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THE BEHAVIOUR OF THE NONWANDERING SET
OF A PIECEWISE MONOTONIC INTERVAL MAP
UNDER SMALL PERTURBATIONS

PETER RAITH, Wien

(Received August 3, 1995)

Summary. In this paper piecewise monotonic maps T': [0, 1] = [0, 1] are considered. Let
Q@ be a finite union of open intervals, and consider the set R(Q) of all points whose orbits
omit Q. The influence of small perturbations of the endpoints of the intervals in Q on
the dynamical system (R(Q),T) is investigated. The decomposition of the nonwandering
set into maximal topologically transitive subsets behaves very unstably. Nonetheless, it is
shown that a maximal topologically transitive subset cannot be completely destroyed by
arbitrary small perturbations of ). Furthermore it is shown that every sufficiently “big”
maximal topologically transitive subset of a sufficiently small perturbation of (R(Q),T) is
“dominated” by a topologically transitive subset of (R(Q).T).
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INTRODUCTION

Let T:[0,1] - [0,1] be a piccewise monotonic map, that means there exists a

finite partition Z of {0, 1] of pairwise disjoint open intervals with |} Z = [0,1] such
ZEz
that T|Z is continuous and strictly monotonic for all Z € Z. Fix K € N, and let

(ay,az) U(ag,aq) U... U (azx -y, azx) be a finite union of open subintervals of [0, 1].
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Define

00 3
R(ay,az,...,azrc) = [ [0. 11\ T~ (| (g1, a2s)).-
n=0 k=1
The aim of this paper is to investigate the influence of small perturbations of the
endpoints of |J (azk-1.a2) on the dynamical system (R(ay,a2,...,a2x),T).
k=1

Such problems were treated in [8], [10] and [11]. If f: [0,1] — R is a piecewise
continuous function, that means f|Z can be extended to a continuous function on
Z for all Z € 2, then Theorem 1 in [8] says that the function (a1, as,...,azx) —
p(R(a1,az,...,a2x),T, f) is continuous, if a certain condition generalizing

p(R(ay,az,....a:x), T, f) > sup flx)
T€R(a1,a2,...,a2K)
is satisfied. This implies that the topological entropy is continuous {Corollary 1.1
in [8]). For an expanding T, that means T’ is piecewise continuous and there ex-
ists an n € N with ix[]f ]|(T”)’(1‘)| > 1, Theorem 2 in [8] gives that the function
z€[0,1

(a1,az,...,az1¢) = HD (R(a1 LAz, ... ,azK)) is continuous. In the case of an expand-
ing C?-transformation of the circle these results were earlier obtained by Mariusz
Urbanski ([10] and [11]). All of those results concern certain dynamical invariants,
but not the dynamics itself. The aim of this paper is to investigate how the dynam-
ics of (R(ay,as,-..,axx),T) reacts on small perturbations of (a1, as,...,azx). This
is done by considering the reaction of these perturbations on the decomposition of
the nonwandering set of (R(a1,as, .. .,az2x), T') into maximal topologically transitive
subsets with positive entropy. The results of this paper imply the continuity results
mentioned above. However, the results of this paper are not strong enough to cbtain
stability results for equilibrium states. The behaviour of equilibrium states under
small perturbations of (a1, as, ..., azx) remains an open problem.

Another stability problem is studied in [4], {7] and [9]. In those papers a close-
ness relation for piecewise monotonic maps is defined. and small perturbations with
respect to this closeness relation are investigated. We get R(ay,az,....a2x) =

K IS

R(Tl[O, 17\ U (lle_l.(llk))v where R,(T“O, 1\ U ((Lgk,],(l-z}\-)) is defined as in
k=1 k=

(1.1) of [9]. However, the results of [9] (which are in some sense weaker than the re-

K
sults in this paper) need not be applicable in our case. since Tl[U‘ 1\ U (aok—1,a2x)
k=1

K
need not be close to Tl[O, 1\ U (azk—1, az) in the sense defined in [9], if |a; —a;| < <
for all j € {1,2,....2K} (See_ p. 39 in Introduction of [8] for a description of this
fact).
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In (1], [2], [3] and (5] a structure theorem for the nonwandering set of a piecewise
monotonic map is shown. It says that

QR(araz,. . ax). T) = | JL;u | JN,uPUW
i€l jeJ

where I is at most countable, J is at most finite, the intersection of two different
sets in this decomposition is at most finite, the sets L; are closed, T-invariant, topo-
logically transitive, and the periodic points of L; are dense in L;, the sets N; are
closed, T-invariant, minimal with entropy zero and no periodic points, and they
are maximal topologically transitive, the set P is closed, T-invariant, and con-
sists of periodic points, which are contained in nontrivial intervals I, which are
mapped into KX by T™ for an n € N, and the elements of W are not contained
in Q(Q(R(a1,az2,...,a2x),T),T). Furthermore the sets L; either form a single peri-
odic orbit, or they are maximal topologically transitive subsets with positive entropy.
Hence the most interesting part of the dynamics takes place on the at most countably
many maximal topologically transitive subsets with positive entropy.

