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THE BEHAVIOUR OF THE NONWANDERING SET 

OF A PIECEWISE MONOTONIC INTERVAL MAP 

UNDER SMALL PERTURBATIONS 

PETER RAITH, Wien 

(Received August 3, 1995) 

Summary. In this paper piecewise monotonic maps T: [0, 1] - • [0, 1] are considered. Let 
Q be a finite union of open intervals, and consider the set R(Q) of all points whose orbits 
omit Q. The influence of small perturbations of the endpoints of the intervals in Q on 
the dynamical system (R(Q),T) is investigated. The decomposition of the nonwandering 
set into maximal topologically transitive subsets behaves very unstably. Nonetheless, it is 
shown that a maximal topologically transitive subset cannot be completely destroyed by 
arbitrary small perturbations of Q. Furthermore it is shown that every sufficiently "big" 
maximal topologically transitive subset of a sufficiently small perturbation of (R(Q),T) is 
"dominated" by a topologically transitive subset of (R(Q),T). 
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INTRODUCTION 

Let T: [0,1] -» [0,1] be a piecewise monotonic map, that means there exists a 

finite partition Z of [0,1] of pairwise disjoint open intervals with [J Z = [0,1] such 
zez 

that T | Z is continuous and strictly monotonic for all Z € Z. Fix K € N, and let 
(a\, a2) U (03,(14) U . .. U (a 2 /c - i , QQK) be a finite union of open subintervals of [0,1]. 
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der wissenschaftlichen Forschung. 
The author likes to thank the University of Warwick for their hospitality during the time 
the research for this paper was done. 
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Define 
oo K 

R(ai,a2,...,a2K) := f | [0,1] \ T— ( Q (a2*_i, On*)). 
n=0 *=] 

The aim of this paper is to investigate the influence of small perturbations of the 
K 

endpoints of | J (a2k-i,a2k) on the dynamical system (R(ai,a,2,... ,a2K),T). 
k=i 

Such problems were treated in [8], [10] and [11]. If / : [0,1] -> R is a piecewise 

continuous function, that means f\Z can be extended to a continuous function on 

Z for all Z e 2 , then Theorem 1 in [8] says that the function (oi, a2,... ,a2K) i-> 

p(R(a\,a2,..., a2K),T, f) is continuous, if a certain condition generalizing 

p(iJ(ai , 0 2 , . . . , a2K), T, f) > sup /(*) ' 
s€f l (a i ,a 2 , . . . ,a 2 K ) 

is satisfied. This implies that the topological entropy is continuous (Corollary 1.1 

in [8]). For an expanding T, that means T' is piecewise continuous and there ex­

ists a n n e N with inf |(T"') '(a)| > 1, Theorem 2 in [8] gives that the function 

(ai,a2,... ,a2K) i-+ WD(R(ai,a2,. .. ,a2K)) is continuous. In the case of an expand­

ing C2-transformation of the circle these results were earlier obtained by Mariusz 

Urbanski ([10] and [11]). All of those results concern certain dynamical invariants, 

but not the dynamics itself. The aim of this paper is to investigate how the dynam­

ics of (R(ai,a2,. .. ,a2K),T) reacts on small perturbations of (a,\,a2,. . . ,a2K). This 

is done by considering the reaction of these perturbations on the decomposition of 

the nonwandering set of (R(a,i, a2,.. ., a2K), T) into maximal topologically transitive 

subsets with positive entropy. The results of this paper imply the continuity results 

mentioned above. However, the results of this paper are not strong enough to obtain 

stability results for equilibrium states. The behaviour of equilibrium states under 

small perturbations of (a.i,a2,.. . ,a2K) remains an open problem. 

Another stability problem is studied in [4], [7] and [9], In those papers a close­

ness relation for piecewise monotonic maps is defined, and small perturbations with 

respect to this closeness relation are investigated. We get R(a,i,a2,... ,a2K) = 

fl(r|[0,l] \ U (aa*-i,a-fc)), where R(T\[0,1] \ (J (a 2 *- i , a 2 *)) is defined as in 
v *=i ' v *=] ' 

(1.1) of [9]. However, the results of [9] (which are in some sense weaker than the re­
ft 

suits in this paper) need not be applicable in our case, since T|[0,1] \ \J (d2k-i-a2k) 
k=i 

K 
need not be close to T | [0 ,1] \ (J (a2k-i,a2k) in the sense defined in [9], if |fij — o , | < £ 

*=] 

for all j e { 1 . 2 , . . . , 2K} (see p. 39 in Introduction of [8] for a description of this 
fact). 
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In [1], [2], [3] and [5] a structure theorem for the nonwandering set of a piecewise 

monotonic map is shown. It says that 

il(R(aua2,.... a2K),T) = ( J L< U ( J JV,U PUW 
iei jeJ 

where I is at most countable, J is at most finite, the intersection of two different 

sets in this decomposition is at most finite, the sets L; are closed, T-invariant, topo-

logically transitive, and the periodic points of L; are dense in Li} the sets Nj are 

closed, T-invariant, minimal with entropy zero and no periodic points, and they 

are maximal topologically transitive, the set P is closed, T-invariant, and con­

sists of periodic points, which are contained in nontrivial intervals K, which are 

mapped into K by T n for an n £ N, and the elements of W are not contained 

in Q(Sl(R(ai, a2,..., a2K),T),T). Furthermore the sets Li either form a single peri­

odic orbit, or they are maximal topologically transitive subsets with positive entropy. 

Hence the most interesting part of the dynamics takes place on the at most countably 

many maximal topologically transitive subsets with positive entropy. 

In the first section we give some basic definitions and notation. Our main tool for 

investigating the structure of the nonwandering set, the Markov diagram (see e.g. 

