) / \ /i„ = 0; (iii) there is 
n€N 

m G N such that ft,, ^ gn for each n 6 N with n ^ m. Then a(o) G convG; a(o) is 

said to be the o-convergence in G. 

Further let a(d) be the set of all (x„) G (Ghl)+ such that (.x„) ~ constO. Then 

clearly a(d) G convG; it is said to be the discrete convergence on G. 

Let us remark that if xn -ta x, yn ->Q y and o e {+, —, A, V}, then 

xnoyn -+a xoy; 

also, if (xn) = const x, then xn -*a x. (Cf. [6].) 

The system conv G is partially ordered by the set-theoretical inclusion. The least 

element of convG is a(d). 

The convergence a is said to satisfy the Urysohn axiom if it fulfils 

(II) Whenever (gn) is a sequence in G+ such that each subsequence of (gn) has a 

subsequence belonging to a, then (gn) e a. 

The system of all elements of convG which satisfy the Urysohn axiom will be 

denoted by Conv G. 

Let 0 ^ g € G. We denote by Ag the system of all convex ^-subgroups A of G such 

that g <£ A; further let Rg be the subgroup of G generated by the set (JA(AeAg). 

The radical R(G) of G is defined to be the set f]Rg (0 + g G G). (Cf. [2].) 

A subset X of G+ is said to be disjoint if x ^ 0 for each x G A', and if X\ Ax2 = 0 

whenever x\ and x2 are distinct elements of X. 

Let (G; ) ; e ; be an indexed system of £-groups and let tp be an isomorphism of an 

f-group G into the direct product FJ G; such that, whenever i G / and x% G G;, then 
iei 

there exists g & G with 

V>(s). = a;*; 
^ ( ^ = 0 for each j el\{i}. 

Under these assumptions we say that <p is a completely subdirect product decompo­

sition of the £-group G. The notion of the completely subdirect product is due to 

Sik [7]. 

The condition defining the completely subdirect product decomposition can be 

expressed also by writing 

YJG;CV(G)CTTG;. 
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A sequence (xn) in a convergence ^-group G is called a Cauchy sequence if, when­

ever (yn) and (zn) are subsequences of (xn), then yn - zn -> a 0. 

G is called sequentially precompact if each its sequence has a Cauchy subsequence. 

(Cf. [3] for the case of convergence groups.) 

G will be said to be 6-sequentially precompact if each its bounded sequence has a 

Cauchy subsequence. 

1.1. L e m m a . Let G be a convergence (.-group, 0 < x E G, xn = nx for each 

n € N. Then the sequence (xn) has no Cauchy subsequence. 

P r o o f . By way of contradiction, suppose that (yn) is a Cauchy subsequence of 

(xn). We have yn+i - yn ^ x > 0 for each n f f s l , hence the relation 

yn+l - Vn ->a 0 

cannot hold and so we arrive at a contradiction. D 

1.2. C o r o l l a r y . Let G be a convergence (.-group. Suppose that G is b-sequen-

tially precompact. Then G is archimedean. 

P r o o f . If G is not archimedean, then there are x, y E G such that 0 < nx < y 

is valid for each n E N. Thus in view of 1.1, G is not sequentially precompact. D 

1.3. C o r o l l a r y . Each b-sequentially compact convergence (-group is archime­

dean. 

2. C O N G R U E N C E RELATIONS 

Again, let G be a convergence ^-group with the convergence a. 

A subset X of G is said to be closed with respect to a if, whenever xn —>a x and 

all xn belong to X, then x belongs to X as well. 

2 . 1 . L e m m a . Let A be a convex (-subgroup ofG and let g\ E G. Then gi + A 

is closed with respect to a if and only if A is closed with respect to a. 

P r o o f . This is an immediate consequence of the fact that the convergence is 

compatible with the operations + and - . D 



Let A be as in 2.1 and suppose that A is closed with respect to a. For each x G G 

and X C G we put 

x" = x + A, A = {x: x G A'}. 

Hence G is the factor ^-group of G corresponding to the tMdeal A, i.e., G = G / A 

We set 

a = {(xn): ( x n ) e a } . 

2 .2 . L e m m a . a G c o n v G . 