In the first section we give some basic definitions and notation. Our main tool for
investigating the structure of the nonwandering set, the Markov diagram (see e.g.
[2]). is described in Section 2. Then we describe the structure theorem for the non-
wandering set in Section 3. In Section 4 we give an example for the instability of the
decomposition of the nonwandering set into maximal topologically transitive subsets
with positive entropy. Our main results are contained in Section 5. Theorem 1 says
that, if we take a maximal topologically transitive subset L of (R(a1, a2, ...,a2x),T)
with positive entropy, and if (@i, as, ..., é2K) is sufficiently close to (a1, az, ..., a2x),
then there exists a topologically transitive subset L of (R(@y, a2, .-, a2r), T) (which
in general is not maximal topologically transitive), such that L and L are close in the
Hausdorff metric, and the entropy of L is close to the entropy of L (“L cannot be com-
pletely destroyed”). Furthermore, if f: [0,1] — R is piecewise continuous and a con-
dition generalizing p(L, T, f) > sup f(z) is satisfied, then also p(L, T, f)

#E€R(ar,az2,0-.,a2K)
is close to p(L,T, f) and, if T is expanding, then also HD(L) is close to HD(L). If
we take a piecewise continuous f: [0,1] - R and fix an a > 0, then Theorem 2 gives
that for every (@1, 8@z, ...,G2x) which is sufficiently close to (a1, as, . ..,as2x) and for
every maximal topologically transitive subset L of (R(@1, ds, . . ., 2k ), T) which sat-

isfies a condition generalizing p(L, T, f) > sup f(x)+ e (“Lis sufficiently
zER(a1,a2,...,025)

big”), there exist a topologically transitive subset L' of (R(d,, @z, . . . ,azpc),T) and a
topologically transitive subset L of (R(a1,az2,...,a2x),T) (in general L’ and L are
not maximal topologically transitive), such that L’ and L are close in the Hausdorff
metric and are contained in a neighbourhood of L, p(L’, T, f) is close to p(L,T, f),
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and p(L,T, f) is not bigger than a number close to p(L/, T, f) and p(L, T, f) (“L
and L dominate L”). A similar result concerning the topological entropy follows
immediately from Theorem 2 (Corollary 2.1). For an expanding T" a similar result
concerning the Hausdorff dimension is given in Theorem 3. The main idea of the
proofs is to calculate the decomposition of the nonwandering set into maximal topo-
logically transitive subsets with positive entropy using the Markov diagram as in [2],
and to use the results of [8], where the behaviour of the Markov diagram under small
perturbations of (a1, ay, . .-, a2 ) is described.

1. DEFINITIONS AND NOTATION

We call Z a finite partition of [0, 1], if Z consists of pairwise disj(;int open intervals
with |J Z =[0,1}. A map T: [0,1] — [0,1] is called piecewise monotonic, if there
ZeZ

exists a finite partition Z of [0, 1] such that T'|Z is strictly monotonic and continuous
for all Z € Z. A function f: [0,1] = R is called piecewise continuous with respect
to the finite partition Z(f) of [0,1], if f|Z can be extended to a continuous function
on the closure of Z for all Z € Z(f). We say that f: [0,1] = R is piecewise constant
with respect to the finite partition Z(f) of [0,1], if f|Z is constant for all Z € Z(f).
A piecewise monotonic map T': [0,1] — [0,1] is called ezpanding, if there exists a

él[’%)i:I]I(T])/(.’L')! > 1. At
this point we want to remark that all results of this paper hold also for the situation
considered in [7] and [9], that means T: X — R is piecewise monotonic, where X is

7 € N such that (T7)" is a piecewise continuous function and
o

a finite union of closed intervals.
Let K € N and suppose that 0 € a1 € az € ... € apn—1 € azx < 1 with
a; < ajpg for j € {1,2,...,2K — 2}. Set Q := (ay,a2,...,a2r-1,02x). Lot Qp be

the set of all such Q's. Now for Q = (a1, az,...,a21-1,02r) € Qg define
K
(1.1) X(@):=[0,1]\ (U(m, l‘{Qk))
k=1
and
o0 K
(1.2) R@Q) =) [0,1]\T‘j(U(u2k_1,u2k)> .
j=0 k=1

Let Z(Q) be the set of all maximal open subintervals of X (@)N ( (J Z). Observing
zéz

that the results of [7] and [9] remain true if we allow X to be a finite union of
closed intervals and isolated points, we have that (T|X(Q)AZ(Q)) is a piecewise
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monotonic map of class R? in the sense defined in [7] and [9]. Furthermore we have
R(T|X(Q)) = R(Q), where R(T|X(Q)) is defined as in (1.1) of [9] (cf. [8]).
As in [8] we define a topology on Q. Let € > 0. Then

Q= (a1, a2, @ax-1,a2r) and Q:= (ay,ay,...,d4250-1,82K)

are said to be e-close, if [a; — a;] < e for all j € {1,2,..., 2K}. Observe that
(TIX(Q), 2(Q)) and (TIX(Q). Z(Q)) need not be e-close with respect to the R°-
topology defined in [7] and [9].