[2]), is described in Section 2. Then we describe the structure theorem for the non­

wandering set in Section 3. In Section 4 we give an example for the instability of the 

decomposition of the nonwandering set into maximal topologically transitive subsets 

with positive entropy. Our main results are contained in Section 5. Theorem 1 says 

that, if we take a maximal topologically transitive subset L of (R(a\,a2,..., a2K), T) 

with positive entropy, and if ( a i , a 2 , . . . ,d2K) is sufficiently close to ( a i , a 2 , . . . ,a2K), 

then there exists a topologically transitive subset L of (R(di,a2 ,a2K),T) (which 

in general is not maximal topologically transitive), such that L and L are close in the 

Hausdorff metric, and the entropy of L is close to the entropy of L ("Z, cannot be com­

pletely destroyed"). Furthermore, if / : [0,1] -> K is piecewise continuous and a con­

dition generalizing p(L,T,f) > sup f(x) is satisfied, then also p(L.T.f) 
> £ « { « 1 , « 2 , , , » 2 K ) 

is close to p(L,T,f) and, if T is expanding, then also HD(Z) is close to HD(L). If 

we take a piecewise continuous / : [0,1] -» R and fix an a > 0, then Theorem 2 gives 

that for every (o . i , a 2 , . . . ,a2K) which is sufficiently close to ( a i , a 2 , . . . ,a2K) and for 

every maximal topologically transitive subset L of (R(&i,a2,...,a2K),T) which sat­

isfies a condition generalizing p(L, T, f) > sup f(x) + a ("L is sufficiently 
i £ B ( « i « , . , « « ) 

big"), there exist a topologically transitive subset L' of (R(cn, a2,..., d2K),T) and a 

topologically transitive subset L of (R(ai,a2,...,a2K),T) (in general U and L are 

not maximal topologically transitive), such that V and L are close in the Hausdorff 

metric and are contained in a neighbourhood of L, p(L',T,f) is close to p(L,T,f), 
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and p(L,T,f) is not bigger than a number close to p(L',T,f) and p(L,T,f) ("V 

and L dominate L"). A similar result concerning the topological entropy follows 

immediately from Theorem 2 (Corollary 2.1). For an expanding T a similar result 

concerning the Hausdorff dimension is given in Theorem 3. The main idea of the 

proofs is to calculate the decomposition of the nonwandering set into maximal topo-

logically transitive subsets with positive entropy using the Markov diagram as in [2], 

and to use the results of [8], where the behaviour of the Markov diagram under small 

perturbations of (ai , a 2 , . . . , a2/v) is described. 

1. D E F I N I T I O N S AND NOTATION 

We call Z a finite partition of [0,1], if Z consists of pairwise disjoint open intervals 

with U ~Z = [0,1]. A map T: [0,1] -> [0,1] is called piecewise monotonic, if there 
z e z 

exists a finite partition Z of [0,1] such that T\Z is strictly monotonic and continuous 

for all Z G Z. A function / : [0,1] —>> R is called piecewise continuous with respect 

to the finite partition Z(f) of [0,1], if f\Z can be extended to a continuous function 

on the closure of Z for all Z e Z(f). We say that / : [0 ,1 ] -* R is piecewise constant 

with respect to the finite partition Z(f) of [0,1], if f\Z is constant for all Z 6 Z(f). 

A piecewise monotonic map T: [0,1] -+ [0,1] is called expanding, if there exists a 

j G N such that (T^)' is a piecewise continuous function and inf \(Tj)'(x)\ > 1. At 

this point we want to remark that all results of this paper hold also for the situation 

considered in [7] and [9], that means T: X -> R is piecewise monotonic, where X is 

a finite union of closed intervals. 

Let / ( £ N and suppose that 0 ^ Oj ^ a2 ^ . . . ^ QQK-I ^ a2K ^ 1 with 

Oj < aj+2 for j £ {1,2, . . . , 2 A ' - 2 } . Set Q := (aua2,... ,a2I<-i,a2K). Let QK be 

the set of all such Q's. Now for Q = (ai, a2,..., a2K-i, a2K) € QK define 

(1-1) X(Q):=[0,l}\[{J(a2k^,a2k) 

and 

(1.2) R(Q) := H [0,1] \ T-J U (°2*-l-«2*) 
j=o H=i 

Let Z(Q) be the set of all maximal open subintervals of X(Q) n ( (j Z). Observing 
zez 

that the results of [7] and [9] remain true if we allow X to be a finite union of 
closed intervals and isolated points, we have that (T\X(Q), Z(Q)) is a piecewise 
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monotonic map of class R° in the sense defined in [7] and [9]. Furthermore we have 

R(T\X(Q)) = R(Q), where R(T\X(Q)) is defined as in (1.1) of [9] (cf. [8]). 

As in [8] we define a topology on QK- Let e > 0. Then 

Q := (ai,a-2,...,a2K-i,a2K) and Q := (fii.Oa,.. .,a^K.-l,<*3K) 

are said to be e-close, if \ctj - &j\ < £ for all j G { 1 , 2 , . . . , 2 K } . Observe that 

(T\X(Q),Z(Q)) and (T\X(Q), Z(Q)) need not be e-close with respect to the R°-

topology defined in [7] and [9]. 

Next we modify ([0,1],T) as in [8] in order to get a topological dynamical system. 

Let X: [0,1] -+ [0,1] be a piecewise monotonic map with respect to Z, let K € f̂ J, 

let Q G QK, and let y be a finite partition of [0,1] which refines Z. We assume 

throughout this paper that y = {Yi,Y2,... ,YN} with Yi < Y2 < ... < YN. Set 

E := { i n f Y s u p y : y G y}- Now define W := (\J T~i(E \ {0,1})) \ {0,1}, set 

Uy := R \ W U {x~,x+ : x e W}, and define y < x~ < x+ < z, if y < x < z holds in 

R. This means that we have doubled all endpoints of elements of y, and we have also 

doubled all inverse images of doubled points. For x e Uy define ny(x) := y, where 

y e R satisfies either x = y or y e W and x G {y~,y+}- We have that x,y e Uy, 

~y(x) < ~y(y) implies x < y. As in [7] we can introduce a metric d on Ry, which 

generates the order topology. 

Let y(Q) be the set of all maximal open subintervals of X(Q) n ( | J Y). Let Xy 
vgy 

be the closure of [0,1] \ W in Ry and define Xy(Q) := {x e Uy. ny(x) e X(Q)}. 