P r o o f . We have to verify that the conditions (I), (II') and (III) are satisfied 

for a. 

i) Let (</J 6 a and let (7i„) be a subsequence of (</„). Hence there is (x„) G a 

such that (<7„) = (x n ) . Then (7t„) = (y„), where (yn) is a subsequence of (xn). We 

have (j/n) G a, therefore (/in) € a. 

ii) Let (</„) S a, (7ln) 6 (C?'') + , <?n ~ hn. Further let (x„) be as in (i). There is 

m £ N such that hn = gn for each n £ N with n ^ m. Put y„ = hn for n < m and 

y„ = x n otherwise. Then (yn) ~ (x n ) , whence (j/n) G a. Clearly (/i„) = (yn). Thus 

(7in) e a. 
iii) Let j e G , (5n) = const?/. 

Suppose that (J n ) e a. Hence there exists (xn) € a with (s n ) = (xn). Then 

x n £ g + A for each n £ N. We have xn ->a 0 and thus in view of 2.1 we obtain that 

0 e g + A yielding that g = 0. 

Conversely, suppose that g = 0. Put x n = 0 for each n € N. Then (xn) G a and 

(z"n) = (5„), whence (gn) G a. Q 

Under the notation as above we always consider G to be a convergence £-group 

with the convergence a. 

For X C G we denote by A"s the polar of A (cf. [2]). 

2 . 3 . L e m m a . Let A C G. Then Xs is closed with respect to a. 

P r o o f . Put Xs = A. Denote Xi = {|x|: x G A } . Then Xs = Xs and 

Ai C G+. Hence without loss of generality we can suppose that A C G + . 

Let o„ G A for each n G N, o„ -> 0 </. Then o n V 0 G A, an V 0 ->„ </ V 0. Let 

x G A . We have x A (o„ V 0) = 0, whence x A (</ V 0) = 0 and thus j V O e A 

Further, - ( o n A 0) G A, thus 

xA(-(o„A0)) = 0 

yielding that 

x A ( - ( < / A 0 ) ) = 0, 
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hence —(g A 0) £ A. Therefore g A 0 £ A. Since A is a convex subset of G we get 

g £ A. O 

2.4. Corollary. Each direct factor of the (.-group is closed with respect to a. 

For an ^-subgroup A of G we denote 

aA = an(AN)+. 

Then applying the conditions (I), (IF) and (III) we immediately obtain 

2.5. Lemma. aA £ COIN A. 

The ^-subgroup A is always regarded as a convergence ^-group with the conver­

gence aA. 

Now suppose that the ^-group G is represented as a direct product 

(1) G = AxB. 

In view of 2.4, B is closed with respect to a; let us denote by a the corresponding 

convergence on the ^-group G/B. 

Each element g £ G can be uniquely represented as g = a + 6 with a £ A and 

b £ B; if g ^ 0, then a ^ 0 and 6 ^ 0 . Hence each element g + B of G / B can be 

written as 

a + b + B = a + B 

with o € i 4 . If ai £ A and oi + B = o + B , then a — a\ £ B, whence a = o i . 

2.6. Propos i t ion . Let (1) be valid. 

a) Let (o„) £ aA. Then (a„) £ 57. 

b) Let (gn) £a, gn = an + bn, a„ £ A, bn £ B. Then (o„) e aA. 

P r o o f , a) Let (o„) £ aA. Then (an) £ a and thus (a.n) £ a. 

b) Let (gn) € 57 and let an , b„ be as above. In view of the definition of 57 there 

exists (hn) £ a such that (hn) = (gn). Let hn = a'tl + b'n, o„ G A, 6'n e B. Then 

(a'n) £ (AN )+ and for each n £ M we have 

a',, + B = o'„ + b'n + B = X„ = " „ = o„ + b„ + B = o„ + B, 

whence a'n = a n . Thus 0 ^ a„ ^ hn for each n € N. Since Q is a convex subset of 

(GN)+ we infer that (o„) e Q. Hence (a„) e a.4. • 
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2.7. Lemma. Let A be a convex i-subgroup of G and let (gn) be a bounded 

sequence in G = G/A. Then there exists a bounded sequence (hn) in G such that 

hn = gn for each n eN. 

P r o o f . In view of the assumption there exist x, y e G such that x ^gn ^y for 

each n e N. Put hn = (xi V gn) A ;/i, where x\ = x A y and j/i = i V y. Then 

xi =x, yl = y, hn = gn, xi ^ hn ^ yt 

for each n eN. D 

2.8. L e m m a . Suppose that G is b-sequentially compact and that A is an £-ideal 

of G which is closed with respect to a. Then G/A is b-sequentially compact. 