Next we modify ([0,1].T) as in {8] in order to get a topological dynamical system.
Let T: [0,1] — [0,1] be a piecewise monotonic map with respect to Z, let K € N,
let Q@ € Qp, and let Y be a finite partition of [0,1] which refines Z. We assume
throughout this paper that = {¥;,Y2,..., Yy} with V] < Y3 < ... < Yn. Set

E = {infY,supY: Y € V}. Now define W := (G T=HEN {0,1})) \ {0,1}, set
=0

Ry = R\WuU{2,a*: 2 € W}, and define y < 2~ < 2t < 3,if y < 2 < z holds in
R. This means that we have doubled all endpoints of elements of J, and we have also
doubled all inverse images of doubled points. For @ € Ry define ny(z) := y, where
y € R satisfies either z = y or y € W and z € {y~,y*}. We have that z,y € Ry,
my(z) < my(y) implies ¢ < y. As in [7] we can introduce a metric d on Ry, which
generates the order topology.

Let Y(Q) be the set of all maximal open subintervals of X(Q)N ( J Y. Let Xy

Y

be the closure of {0,1] \ W in Ry and define Xy(Q) := {z € Ry: w;?)z) € X(Q)}.
Observe that Xy and Xy(Q) are compact. For a perfect subset 4 of R let A be the
closure of A\ W in Ry. Now set Y := {V:Y €Y}, £ := {Z: Z € 2}, 9(Q) = {¥:
Y € Y(Q)} and 2(Q) := {Z: Z € Z(Q)}. The map T[0,1] \ (W U E) can be
extended to a unique continuous piecewise monotonic map Ty: Xy — Xy. Then
(Ty, £) is a continuous piecewise monotonic map of class R° on Xy in the sense
defined in [7]. If there is no confusion we will use the notation ¥, Z, ¥(Q) and Z(Q)

instead of ¥, Z, Y(Q) and 2(Q)). The set Ry(Q) := ﬁ Ty~ Xy(Q) satisfies
J=0

Ry(Q) = Ty 7Xy(Q) = {z € Ry: my(z) € RQ)}.
=0
If f:[0,1] = R is piecewise continuous with respect to Z, then there exists a unique
continuous function fy: Xy — R with fy(z) = f(x) for all x € [0,1] \ (W U E).
Finally, we define a map Y: Xy — Y. If z € Xy and ny(z) ¢ E \ {0,1}, then there
exists a unique ¥ € Y with 7y (x) € Y. Set Y () := Y in this case. Otherwise we
have either x = my(2)” or 2 = my(x)", and there exist exactly two Y=, Y+ € ¥
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with ¥~ < Y+ such that 7y(x) € Y- NYF. Now set Y(z) := Y~ if z = my(z)”,
and Y(z) = Y+ if z = my(z)T.

A topological dynamical system (X,T) is a continuous map T of a compact metric
space X into itself. If € > 0 and n € N, then we call a set E C X (n,€)-separated, if
for every z # y € E there exists a j € {0,1,...,n — 1} with d(T9z,T7y) > . For a
continuous function f: X — R the topological pressure p(X,T. f) is defined by

1 =
X,T, f) = lim lmsup — iy
P(X,T,f) := lim limsup log sup z;exp (; s l)),

where the supremum is taken over all (n,¢)-separated subsets E of X.

Then (Ry(Q),Ty|Ry(Q)) is a topological dynamical system (seé [8]). We will use
the abbreviation (Ry(Q), Ty) for (Ry(Q), Ty|Ry(Q)). As in (1.4) of [8] we define
the pressure p(R(Q),T, f) by p(R(Q),T, f) := p(Ry(Q), Ty, fy), and as in (1.5) of

18] we set S,(R(Q),f) := sup 2?2—01 fy(Tyiz). where n € N. We remark that
<€Ry(Q)

the condition

PRQ.T.1) > lim ~Su(R(Q).f),

n—oo

which will be used in this paper, is a generalization of the condition p(R(Q), T, f) >

sup f(z). For the definition of the Hausdorff dimension we refer to [8]. We define
z€R(Q)
the nonwandering set 2y (R(Q),T) of (R(Q),T) by Qy(R(Q),T) := QRy(Q),Ty),

where Q(Ry(Q),Ty) is the nonwandering set of the topological dynamical system
(By(Q),Ty) (cf. (24) in [9]).

2. THE MARKOV DIAGRAM OF (R(Q),T)

In this section we describe our main tool, the Markov diagram, which was intro-
duced by Franz Hofbauer (see e.g. [2]). This is an at most countable oriented graph
which describes the orbit structure of (R(Q),T). We shall also need the notion of
a version of the Markov diagram as introduced in [8]. For the convenience of the
reader we recall the main steps of this construction. We also recall a stability result
for the Markov diagram, which is proved in [8].

Let T:[0,1] — [0,1] be a piecewise monotonic map with respect to the finite
partition Z of [0,1], let K € N, let @ € Qk, and let Y be a finite partition of
[0,1] which refines Z. Let Iy be the set of all isolated points of Xy(Q), and set
Io:=IyU({inf Y,supY: Y € Y} N X3(Q)). Let Y, € Y(Q) and let D be a perfect
subinterval of Y. A nonempty C C Xy(Q) is called a successor of D if there exists
aY € Y(Q) with C = TyDNY, and we write D — C. We get that every successor
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C of D is again a perfect subinterval of an element of Y(Q). Let D be the smallest
set with Y(Q) C D and such that D € D and D — C imply ¢ € D. Then (D, —)
is called the Markov diagram of (R(Q),T) with respect to V. The set D is at most
countable and its elements are perfect subintervals of elements of j’(Q).