Observe that Xy and Xy(Q) are compact. For a perfect subset A of R let A be the 

closure of A\W in Ry. Now set S> := {Y: Y e >'}, Z :={Z: Z e Z}, y(Q) := {Y: 

Y e y(Q)} and Z(Q) := {Z: Z e Z(Q)}. The map r | [ 0 , l ] \ (W U E) can be 

extended to a unique continuous piecewise monotonic map Ty: Xy - j . Xy. Then 

(Ty,Z) is a continuous piecewise monotonic map of class HP on Xy in the sense 

defined in [7]. If there is no confusion we will use the notation y, Z, y(Q) and Z(Q) 

instead of $, Z, y(Q) and Z(Q). The set Ry(Q) := ft Ty~jXy(Q) satisfies 

Ry(Q) = f] Ty-iXyW = ix e Ry- ny(x) e R(<M-
3=0 

If / : [0,1] -> R is piecewise continuous with respect to Z, then there exists a unique 

continuous function fy: Xy -4 R with fy(x) = f(x) for all X e [0,1] \ (W U E). 

Finally, we define a map Y: Xy -> >'. If x e Xy and ny(x) $ E\ {0,1}, then there 

exists a unique Y € y with ny(x) G Y. Set Y(x) := Y in this case. Otherwise we 

have either x = ny(x)~ or x = Jry(x) , and there exist exactly two Y~~,Y+ e y 



with Y~ < Y+ such that lty(x) 6 F n K + . Now set Y(x) := Y~ if _ = 7ry(_)~, 

a n d y ( i ) : = y + if _ = ffy(_)+. 

A topological dynamical system (X, T) is a continuous map T of a compact metric 

space X into itself. If e > 0 and n G W, then we call a set E C X (n, e)-separated, if 

for every x^y e E there exists a j 6 { 0 , 1 , . . . ,n - 1} with _(:P'_, T J 'J/) > e. For a 

continuous function / : X -> R the topological pressure p(X, T, f) is defined by 

1 Z""1 

p(X, T,f):= lim lim sup - log sup VJ exp I V J f(Tjx) 
n->oo £• \ j _ n 

where the supremum is taken over all (n,e)-separated subsets E of X. 

Then ( - .y(Q), -V| i ly(Q)) is a topological dynamical system (see [8]). We will use 

the abbreviation (Ry(Q),Ty) for {Ry(Q),Ty\Ry(Q)). As in (1.4) of [8] we define 

the pressure p(R(Q),T,f) by p(R(Q),T,f) := p(Ry(Q),Ty, fy), and as in (1.5) of 

[8] we set Sn(R(Q),f) := sup ~~~~l fy(Tyjx), where n e f J . We remark that 

the condition 

p(R(Q),T,f) > JKm is„(/.(Q),/), 

which will be used in this paper, is a generalization of the condition p(R(Q),T, f) > 

sup / ( _ ) . For the definition of the Hausdorff dimension we refer to [8]. We define 
-€« (Q) 

the nonwandering set Qy(R(Q),T) of (R(Q),T) by £ly(R(Q),T) := U(Ry(Q),Ty), 

where Q(Ry(Q),Ty) is the nonwandering set of the topological dynamical system 

(Ry(Q),Ty) (cf. (2.4) in [9]). 

2. T H E M A R K O V DIAGRAM OF (R(Q),T) 

In this section we describe our main tool, the Markov diagram, which was intro­

duced by Franz Hofbauer (see e.g. [2]). This is an at most countable oriented graph 

which describes the orbit structure of (R(Q),T). We shall also need the notion of 

a version of the Markov diagram as introduced in [8]. For the convenience of the 

reader we recall the main steps of this construction. We also recall a stability result 

for the Markov diagram, which is proved in [8]. 

Let T: [0,1] -> [0,1] be a piecewise monotonic map with respect to the finite 

partition Z of [0,1], let K G M, let Q e QK, and let y be a finite partition of 

[0,1] which refines Z. Let Iy be the set of all isolated points of Xy(Q), and set 

IQ := Iy U ({inf Y, sup Y : Y _ 3>} n Xy(Q)). Let Y0 e y(Q) and let D be a perfect 

subinterval of Y0. A nonempty C C Xy(Q) is called a successor of D if there exists 

a Y G S(Q) with C = TyD n Y, and we write D -> C. We get that every successor 
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C of D is again a perfect subinterval of an element of y(Q). Let V be the smallest 

set with y(Q) C V and such that D 6 23 and D -+ C imply C £ P . Then (23, ->) 

is called the Markov diagram of (R(Q),T) with respect to }>. The set 13 is at most 

countable and its elements are perfect subintervals of elements of y(Q). 

Set V0 := S>(Q), and for r e N set Vr := Vr-\ U { D 6 V: 3 C 6 23r_i with C -> 

23}. Then we have 230 C Vx C 232 C • • • and 23 = \J Vr. 
T = 0 

Let C C 23. For n € N we call C 0 -+ Ci - + . . . - + C„ a pai/j o/ /engi/j n in C, if 

C,- e C for j e { 0 , 1 , . . . , n} and Cj_i -+ C,- for j e { 1 , 2 , . . . , n}. Furthermore we 

call C0 —> Ci -+ C2 -+ • • • an infinite path in C, if Cj e C for j e N0 and Cj_i -, Cj 

for j e N. We say that an infinite path C0 —> Ci -+ C2 -+ • • • represents x e Ry(Q), 

if Tyjx e Cj for all j e N0. We call C irreducible, if for every C, 23 6 C there 

exists a finite path C0 -+ Ci - + . . . - + C„ in C with C0 = C and Cn = D. If C is 

irreducible and finite, then C is called /miie irreducible. An irreducible C is called 

maximal irreducible, if every C with C C C' C 23 is not irreducible. 

If C e 23 and x e IQ, then we introduce an arrow C -+ {_}, if and only if 

x e TyC. Let x e IQ. Then we set j(x) := min{j 6 N: i y ' _ g Xy(Q)} , where 

we set j(x) := oo if Ty>x _ Xy(C-) for all j e N. Now define D(_) := { { T y ' x } : 

j e N0 , j < j ' ( _ ) } , define 

23r(_) := {{Tyjx}: j 6 M0 , j < min{ j ( „ ) , r + 1}} for r 6 N0, 

and introduce an arrow {Ty'~lx) -+ {Ty'a;}, if { r y x } 6 2?(_) and j 6 N (there 

are no other arrows beginning in {Ty '~ 1 _}) . If B C 2Q, then define 23(23) : = 

23 U U 23(.T), and Vr(B) := Vr U U 23r(_) for r £ M0- Including these points in 
i g B xEB 

the Markov diagram is an important technical tool in our proofs. 