P r o o f . This is an immediate consequence of the definition of Q and of 2.7. D 

From 2.6 and 2.8 we obtain 

2.8 .1 . Corollary. Suppose that G is b-sequentially compact and that (1) is 

valid. Then A is b-sequentially compact. 

2.9. Lemma. Let (1) be valid, gn e G, gn = an + bn (an 6 A, bn e B, n e N). 

Then the following conditions are equivalent: 

(i) (gn)ea; 

(ii) an e a A and bn e Q B . 

P r o o f , (i) Let (gn) 6 a. Since 0 ^ an ^ gn we obtain that (on) € a and thus 

(an) £ QA- Similarly, (&„) € a g . 

(ii) Let (on) e aA and (bn) e aB. Then (an), (bn) G Q and thus (gn) = 

(an + bn)ea. O 

By the obvious induction we can generalize the above result, for the case 

(2) G = . 4 i x 4 2 x . . . x Ak. 

2.10. Lemma. Let (2) be valid. Then G is b-sequentially compact if and only 

if all At (i = 1,2,..., k) are b-sequentially compact. 

P r o o f . This follows from 2.6, 2.8.1 and 2.9. D 



3. T H E CASE OF LINEARLY ORDERED GROUPS 

In this section we suppose that G is as above and that, moreover, G is linearly 

ordered. 

3 . 1 . L e m m a . Let (gn) e a. Then (gn) e a(o). 

P r o o f . From (gn) e a we obtain that gn >- 0 for each n e M. The case G = {0} 

being trivial we can suppose G ^ {0}. Let 0 < x 6 G. If the set Sx = {n e N: 

gn >- x} is infinite then there exists a subsequence (hn) of (gn) such that hn >• x for 

each n 6 M. Since hn —>a 0 we would have xn ->„ 0, where (xn) = const x, which 

is a contradiction. Hence for each 0 < x e G the set Sx is finite. This yields that 

for each m £ N the set {gn: </„ ^ gm] has a greatest element; this will be denoted 

by </£,. Then g^ >. g° > • •. ^ 0. Since each gnl is equal to some gn with n >- m, we 

have / \ gn = 0. Hence (</„) e Q(O). • D 

As a corollary we obtain 

3.2. P r o p o s i t i o n . If G is linearly ordered, then a(o) is the greatest element of 

conv G. 

In general, if G fails to be linearly ordered, then convG need not have the greatest 

element. For related questions cf. [5]. 

3 .3 . P r o p o s i t i o n . (Harminc [4].) Suppose that G is linearly ordered. Then 

(i) a(o) belongs to ConvG: 

(ii) if a belongs to ConvG, then either a = a(d) or a = a(o). 

In the remaining part of this section we assume that G is linearly ordered and 

6-sequentially compact. We also suppose that a belongs to ConvG. In view of 1.4, 

G is archimedean. It is well-known that each archimedean linearly ordered group is 

isomorphic to an ^-subgroup of R. Hence without loss of generality we can assume 

that the £-group G coincides with an ^-subgroup of R. We also assume that G ^ {0}. 

There exists x £ R with x > 0 such that the interval [0, x] of R contains an element 

of G distinct from 0. Put A = G n [0, x]. We distinguish two cases: 

a) The set A is finite. 

b) The set A is infinite. 

Firstly suppose that a) is valid. Then there exists an element g\ in G such that g\ 

covers the element 0. It is a routine to verify that in this case G is isomorphic to Z. 

Further let us suppose that b) holds. Then for each y e R with y > 0 there exist 

distinct elements g\,g2 e G such that 0 < g\ < g2 ^ x and g2 ~ g\ < y. 
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This yields that there is a sequence (3,1) in G such that gi> g% > ... > gn > 

gn+i > . . . > 0 and / \ gn = 0. No subsequence of (gn) belongs to a(d). Thus, since 
n£N 

G is 6-sequentially compact, a ^ a(d). Therefore in view of 3.3, a = a(o). 

The symbol a(o) means the o-convergence in G; now we will denote it by a(o. G) 

in order to distinguish it from the o-convergence in R, which will be denoted by 

a(o,R). It is clear that 

(3) a(o,G) = (GN)+na(o,R). 

Suppose tha t there is t £ R such that t does not belong to G. Then t' = ]t\ > 0 

and t' ^ G. For each n e N there exists gn e G such that 

0 < gn < - , 9n < *'• 
n 

Since G is archimedean there is n' £ F**J such that 

n'g„ < t' < (n' + l)gn. 