Set Dy := Y(Q), and for r € N set D, :=D,_, U{D € D: 3C € D,_; with C —
D}. Then we have Dy CD; C D, C---and D = G D,.

Let C € D. Forn € N we call Co — C; — le Cn a path of length n in C, if
C; € C for j € {0,1,...,n} and Cj—y — C; for j € {1,2,...,n}. Furthermore we
call Cy — Cy = Cy = -+ an infinite path in C, if C; € C for j € Ny and Cj_; = C;
for j € N. We say that an infinite path Co — C; — C, — - - - represents © € Ry(Q),
if Tya € Cj for all j € No. We call C irreducible, if for every C,D € C there
exists a finite path Co - C; - ... > C,, in € with Co = C and C, = D. If C is
irreducible and finite, then C is called finite irreducible. An irreducible C is called
mazimal irreducible, if every C' with C G C' C D is not irreducible.

If C € D and ¢ € Ig, then we introduce an arrow C — {z}, if and only if
z € TyC. Let @ € Ig. Then we set j(z) := min{j € N: Ty/z ¢ X3(Q)}, where
we set j(z) := oo if Tylx € Xy(Q) for all j € N. Now define D(z) := {{Tyiz}:
j €No,j < j(z)}, define

D,(z) := {{IyIx}: j € No,j < min{j(z),» + 1}} for r € Ny,

and introduce an arrow {T%7~'x} — {Ty7a}, if {T)7a} € D(z) and j € N (there
are no other arrows beginning in {Ty7"!z}). If B C Ig, then define D(B) :=
DU U D(z), and D,(B) := D, U U D,(z) for r € Ny. Including these points in

the Ma;kov diagram is an impor ta.nt teclmlcal tool in our proofs.

The definition of a version (A, =) of the Markov diagram of (R(Q), T) with respect
to ) is given on pp. 43-45 of [8]. We shortly describe its most important properties.
If (A, —) is a version of the Markov diagram of (R(Q),T) with respect to ), then
there exists a B C I, and there exists a surjective function A: A — D(B) such
that ¢ = d in A implies A(c) = A(d) in D(B). Furthermore, for every ¢ € A the
map A is bijective from {d € A: ¢ = d} to {D € D(B): A(c) - D}. We can write
A= U A, with Ao C A C A; C - and A(A,) = Do(B). If Iy C B, then (A, =)
is ('alrlgg a full version of the Markov diagram of (R(Q),T) with respect to V. If
C C A, then we call ¢g = ¢; = ¢ —= -+ - an infinite path in C if ¢; € C for all j € Ny
and ¢;_y = ¢; in A for all j € N. We say that an infinite path co = ¢y = ¢2 = -+
represents x € Ry(Q), if A(co) = A(c1) = A(cz) — - - - represents z.

Now let T': [0, 1] = [0,1] be a piecewise monotonic map with respect to the finite
partition Z of [0,1], let f: [0,1] - R be piecewise constant with respect to Z, let

43



K €N, let Q@ € Qk, and suppose that Y is a finite partition of [0, 1] which refines
Z. Let (A, =) be a version of the Markov diagram of (R(Q),T) with respect to J,
and suppose that C C A. Then we define the matrix Fc(f) as in Formula (1.8) of
[8], that means Fe(f) := (Fea(f)), yeo» Where Foa(f) = e/ if ¢ - din (A, —)
and z € A(c), and F, 4(f) := 0 otherwise. We denote the norm of the ¢!(C)-operator
u = uFe(f) by |Fe(f)) and its spectral radius by r(Fe(f))-

Finally we recall Lemma 2 of [8], which describes the stability of the Markov
diagram under small perturbations of Q. Roughly spoken this result says that if Q
is sufficiently close to @, then the Markov diagrams of (R(Q),T) and (R(Q),T) have
similar initial parts. As we need a bit more than the statement of Lemma 2 in [8]
says, we give a full statement of this result (the proof is the same as the proof of
Lemma 2 in {8]).

Lemma 1. Let T: [0,1] — [0,1] be a piecewise monotonic map with respect to
the finite partition Z of [0,1], let K € N, and let Q = (ay.a2,...,62K~1,G21) €
Q. Suppose that Y is a finite partition of [0,1] which refines Z, such that a; €
{infY,supY: Y € Y} for every j € {1,2,...,2K — 1,2IC}. Then for every r ¢ N
and for every € > 0 there exists a 6 > 0 such that for every Q € Qpx which is §-close
to Q, there exists a version (A, —) of the Markov diagram (D, —) of (R(Q),T) with
respect to Y, and a full version (A,—) of the Markov diagram of (R(Q),T) with
respect to Y with the following properties.

(1) There exists a function ¢: A, — A, such that ¢(Ay) = Ao, and for every
¢ € A, we have cardp™'(c) € 2. Ifc € A, and either cardp™'(¢) > 1 or
c ¢ ¢(A,), then A(c) = {x} for an z € Xy(Q).