The definition of a version (A, -+) of the Markov diagram of (R(Q),T) with respect 

to y is given on pp. 43-45 of [8]. We shortly describe its most important properties. 

If (.4,-+) is a version of the Markov diagram of (R(Q),T) with respect to y, then 

there exists a B C IQ, and there exists a surjective function A: A -+ 23(2?) such 

that c -^ d in .4 implies J4(C) -+ A(d) in 23(23). Furthermore, for every c £ i the 

map A is bijective from {„ G A: c -> d} to {23 e 23(23): A(c) -+ 23}. We can write 

.4 = U AT with A C ^ti C .42 C • • • and A(Ar) = 23,(23). If Iy C 23, then ( A -+) 
r = 0 

is called a full version of the Markov diagram of (R(Q),T) with respect to y. If 

CCA, then we call c0 -+ ci -+ c2 -+ • • • an infinite path in C if Cj e C for all j e N0 

and Cj-\ -> Cj in A for all j 6 N. We say that an infinite path c0 -+ ci -+ c2 -+ • • • 

represents x G Ry(Q), if A(co) -+ A(c'i) -+ A(c2) -+ • • • represents x. 

Now let T : [0,1] -+ [0,1] be a piecewise monotonic map with respect to the finite 

partition Z of [0,1], let / : [0,1] -+ R be piecewise constant with respect to Z, let 
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K e N, let Q G QK, and suppose that y is a finite partition of [0,1] which refines 

Z. Let (A, -4) be a version of the Markov diagram of (R(Q),T) with respect to y, 

and suppose that CCA. Then we define the matrix Fc(f) as in Formula (1.8) of 

[8], that means Fc(f) := (Fc,d(f))c deC, where Fc,d(f) •= e / ( x ) if c -4 d in ( A - > ) 

and £ G A(c), and FCtd(f) := 0 otherwise. We denote the norm of the £* (C)-operator 

u t-r uFc(f) by | |Ec(/) | | and its spectral radius by r(Fc(f)). 

Finally we recall Lemma 2 of [8], which describes the stability of the Markov 

diagram under small perturbations of Q. Roughly spoken this result says that if Q 

is sufficiently close to Q, then the Markov diagrams of (R(Q),T) and (R(Q),T) have 

similar initial parts. As we need a bit more than the statement of Lemma 2 in [8] 

says, we give a full statement of this result (the proof is the same as the proof of 

Lemma 2 in [8]). 

L e m m a 1. Let T: [0,1] -4 [0,1] be a piecewise monotonia map with respect to 

the Unite partition Z of [0,1], let K e N, and let Q = (01 ,03 , . . . ,02K-I,~3K) ' 

QK- Suppose that y is a Unite partition of [0,1] which refines Z, such that a,j G 

{inf Y,sup Y:Y e y} for every 3 € {1,2 2K - 1, 2A"}. Then for every r e N 

and for every e > 0 there exists a S > 0 such that for every Q e QK which is S-close 

to Q, there exists a version (A, -4) of the Markov diagram (V, -4) of (R(Q),T) with 

respect to y, and a full version (A, -») of the Markov diagram of (R(Q),T) with 

respect to y with the following properties. 

(1) There exists a function tp: Ar -4 Ar such that <p(Ao) = Ao, and for every 

c G Ar we have card<p~l(c) ^ 2 . If c e Ar and either card<p~'(c) > 1 or 

c $ <p(Ar), then A(c) = {x} for an x G Xy(Q). 

(2) For c,d G Ar with A(<p(c)) G V the property c -> d in A implies <p(c) -> 

<p(d) in A. Furthermore, c,d G Ar, <p(c) -» <p(d) in A and d is not a 

successor of c in A imply that A(<p(d)) = {x}, where x is contained in 

{Ty inf A(<p(c)),Ty m~A(<p(c))}. If c,d G Ar, c -4 d in A, and <p(d) is 

not a successor of <p(c) in A, then there exist C\,d\ G Ar with C\ -4 </i in A. 

<p(Cl) = <p(c), <p(c) -4 <p(di) in A, and A(<fi(d\)) = A(<p(d)). 

(3) For every c G Ar the set A(c) is s-close to A(^p(cj) in the Hausdorff metric. 

Furthermore, if c 6 Ar and Y ey satisfy Y(x) = Y for all x G A(<p(c)), then 

Y(x) = Y for all x G A(c). 

(4) If c G Ao, and do = <p(c) -4 d\ -4 . . , -»• dr is a path of length r in A, then 

there exist at most r + 1 different paths Co = c —> C\ -4 . . . -4 c r in ^l with 

A(v(Cj))=A(d,)forje{l,2,...,r}. 
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3. T H E STRUCTURE OF T H E NONWANDERING SET OF (R(Q),T) 

In this section we describe a well known result on the structure of the nonwandering 

set of a piecewise monotonic map. 

The definitions of the notions nonwandering set, uj-limit set. topological transitiv­

ity and minimality can be found in standard books on dynamical systems (e.g. in 

[12], see also Section 2 of [9]). We mention here only that we call a set R topologically 

transitive, if there exists an x e R with u(x) = R. Furthermore a topologically tran­

sitive subset R of a dynamical system X is called maximal topologically transitive, if 

no R' with R C R' c X is topologically transitive. 

The following result describes the structure of the nonwandering set of a piecewise 

monotonic map, and it is proved in [1], [2], [3] and [5] (see also Section 2 in [9]). 

Let T: [0,1] -» [0,1] be a piecewise monotonic map with respect to the finite 

partition Z of [0,1], let K 6 N, Q 6 QK, and suppose that y is a finite partition of 

[0,1] which refines Z. Then we have 

(3.1) ny(R(Q).T) = U L(C) U U fy U P U W 
cer j e j 

where T is the at most countable set of maximal irreducible subsets of the Markov 

diagram (2?,-+) of (R(Q),T) with respect to >', J is an at most finite index set, 

and the intersection of two different sets in the decomposition is at most finite. 