Denote n'gn = gn, (n' + \)gn = gn. Thus gn < t' < gn and gn - gn < i . From these 

relations we easily obtain that 

3 „ ->a(o,fi) *', 9n ->o>(o,K) *'• 

( J 4 ) is a bounded sequence in G. If (hn) is a subsequence of (gn), then 

frn -^Qfo.i?) *'> 

whence in view of (3), (lin) is not convergent with respect to the o-convergence in G. 

Thus G is not 6-sequentially compact and so we arrive at a contradiction. Therefore 

G = R. 

Summarizing, we conclude: 

3.4. L e m m a . Let G be a convergence (.-group with the convergence a such that 

(i) G is linearly ordered, (ii) G is b-sequentially compact, and (iii) a satisfies the 

Urysohn axiom. Then either 

a) G is isomorphic to Z and a = a(d), 

or 

b) G is isomorphic to R and a coincides with the o-convergence. 
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4. ^-GROUPS WITH ZERO RADICAL 

4 . 1 . L e m m a . Let G be an archimedean (-group with zero radical. Then G is a 

completely subdirect product of linearly ordered groups. 

P r o o f . This is a consequence of Theorem 3.5 and Theorem 5.4 in [2]. • 

P r o o f of (A). 

Suppose that G is a convergence ^-group with the convergence a such that 

ai) the radical of G is zero; 

a2) G is 6-sequentially compact; 

as) the Urysohn condition is satisfied. 

Then in view of a2) and 1.4, the £-group G is archimedean. Thus according to 4.1, 

the ^-group G is a completely subdirect product of linearly ordered groups Ai (i G / ) . 

Each At is a direct factor of G. We consider the convergence «; = a^ on At. 

Then in view of 2.8.1, Ai is 6-sequentially compact. Since a satisfies the Urysohn 

axiom, a; satisfies this axiom as well. Thus according to 3.4, some of the conditions 

a) or b) from 3.4 holds. • 

P r o o f of (B). 

Suppose that the assumptions from (B) are satisfied. Thus in view of 3.4, all G; 

are 6-sequentially compact. 

Let (gn) be a bounded sequence in G. Using translations we see that without loss 

of generality it suffices to consider the case when 0 ^ gn ^ g for some g e G. Let 

gt = g(Gi). Then {<?;},e/ is a disjoint subset of [0,6]. Put Iy = {i e / : <?; > 0}. 

The case I\ = 0 is trivial; suppose that I\ ^ 0. Since G satisfies the condition (F). 

the set h is finite and we can write h = {i\, i2. • • •,i*.}. Thus [0,6] is a subset of 

G,, x Gi2 x . . . x Gik = B. Now according to 2.10 there exists a subsequence (hn) of 

(gn) which is convergent with respect to as and hence this subsequence is convergent 

also with respect to a. Hence G is 6-sequentially compact. From the definition of 

the radical we obtain that R(G) = {0}. D 

The following example shows that the condition (F) in (B) cannot be omitted. 

Let G = f l Gi, where / = N and G; = Z for each i e I. If g e G, then the 
iei 

component of g in G; will be denoted by g(i). We consider the discrete convergence 

a(d) = a on G. Then for each i e I, ao{ is the discrete convergence on G;. Hence 

all assumptions of (B) except the validity of (F) are satisfied. 

For 0 ^ x e R we denote by int x (the integral part of x) the greatest integer y 

with y ^ x. 
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Let n 6 N. We define gn € G as follows. For each i S / we put 

ffn(i) = i n t ( ~ i ) . 

Then we have </i > 32 > • • • > 3o, where <?0 is the zero element of G. Thus (gn) is 

a bounded sequence in G. No subsequence of (gn) is convergent with respect to a. 

Hence G fails to be 6-sequentially compact. 

We conclude by remarking that for each infinite cardinal k there exists a conver­

gence <?-group G such that G is 6-sequentially compact and cardG = k. Indeed, let 

/ be a set of indices with card I = k and for each i € I let G; = Z; put G0 = J ] G;. 
i s / 

We denote by G the ^-subgroup of G consisting of all g e G0 such that the set {i e I: 

g(i) ^ 0} is finite. (In other words, G is a weak direct product of ^-groups G;.) Then 

G satisfies the assumptions of (B) if we put a = a(d). Hence the convergence ^-group 

G is 6-sequentially compact. It is clear that cardG = k. 
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