For ¢,d € A, with A(p(c)) € D the property ¢ =+ d in A implies p(c) -

o(d) in A. Furthermore, c,d € A, p(c) = ¢(d) in A and d is not a

successor of ¢ in A imply that A(p(d)) = {x}, where z is contained in

{Ty inf A{p(c)), Ty sup A(p(c))}. Ifcd € A, ¢ = din A, and o(d) is

not a successor of p(c) in A, then there exist ¢;,d; € A, with ¢; = dy in A,

e(e1) = vl(c), «pﬂ(r) — g((ll) in A, and A(p(dy)) = A(p(d)).

(3) For every ¢ € A, the set A(c) is e-close to A(p(c)) in the Hausdorff metric.
Furthermore, ifc € A, and Y € Y satisty Y (x) =Y for all 2 € A(¢(c)), then
Y(z) =Y forall z € A(c).

(4) Ifc e Ao, and do = ¢(¢) = dy = ... = d, is a path of length r in A, then
there exist at most r + 1 different paths ¢o = ¢ — €1 —= ... = ¢, in A with
A(ga(ci)) = A(dy) for j € {1,2,...,r}.

C
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3. THE STRUCTURE OF THE NONWANDERING SET OF (R(Q),T)

In this section we describe a well known result on the structure of the nonwandering
set of a piecewise monotonic map.

The definitions of the notions nonwandering set, w-limit set. topological transitiv-
ity and minimality can be found in standard books on dynamical systems (e.g. in
[12], see also Section 2 of [9]). We mention here only that we call a set R topologically
transitive, if there exists an 2 € R with w(z) = R. Furthermore a topologically tran-
sitive subset R of a dynamical system X is called mazimal topologically transitive, if
no R' with R g R' C X is topologically transitive.

The following result describes the structure of the nonwandering set of a piecewise
monotonic map, and it is proved in [1], [2], [3] and [5] (see also Section 2 in [9]).

Let T:[0,1] — [0,1] be a piecewise monotonic map with respect to the finite
partition Z of [0,1], let K € N, Q € Qy, and suppose that Y is a finite partition of
[0,1] which refines Z. Then we have

(3.1) 20(RQ).T) = J LU N;uPUW
cer jed

where T is the at most countable set of maximal irreducible subsets of the Markov
diagram (D, —) of (R(Q),T) with respect to Y, J is an at most finite index set,
and the intersection of two different sets in the decomposition is at most finite.
Furthermore we have:
(1) For every C € I' the set L(C) is a topologically transitive subset of the dynam-
ical system (Ry(Q),Ty), and the periodic points of (L(C),Ty) are dense in
L(C). Moreover, either L(C) consists only of one single periodic orbit (in this
case for every C' € C there exists exactly one D € C with C — D), or L(C)
is an uncountable, maximal topologically transitive subset of (Ry(Q),Ty)
with heop(L(C),Ty) > 0 (in this case there exists at least one C' € C which
has more than one successor in ). In the second case we have that every
2 € L(C) can be represented by an infinite path in C, and every infinite path
in C represents an x € L(C).

(2) For every j € J the set N; is an uncountable. minimal subset of (Ry(Q), Ty)

which contains no periodic points. Furthermore we have that hop(N;, Ty) =
0, there exist only finitely many ergodic, Ty-invariant Borel probability mea-
sures on (N;,Ty), and IV is a maximal topologically transitive subset of the
dynamical system (Ry(Q),Ty).

(3) The set P is closed and Ty-invariant, and consists of periodic points, which
are contained in nontrivial intervals & with the property that T%™ maps I
monotonically into &t for an n € N.
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(4) The set W consists of nonperiodic points which are isolated in Qy(R(Q),T),
and therefore are not contained in (Qy(R(Q),T),Ty).

Observe that this result implies that the decomposition into maximal topologi-
cally transitive subsets, which are not a single periodic orbit, does not depend on the
partition Y. More exactly, if Y and )’ are two finite partitions refining Z, then there
exists a bijective map ¢ from the set of uncountable maximal topologically transitive
subsets of 2y (R(Q),T) (note that every at most countable maximal topologically
transitive subset is a single periodic orbit) to the set of uncountable maximal topo-
logically transitive subsets of Qy (R(Q), T') such that my(R) = my» (¢(R)). Therefore
we will speak throughout this paper of uncountable maximal topologically transitive

subsets of (R(Q),T), rather than those of (Ry(Q),Ty).
The most interesting part of the dynamics takes place on the at most countable

union of maximal topologically transitive subsets with positive entropy. In the next

sections we shall investigate the influence of small perturbations of @ on these sets.
Set
(3.) M(R(Q),T) := {L: L is a maximal topologically transitive

‘ subset of (R(Q), T} with hwp(L,T) > 0},

and define
(3.3) N(R(Q),T) := card M(R(Q), T).
Hence N(R(Q),T) € Nu {0,00}. By (2.8), (2.9) and (2.10) of [9] we get

(3.4) heop (R(Q), T) = sup hiop(L,T)
LEM(R(Q).T)

whenever Titop(R(Q),T) > 0, and

(3.5) p(R(Q). T, f) = sup p(L, T, f)
LEM(R(Q),T)

whenever f:[0,1] - R is a piecewise continuous function with p(R(Q),T, f) >
lim 15,(R(Q), f), and if T is additionally expanding and heop(R(Q), T) > 0 (which
n—o0

is equivalent to HD(R(Q)) > 0) then

(3.6) HD(R(Q)) = sup  HD(L).
LEM(R(Q).T)