Furthermore we have: 

(1) For every C e T the set L(C) is a topologically transitive subset of the dynam­

ical system (Ry(Q),Ty), and the periodic points of (L(C),Ty) are dense in 

L(C). Moreover, either L(C) consists only of one single periodic orbit (in this 

case for every C £ C there exists exactly one D G C with C -> D), or L(C) 

is an uncountable, maximal topologically transitive subset of (Ry(Q),Ty) 

with htoP(L(C),Ty) > 0 (in this case there exists at least one C e C which 

has more than one successor in C). In the second case we have that every 

x e L(C) can be represented by an infinite path in C, and every infinite path 

in C represents an x € L(C). 

(2) For every j 6 J the set Nj is an uncountable, minimal subset of (Ry(Q), Ty) 

which contains no periodic points. Furthermore we have that htop(Nj,Ty) = 

0, there exist only finitely many ergodic, Ty-invariant Borel probability mea­

sures on (Nj,Ty), and Nj is a maximal topologically transitive subset of the 

dynamical system (Ry(Q),Ty). 

(3) The set P is closed and Ty-invariant, and consists of periodic points, which 

are contained in nontrivial intervals K with the property that Tyn maps K 

monotonically into K for an n £ N . 
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(4) The set W consists of nonperiodic points which are isolated in Qy(R(Q), T), 

and therefore are not contained in Q(ny(R(Q),T),Ty). 

Observe that this result implies that the decomposition into maximal topologi-

cally transitive subsets, which are not a single periodic orbit, does not depend on the 

partition y. More exactly, if y and y' are two finite partitions refining Z, then there 

exists a bijective map tp from the set of uncountable maximal topologically transitive 

subsets of Qy(R(Q),T) (note that every at most countable maximal topologically 

transitive subset is a single periodic orbit) to the set of uncountable maximal topo­

logically transitive subsets of fly (R(Q),T) such that ny (R) = iry(<p(R)). Therefore 

we will speak throughout this paper of uncountable maximal topologically transitive 

subsets of (R(Q),T), rather than those of (Ry(Q),Ty). 

The most interesting part of the dynamics takes place on the' at most countable 

union of maximal topologically transitive subsets with positive entropy. In the next 

sections we shall investigate the influence of small perturbations of Q on these sets. 

Set 

M(R(Q),T) := {L: L is a maximal topologically transitive 

subset of (R(Q),T) with htop(L,T) > 0}, 

and define 

(3.3) N(R(Q),T) := card M(R(Q),T). 

Hence N(R(Q),T) eNu {0,oo}. By (2.8), (2.9) and (2.10) of [9] we get 

(3.4) htop(R(Q),T)= sup htop(L,T) 
L£M(R(Q),T) 

whenever hu>P(R(Q),T) > 0, and 

(3.5) p(R(Q),T,f)= sup p(L,T,f) 
LeM(R(Q),T) 

whenever / : [0,1] -> R is a piecewise continuous function with p(R(Q),T,f) > 

lim ±Sn(R(Q), f), and if T is additionally expanding and htop(R(Q),T) > 0 (which 

is equivalent to HD(R(Q)) > 0) then 

(3.6) W(R(Q)) = sup HD(L). 
LGM(R(Q),T) 

By the Structure Theorem it suffices to find the maximal irreducible subsets C of 

the Markov diagram, where there is at least one C e C which has more than one 

successor in C, if one wants to find the maximal topologically transitive subsets of 

(R(Q), T) with positive entropy. 



4. A N EXAMPLE OF MERGING MAXIMAL TOPOLOGICALLY TRANSITIVE SUBSETS 

In this section we give an example of an expanding piecewise monotonic map T: 

[0,1] ->• [0,1], and a Q e Q2 with N(R(Q),T) = 2, such that for every e > 0 there 

exists a Q £ Q2 which is e-close to Q, with N(R(Q),T) = 1. This example is the 

example given in (3.1) of [9] adapted to our situation. 

Set Z : = { ( 0 , § ) , ( § , § ) , ( § , ! ) } . We define a map T: [0,1]-+[0,1] by 

i
l — 3a5 for a; 6 [0, §], 

3a;-1 forage [§,§], 

3 - 3 s for a; 6 [§,1]. 
For s e [0, | ) define Qs := (0, | - s , § + s, 1). Observe that Qs £ Q2 , and that given 

e > 0, then Q., is e-close to Q 0 if s < e. 

Define M := [§, §], A0 := [§ - s, | ] , B 0 := [|, | + s], and for n 6 N define 

A n : = [ | , | + 3 " s ] a n d B n : = [ i - 3 » s , | ] . 

In the case s = 0 the Markov diagram (V, ->) of (R(Q0),T) is 
P = { M , A 0 , A 1 , B 0 , B i } 

with the arrows A} -+ At, and Bj -+ Bfc for j , k 6 {0,1}, M -+ J4O, M -+ Bo and 

M -+ M . Hence the maximal irreducible subsets of (P , ->) are Ci := {Ao,-4i}. 

C2 := {Bo,i?i} and {M} . Therefore the maximal topologically transitive sub­

sets of (R(Q0),T) with positive entropy are L\ := L(C{) and L2 := L(C2), hence 

M(R(Q0),T) = {LUL2} and N(R(Q0),T) = 2. 

Now let N € N, and set s := ^ 3 7 ^ . Then the Markov diagram (D,-+) of 

(H(QS), T) is D = {M,.4o,>li, • • • ,AN,B0,Bx,..., BN} with the arrows A} -+ .40 

and B} -+ B 0 for j e { 0 , 1 , . . . , iV}, Aj -+ Aj+i and B^ -* Bj+i for j £ { 0 , 1 . . . . , 

JV - 1}, AN -+ M and BAT -+ M , M -+ A), M -+ 5 0 and M -+ M. Hence 

(P, -+) is irreducible, and therefore the only maximal topologically transitive sub­

set of (R(QS),T) is L(V) = R(QS). This gives M(R(QS),T) = {L(V)} and 

N(R(QS),T) = 1. 