By the Structure Theorem it suffices to find the maximal irreducible subsets C of

the Markov diagram, where there is at least one C' € C which has more than one

successor in C, if one wants to find the maximal topologically transitive subsets of

(R(Q), T) with positive entropy.
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4. AN EXAMPLE OF MERGING MAXIMAL TOPOLOGICALLY TRANSITIVE SUBSETS
In this section we give an example of an expanding piecewise monotonic map T':
[0,1] = [0,1], and a Q@ € Qy with N(R(Q),T) = 2, such that for every £ > 0 there
exists a Q € Qp which is e-close to Q, with N(R(Q),T) = 1. This example is the
example given in (3.1) of [9] adapted to our situation.
Set Z :={(0,4),(3,%),(3,1)}. We define a map T: [0,1] — [0,1] by
1-3x for z € [0, %],
P ) 3 . L2
4.1) Tz:={3-1 for z € 3, %),
3-32 for z € [£,1].

For s € [0, é) define Q := (0,1 —s, % +5,1). Observe that Q, € @2, and that given
£ > 0, then Q; is e-close to Qo if s < €.

Define M := [%,f], Ag = [é — s, %], By = [§,3 + 5], and for n € N define
An=[}, 1 +3%) and B, :=[§ - 3"s,3].

In the case s = 0 the Markov diagram (D, =) of (R(Qo),T) is

D = {M, Ao, A1, Bo, B, }

with the arrows A; — Ay and B; = By for j,k € {0,1}, M — Ay, M — By and
M — M. Hence the maximal irreducible subsets of (D, —) are C; := {Ag, 41},
Cy = {Bo,B1} and {M}. Therefore the maximal topologically transitive sub-
sets of (R(Qo),T) with positive entropy are Ly := L(C;) and Lz := L(C3), hence
MR(Q0),T) = {Ly, Lz} and N(R(Qo),T) = 2.

Now let N € N, and set s := 1z¢. Then the Markov diagram (D,—) of
(R(Qs),T) is D = {M, Ao, Ay..... AN, Bo,By,.... By} with the arrows A; — Ag
and B; = By for j € {0,1,...,N}, A; = Ajp1 and B; — Bjy for j € {0,1....,

N -1}, Ay - M and By -+ M, M — Ay, M — By and M — M. Hence
(D,—) is irreducible, and therefore the only maximal topologically transitive sub-
set of (R(Qs),T) is L(D) = R(Qs). This gives M(R(Q,),T) = {L(D)} and
N(R(Q,),T) = 1.

5. STABILITY RESULTS FOR MAXIMAL TOPOLOGICALLY TRANSITIVE SUBSETS
WITH POSITIVE ENTROPY

The example of the previous section shows that the decomposition of the nonwan-
«lering set into maximal topologically transitive subsets with positive entropy behaves
~very unstably. The number N(R(Q),T) does not depend continuously on Q. Hence
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we cannot expect general stability results for M(R(Q),T). However, there are sta:
bility results for the elements of M(R(Q),T). In this section it will be shown thai
a maximal topologically transitive subset with positive entropy cannot be destroyec
completely by an arbitrary small perturbation of @ (Theorem 1). Furthermore, if ¢
is sufficiently close to Q, then to each element L of M(R(Q), T) which is sufficiently
“big”, there can be assigned “close” (in general not maximal) topologically transi-
tive subsets of (R(Q),T) and (R(Q),T), which are “bigger” than L (Theorem 2.
Corollary 2.1 and Theorem 3).

Theorem 1. Let T:[0,1] — [0,1] be a piecewise monotonic map with respect
to the finite partition Z of [0,1], let I € N, and let Q € Q. Furthermore let k € N,
and for j € {1,2,...,k} let f;: [0,1] = R be a piecewise coutitiuous function with
respect to Z. Let L be a maximal topologically transitive subset of (R(Q),T) with
heop(L,T) > 0, and suppose that p(L, T, f;) > ﬂli_l’r; }TS,,(L, 1) forj € {1,2,... k}.
Then for every € > 0 there exists a § > 0 such that for every @ € Qi which is 6-close
to Q, there exists a topologically transitive subset L of (R(Q),T) which satisfies

(5.1) L and L are e-close in the Hausdorff metric,
(5.2) [ton (L, T) = heop(L, T)) < €,

and

(5.3) Ip(L, T, f;) = p(L,T, f;)| < & forje {1.2,....k}.

If in addition T is expanding, then § > 0 can be chosen such that besides (5.1), (5.2)
and (5.3), we also have

(5.4) JHD(L) — HD(L)| < ¢.

Proof. Let Q := (a1,ap,...,a2p-1,a2x) and Q := (@1, @, ..., d2x—1, d9r).
Set Jo:={j € {1,2,..., K = 1}: a; = ag;11 }. Now define

= . .
@gj-1 = min{ag;_1, a1}

forj € {1,2,... . K} with j — 1 ¢ J,. and @'y; = max{ay;, ay;} for j € {1,2,... K}
with j ¢ Jo. Set L := I ~ card Jy. For j € {1,2,...,L} define by;_y = as,_,,
boj1 == @'2r1, bzj 1= az,, and (]'Zj := @'y, where 7 is the unique number such that
r—1¢ Joand card({0,1,... » ~ 1} \ Jy) = j, and s is the unique number such
that s ¢ Jo and Cm‘d({l‘z"'ws} \Jo) = j. Set Q"= (by, b, ., bar-1,b21) and
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Q' = (01, b, ..., Bar_1,0'20). Then Q' € Q, and there exists a §; > 0 such that
Q is b-close to Q for a 6 < 81 implies that Q' € @y and Q' is é-close to Q. By (1.2)
we get R(Q') C R(Q).

Using (1.2) we see that R(Q) = R(Q’)URy, where Ry is an at most countable set by
the definition of @ . Therefore the Structure Theorem described in Section 3 implies
that L is a maximal topologically transitive subset of (R(Q'),T). Furthermore,
using (1.1) we get by the definition of Q' and Q' that X(Q") C X(Q'), and hence
(T\X(Q'),Z(Q’)) is é-close to (T1X(Q'), 2(Q")) in the R%-topology defined in [7]
and [9]. Now the first part of the theorem follows from Theorem 2 in [9].

It remains to show in the case of an expanding piecewise monotonic map T that
& can be chosen small enough, so that also (5.4) holds. To this end observe that
(T1X(Q'), 2(Q") is 6-close to (T1X(Q"), 2(Q")) in the R'-topology defined in [7]
and [9], since X (Q') C X(Q'). Now the desired result follows from Theorem 3 of [9].

a

Another proof of this result can be given, analogous to the proofs of Theorem 2
and Theorem 3 in [9] but using Lemma 1 of this paper instead of Lemma 6 of [7}.
This proof would be a bit simpler than the proofs of Theorem 2 and Theorem 3
in [9].

Theorem 2. Let T: [0,1] — [0,1] be a piecewise monotonic map with respect
to the finite partition Z of [0,1), let K € N, and let Q € Q. Furthermore let f:
[0,1] = R be a piecewise continuous function with respect to Z. Then for every
&> 0 and for every a > 0 there exists a 6 > 0 such that for every Q € Qx which is
§-close to Q, the following holds. If L is a maximal topologically transitive subset of
(R(Q),T) withp(L, T, f) > lim 1S,(R(Q),f)+a, then there exists a topologically
transitive subset L' of (R(Q), T) and a topologically transitive subset L of (R(Q),T)
with the following properties:

for every « € L' there is ay € L with |v —y| <&
(5.5) for every x € L there is ay € L with |z ~y| < &

the sets L' and L are e-close in the Hausdorff metric,

p(L. T, f) <p(E'\ T, f) +e,
(5.6) LT, f) < p(L, T, f) +¢, and
[p(L', T, f) = p(L. T, f)] <e.

Proof. Lete>0and a > 0. Let Q@ = (ai,az, - ax-1,a2x). We can assume

that ¢ is small enough to ensure ¢ € @
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By the piecewise continuity of f there exists a finite partition Y of [0,1] refining
Z with a; € {infY,supY: Y € Y} forall j € {1,2,...,2K — 1,2K}, such that

sup diam Y < —f and

57 vey

sup sup [f(z) = FW)] < e
Yey 2

zreY foraY €, then define

fi(z) := sup f(y).

yEY

Then f;: [0,1] = R is a piecewise constant function with respect to V. By (5.7) we
have

C f@) < h@) < fl@)+ L and
(5.8)
o(R.T, f) < (R T, f1) < p(R.T, f) + 1e

for every closed, T-invariant R C [0,1].

Let (D, —) be the Markov diagram of (R(Q),T') with respect to Y. Let K C Y be
nonempty. Set Ko := K(Q), and for r € N set

Ky =K,yu{DeD:3Ce€K,-;,3Y €L withC—Dand DCY}.

oo
Finally define Dx := |J K,. Then Lemma 4 in [7] gives
r=0

(5.9) r(Foe () = lim [Fe, (£)71F = if 1P, ()7

Analogously to the proofs of Theorem 7 and Corollary 1 of Theorem 9 in (2], and
to the proof of Lemma 6 in [6] (cf. also the proof of Lemma 2 in [9}) we get using

Lemma 1 of [8] that there exists an r € N such that for every maximal irreducible
C C Dx with

togr(Fe(f2)) > lim +Su(R(Q) S + b2,

and for every version (A, =) of the Markov diagram of (R(Q),T) with respect to ),
there exists a finite irreducible ¢’ C A, with {A(c): c€ ('} CCNK,, and

(5.10) logr(Fe(fi)) = te <logr(Fer(f1)) < logr(Fe(f1)).
By (5.9) we can choose this rx such that we have also

(5.11) log((r + DI Fx, (£)71)F < logr(Foe(f1)) + Le
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for every r 2 rg.

There exists an ro € N, such that 5,(R(Q), f1) < ,}ggQ *Sa(R(Q), 1) + 1e for
every r 2> ro. Now choose an r € N with 7 > ro and r 2 7y for every nonempty
K C Y (such an r exists, since there exist only finitely many nonempty K c ).
Then (5.8) and the definition of S,,(R(Q), f) ((1.5) of [8]) give

-

(5.12) LS. (R@. ) < i, 25, (R(Q), 1) +

[N

Fix this r for the rest of this proof. By Lemma 1 there exists a 4 € (0, }s) such that
the conclusions of Lemma 1 hold with ¢ replaced by %5.