5. STABILITY RESULTS FOR MAXIMAL TOPOLOGICALLY TRANSITIVE SUBSETS 

WITH POSITIVE ENTROPY 

The example of the previous section shows that the decomposition of the nonwan-

.dering set into maximal topologically transitive subsets with positive entropy behaves 

-very unstably. The number N(R(Q),T) does not depend continuously on Q. Hence 



we cannot expect general stability results for M(R(Q),T). However, there are sta­
bility results for the elements of M(R(Q),T). In this section it will be shown thai 
a maximal topologically transitive subset with positive entropy cannot be destroyec 
completely by an arbitrary small perturbation of Q (Theorem 1). Furthermore, if Q 
is sufficiently close to Q, then to each element L of M(R(Q),T) which is sufficient^ 
"big", there can be assigned "close" (in general not maximal) topologically transi­
tive subsets of (R(Q),T) and (R(Q),T), which are "bigger" than L (Theorem 2 
Corollary 2.1 and Theorem 3). 

Theorem 1. Let T: [0, lj -> [0,1] be a piecewi.se monotonic map with respect 
to the finite partition Z of[0,1], let K e N, and let Q € QK- Furthermore let keN, 
and for j E {1,2, . . . , k} let. / , : [0,1] -4 U be a piecewise continuous function with 
respect to Z. Let L be a maximal topologically transitive subset of (R(Q),T) with 
htop(L, T) > 0, and suppose that p(L, T, f}) > lim ^Sn(L, f}) for j € {1,2, . . . , A:}. 
Then for every e > 0 there exists a S > 0 such that for every Q € QK which is 6-close 
to Q, there exists a topologically transitive subset L of(R(Q),T) which satishes 

(5.1) L and L are e-close in the Hausdorff metric, 

(5.2) \hu,P(L,T)-htop(L,T)\<8, 

and 

(5.3) \p(L, T, f}) - p(L, T, f})\ < e for j € {1,2, . . . , fc}. 

If in addition T is expanding, then 6 > 0 can be chosen such that besides (5.1), (5.2) 
and (5.3), we also have 

(5.4) |HD(L) -HD(_) |<£ . 

P roo f . Let Q := (aua2,... ,a2K-i,a2K) and Q := (cii,d2,... ,a2K-i,a,2K). 
Set Jo ~ 0' € {1,2,. . . ,K - 1}; a2j = a,2j+i}. Now define 

a'2j-i := min{o2j-i, a2]-i} 

for i € {1,2, . . . , A'} with j - i g j Q ) a n d dt2. .- max{o,2j,o2j} for j 6 {1,2 A'} 

with j i Jo. Set L := K- card J0. For j e {1,2, . . . ,_} define 62,-1 := o2,._j, 
b 2j-i '•= a 2r-i, b2j := a2s, and b'2} := a'2s, where r is the unique number such that 
r - 1 i Jo and card ({0,1, . . . , r _ 1} \ JQ) = ^ a n d , i s t h e u n i q u e l l u m b e r s u c h 

that s * Jo and card ({1,2,.. . , s } \ JQ) = ;- S e t Q, ._ (bx,b2,... ,b2L^i,b2L) and 



Q' := (b'i,b'-2, • • • ,b'2L-i,i>'2L). Then Q' 6 QL, and there exists a Si > 0 such that 

Q is (5-close to Q for a (5 < <5i implies that Q' £ QL and Q' is tf-close to Q'. By (1.2) 

we get R(Q') C i?(Q). 

Using (1.2) we see that i?(Q) = R(Q')URQ, where i?o is an at most countable set by 

the definition of Q . Therefore the Structure Theorem described in Section 3 implies 

that L is a maximal topologically transitive subset of (R(Q'),T). Furthermore, 

using (1.1) we get by the definition of Q' and Q' that X(Q') C X(Q'), and hence 

(T\X(Q'),Z(Q')) is <5-close to (T\X(Q'),Z(Q')) in the i?°-topology defined in [7] 

and [9]. Now the first part of the theorem follows from Theorem 2 in [9]. 

It remains to show in the case of an expanding piecewise monotonic map T that 

S can be chosen small enough, so that also (5.4) holds. To this end observe that 

(T\X(Q'),Z(Q')) is 5-close to (T\X(Q'),Z(Q')) in the ^ - topo logy defined in [7] 

and [9], since X(Q') C X(Q'). Now the desired result follows from Theorem 3 of [9]. 

D 

Another proof of this result can be given, analogous to the proofs of Theorem 2 

and Theorem 3 in [9] but using Lemma 1 of this paper instead of Lemma 6 of [7]. 

This proof would be a bit simpler than the proofs of Theorem 2 and Theorem 3 

in [9]. 

Theorem 2. Let T: [0,1] -+ [0,1] be a piecewise monotonic map with respect 

to the finite partition Z of [0,1], Jet A' g N, and let Q £ QK. Furthermore let f: 

[0,1] —> R be a piecewise continuous function with respect to Z. Then for every 

s > 0 and for every a > 0 there exists a S > 0 sucJi tJiat for every Q £ QK which is 

S-close to Q, the following holds. If L is a maximal topologically transitive subset of 

(R(Q),T) with p(L,T, f) > lira ±Sn(R(Q), f) + a, then there exists a topologically 

transitive subset L' of (R(Q),T) and a topologically transitive subset L of (R(Q), T) 

with the following properties: 

for every x £ L' there is ay £ L with \x — y\ < e 

(5.5) for every x £ L there is a y £ L with \x — y\ < e 

the sets L' and L are e-cJose in the Hausdorff metric, 

p(L,T,f)<p(L',T,f)+e, 

(5.6) p(L, T, f) < p(L, T, f) + e, and 

\p(L',T,f)-p(L,T,f)\<e. 

P r o o f . Let e > 0 and a > 0. Let Q = ( a i , a 2 , . . . ,a-2K-i,a2i<). We can assume 

that e is small enough to ensure e ^ a. 
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By the piecewise continuity of / there exists a finite partition y of [0,1] refining 

Z with aj £ { i n f y s u p y ; Y e y} for all j e {1,2,...,2K- l,2K}, such tha t 

sup diam Y < \e and 

(5.7) Yey 

sup sup \}(x) - }(y)\ < ±e. 
Y<=y x.yeY 

If _ _ y for a y e y, then define 

/ j (x) := s u p / ( y ) . 

Then / x : [0,1] -» R is a piecewise constant function with respect to y. By (5.7) we 

have 

}(x)^h(x)<}(x) + \e and 

p ( f i , T , / ) sC p(R,T,h) < P(R,T,{) + \e 

for every closed, T-invariant R C [0,1]. 

Let (V, -+) be the Markov diagram of (R(Q),T) with respect to V. Let K C y be 

nonempty. Set AC0 :=K.(Q), and for r e N set 

rCr : = A C r _ i U { D e V: 3C e KT~i, 3Y £ AC with C -+ D and D CY}. 

Finally define VK := \J K.r. Then Lemma 4 in [7] gives 
r=0 

(5.9) r(FVK(h)) = Urn | | F / c ( / i ) r | | ' = faf I IE_, j / i ) r | | " . 

Analogously to the proofs of Theorem 7 and Corollary 1 of Theorem 9 in [2], and 

to the proof of Lemma 6 in [6] (cf. also the proof of Lemma 2 in [9]) we get using 

Lemma 1 of [8] that there exists an r_ G (- such that for every maximal irreducible 

C CVK with 

l o g r ( F c ( / i ) ) > Um ^Sn(R(Q),h) + \e, 

and for every version (A, -+) of the Markov diagram of (R(Q),T) with respect to y, 

there exists a finite irreducible C C ArK with {A(c): c £ C'} C C n ACrK and 

(5.10) l o g r ( F c ( / i ) ) ~\e< logr(F C - ( / i ) ) < l o g r ( E c ( / i ) ) . 

By (5.9) we can choose this r/c such that we have also 

(5.11) '««(('• + - ) l l - ? K r ( / i ) r | | ) i < l o g r ( F D K ( / i ) ) + i . 
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for every r >. rjc • 

There exists an r0 G N, such that $Sr(R(Q), fi) < }}^Q^Sn(R(Q)Jx) + l e for 

every r >- r0 . Now choose a a r g N with r >- r0 and r >. r^ for every nonempty 

Key (such an r exists, since there exist only finitely many nonempty K C >'). 

Then (5.8) and the definition of Sn(R(Q)J) ((1.5) of [8]) give 

(5.12) - 5 , ( f l ( Q ) , / i ) < Urn £ . ? » ( * ( $ ) , / ) + \ £ . 
r n—*oo n z 

Fix this r for the rest of this proof. By Lemma 1 there exists a 5 £ (0, | e ) such that 

the conclusions of Lemma 1 hold with e replaced by | e . 

Let Q e QK be 5-close to Q, and let L be a maximal topologically transitive subset 

of (R(Q),T) with p(L,T,f) > \ymo^Sn(R(Q)J) + a. Let (A,-*) be the version 

of the Markov diagram of (R(Q),T) with respect to y, let (A,-t) be the ver­

sion of the Markov diagram (V, -r) of (R(Q),T) with respect to y occuring in the 

conclusions of Lemma 1, and let <p: AT -r Ar be the function described in the 

conclusions of Lemma 1. 

First we show that htop (L, T) > 0 and p(L,TJy) > lim ±Sn(R(Q),fi). By (2) of 

Lemma 1 we get that c,d 6 Ar and c -, d in A imply A(<fi(c)) -+ A(ip(d)) in £>. 

Hence the definition of Sn(R(Q), f) gives Sr(R(Q), f,) < Sr(R(Q), / i ) . By (5.8) and 

(5.12) this implies 

Ijm ±Sn(i?(Q),/) < Umois»(i?(Q),/i) < isr(i?(Q),/i) 

< isr(i?.(Q),/i) < lim is„(i?(Q),/) + \e. 

Since p(l,TJ) > lim \Sn(R(Q)J) + a and g <C a, using (5.8) this gives 

p(L,TJ) > lim ±Sn(R(Q),f) and p(L,TJy) > Em i S „ ( H ( Q ) , / i ) , which im­

plies htop(L,T) > 0 . 

Hence the Structure Theorem described in Section 3 gives that there exists a 

maximal irreducible CCA with L = L({A(c): c £ C}) and A(c) € £> for every 

c e C. Set K := {Y £ }>: 3 c e C with A(c) C Y}. As above define £ 0 := K(Q), 

£ n := /Cn_i U { £> e V: 3 C 6 £ „ _ i , 3Y £ K with C -> D and D C K} for n 6 N, 

and T>£ := (J £ „ . Then using Lemma 6 in [6] (cf. also the proof of Theorem 7 in 
n=o 

[2]), Lemma 4 in [7] and the proof of Lemma 3 in [7] we get that 

( 5 . 1 3 ) p ( L , r , / 1 ) = l o g r ( F c ( / i ) ) 

< lQgr(F_,_ (h))< log WF^ihYWK 
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Using Lemma 4 of [7] we get by (3) and (4) of Lemma 1 tha t 

ll^,(/i) rK(r + i)ll!x(/i)l. 

Hence (5.8), (5.11) and (5.13) imply 

(5.14) p(L,T,f)<p(L.T,f1)<loSr(FT>t:(fl)) + \e. 

Using (5.8) and s < a we arrive a t l og r ( .Fb K ( / i ) ) > lim>^Sn(R(Q),f1) + \ e . Usins 

the proof of Lemma 6 in [6] (cf. also the proof of Theorem 7 in [2]) we get by (3.5' 

and (5.14) tha t there exists a maximal irreducible £ C V/c with l o g r ( E f ( / 1 ) ) > 

^ao^Sn(R(Q),fi) + \e and l o g r ( F £ ( / i ) ) > p(L,T,f) - f. Now (5.10) implies 

tha t there exists an irreducible £' C Ar with {A(c): c e £'} C £ n K.T and 

(5.15) l o g r ( F £ , ( / i ) ) >p(L,T,f)-\e. 

Set £' := ip~1(£'). By (1) and (2) of Lemma 1, <p: £' —¥ £' is bijective and c —¥ d in 

£' is equivalent to <p(c) —• ip(d) in £'. 

We get that {A(c): c e £'} is contained in a maximal irreducible £i C V, and 

{A(c): c e £'} is contained in a maximal irreducible £2 C V. Now define 

L := {x e L(£\): x is represented by an infinite path in £'} 

and 

L' := {x e L(£2): x is represented by an infinite path in £'}. 

The proof of Theorem 4 in [2] shows that L and L' are topologically transitive. 

It follows from (3) of Lemma 1 and from (5.7) that L and L' are i j-close (and 

therefore e-close) in the Hausdorff metric. Let x e L. Then there exists a c G £' with 

.r e A(c) and A(c) 6 K.T. Hence there is a Y e IC with A(c) C Y. By the definition 

of IC there is a d e C with A(d) C Y. Therefore there exists a ;y e L with y e Y, and 

by (5.7) we get \x - y\ < j £ < s. If x e V, then there exist a y\ e L and a y e L 

with \x -yi\ < \e and |j/i -y\ < \e, which gives \x — y\ < | < e. This shows (5.5) 

By Lemma 6 in [6] (cf. the proof of Theorem 7 in [2]) we get 

p(L,T,h) = l o g r ( E f . ( / i ) ) and p(L',T.j\) = l o g ; ( i v , ( / i ) ) . 

Using (1.9) and (1.10) of [8] we get that r ( F ^ ( / i ) ) = r ( F £ - ( / i ) ) . Hence (5.8 

gives \p(L',T,f) -p(L,T,f)\ < \e < e. Using (5.8) and (5.15) we get p(L,T,f) > 

p(L, T,f)-e and p(U, T, f) > p(L, T, f) - e, which completes the proof. 



If we set / = 0 in Theorem 2 we get the following result concerning the topological 

entropy of L, L and L'. 

Corollary 2 .1 . LetT: [0,1] -+ [0,1] be a piecewise monotonic map with respect 

to the finite partition Z of [0,1], let K 6 N, and let Q e QK- Then for every e > 0 

and for every a > 0 there exists a 6 > 0 such that for every Q e QK which is 

5-close to Q, the following holds. If L is a maximai topologically transitive subset 

of (R(Q),T) with htop(L,T) > a, then there exists a topologically transitive sub­

set V of (R(Q),T) and a topologically transitive subset L of (R(Q),T) such that 

(5.5) is true and the following holds: 

htop(L,T) <htop(L',T)+e, 

(5.16) htop(L,T) < htop(L,T) + e, and 

\htop(L',T)-htop(L,T)\<e. 

Using (3.4) and (3.5) we can easily deduce from Theorem 1 and Theorem 2 that 

the pressure and the topological entropy depend continuously on Q (see Theorem 1 

and Corollary 1.1 of [8]). 

Finally, we prove that for an expanding T a result analogous to Theorem 2 con­

cerning the Hausdorff dimension of L, L and L' is true. 

T h e o r e m 3 . Let T: [0,1] -> [0,1] he an expanding piecewise monotonic map 

with respect to the finite partition Z of [0,1], iet K e N, and Q G QK- Then for 

every e > 0 and for every a > 0 there exists a <5 > 0 such that for every Q 6 QK 

which is 6-close to Q, the following holds. If L is a maximal topologically transitive 

subset of (R(Q),T) with HD( j) > a, then there exists a topologically transitive 

subset V of (R(Q),T) and a topologically transitive subset Lof(R(Q),T) such that 

(5.5) and the following hold: 

HD( j)<HD(L')+ £ , 

(5.17) HD( j ) < H D ( L ) + f, and 

| H D ( L ' ) - H D ( L ) | <e. 

P r o o f - By the proof of Lemina 3 in [6] we can choose an r/ > 0 such that 

2i] <, e < a, 1 - ( H - D - 1 < | , tx := (a :-e)( l+-§) < x for all x 6 [a, 1], and, whenever 

x e [a, 1] and R C [0,1] is closed and T-invariant with p{R,T. - . r log |T ' | ) = 0, then 

p(R, T, —tx log \T'\) > i], where D is as in Lemma 3 of [9]. Again using the proof of 
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Lemma 3 in [6] we can assume that for every closed and T-invariant R C [0,1] and 

for every closed and T-invariant R' C [0,1] the property 

\p(R,T,-tlog|T'|) -p(R',T,-flog|T'|)| < n for all t e [0,1] 

implies \tR -tR>\ < §, where tR is the unique zero of t >-» p(R,T,-t\og\T'\), and 

tR> is the unique zero o f t i-> p(R',T, — t log |T ' | ) . 

The proof of Theorem 2 shows that there exists a finite partition y of [0,1] refining 

Z, such that sup sup | log |T"|(rc) - log|T' |(j/) | < ?/, and there exists a 6 > 0 

rey x,y_eY 

such that for every Q £ Q K which is <5-close to Q, the conclusions of Theorem 2 

hold with e and a replaced by r\. Let Q £ 2 A be <5-close to Q and let Z be 

a maximal topologically transitive subset of (R(Q),T) with HD(Z) > a. Then 

ti := (HD(Z) - e)( l + %) < HD(Z). As in the proof of Theorem 3 in [7] we get 

lim I S n ( R ( Q ) , - t l o g |T' |) < 0 for all t > 0, hence by Theorem 2, Lemma 3 and 

Lemma 9 of [6] we get 

lim -Sn(R(Q), - t , log |T' |) < 0 < r, < p(L,T, - t j log |T ' | ) . 
n->oo n 

Now choose sets Z ' and T as in the proof of Theorem 2 with / replaced by - t x log |T ' | . 

Then we get that (5.5) is true and 

|p(L',r>-tlog|r'|)-p(L,T,-tlog|T'|)|<)7 

for all t e [0,1]. Hence Lemma 3 in [9] gives | HD(Z') - HD(L)| < e. By Theorem 2 

we get p(L',T,-ti log |T' |) > 0 and p ( L , T , - t i l o g | T ' | ) > 0. Therefore Lemma 3 

in [9] implies HD(Z') > HD(Z) - s and HD(L) > HD(Z) - e, which completes the 

proof. D 

From (3.6), Theorem 1 and Theorem 3 we can easily deduce that the Hausdorff 

dimension depends continuously on Q (see Theorem 2 in [8]). 
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