Let @ € Qx be b-close to Q, and let L be a maximal topologically transitive subset
of (R(Q),T) with p(Z,T,f) > T}erola %S,L(R(Q),f) + a. Let (A, —) be the version
of the Markov diagram of (R(Q),T) with respect to Y, let (A, =) be the ver-
sion of the Markov diagram (D, —) of (R(Q),T) with respect to J occuring in the
conclusions of Lemma 1, and let ¢: A, — A, be the function described in the
conclusions of Lemma 1.

First we show that hyop(L, T) > O and p(L, T, fi) > Jim_ 15,(R(Q), f1). By (2) of
Lemma 1 we get that c,d € A and ¢ — d in A imply A(p(c)) — A(p(d)) in D.
Hence the definition of S, (R(Q), f) gives S.(R(Q), f1) < S,(R(Q), f1). By (5.8) and
(5.12) this implies

Jim Ls.(r@, ) < lm 15.(R@). 1) < 15, (7(Q) 1)

< %ST(R(Q),fn) < lim ’l—lSn(]{(Q),f) + %5.

Since p(L,T,f) > lim 1S, (R(Q).f) + @ and € < @, using (5.8) this gives
n—oo . >
p(L,T,f) > lim %Sn(R(Q),f) and p(L,T, fi) > lim LS,.(R(Q), fi), which im-
o0 n—0oc
plies h“,p(I_,, T)>0.

Hence the Structure Theorem described in Section 3 gives that there exists a .
maximal irreducible ¢ C A with L = L({A(c): ¢ € C}) and A(c) € D for every
c€C. Set K:={Y €Y:3c€ Cwith A(c) CY}. As above define Ko := K(Q),
K= Knoy U{D €D:3C € Ky, 3Y € K with C — D and D C ¥} for n € N,
and Dx := (J Kn. Then using Lemma 6 in [6] (cf. also the proof of Theorem 7 in

n=0
[2]), Lemma 4 in [7] and the proof of Lemma 3 in [7] we get that

(5.13) p(L,T, f1) = logr(Fe(f1))
<logr(Fp (f1) < logiFe (A)II7
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Using Lemma 4 of [7] we get by (3) and (4) of Lemma 1 that
1Fe, (£)71 < (r + DIlFx, (SOl

Hence (5.8), (5.11) and (5.13) imply

1

(5.14) p(L.T, f) < p(L.T, fr) <logr(Poc(f1)) + }e.
Using (5.8) and & < « we arrive at logr (Fp, (f1)) > Jim *8u(R(Q), f1)+ Le. Using
the proof of Lemma 6 in [6] (cf. also the proof of Theorem 7 in [2]) we get by (3.5
and (5.14) that there exists a maximal irreducible £ C D with log r(Fe(f)) >
lim %S"(R(Q),fl) + %s and logr(Fg(fl)) > p(L, T, f) - 5. Now (5.10) imphies
:};fthere exists an irreducible &' C A, with {A(c): c€ &'} CE€NK, and

(5.15) logr(Fer(f1)) > p(E, T, f) - 3e.

Set £ := o~ 1(&"). By (1) and (2) of Lemma 1, p: & — £ is bijective and ¢ — d in
£ is equivalent to w(c) = ¢(d) in £'.

We get that {A(c): ¢ € £'} is contained in a maximal irreducible & C D, and
{A(c): c € €'} is contained in a maximal irreducible & C D. Now define

L := {x € L(&): x is represented by an infinite path in £’}
and

L' := {2 € L(&): v is represented by an iufinite path in €'},

The proof of Theorem 4 in [2] shows that L and L’ are topologically transitive.

1t follows from (3) of Lemma 1 and from (5.7) that L and L' are %svclose (and
therefore e-close) in the Hausdorff metric. Let z € L. Then there exists a ¢ € £ with
z € A(c) and A(c) € K. Hence there is a Y € K with A(c) C Y. By the definition
of K there is a d € C with A(d) C Y. Therefore there exists ay € L with y € Y, and
by (5.7) we get |[v —y| < je <z Ifaz € L, then there exist a y, € Landay ¢ [
with |z — y1] < }e and |y; —y| < &, which gives |z - y| < § < <. This shows (5.5)

By Lemma 6 in [6] (cf. the proof of Theorem 7 in [2]) we get

(L. T, fi) =logr(Fe(f1)) and p(L'.T.f1) = logr(Fe(f1))-
Using (1.9) and (1.10) of [8] we get that r(Fz(f1)) = r{Fe(f1)). Hence (5.8
gives |p(L, T, f) = p(L.T, f)f < 4e <. Using (5.8) and (5.15) we get p(L, T, f) >
C

p(L.T, f) — ¢ and p(L', T, f) > p(L, T, f) — e, which completes the proof.
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If we set f = 0 in Theorem 2 we get the following result concerning the topological
entropy of L, L and L.

Corollary 2.1. Let T:[0,1] — [0, 1] be a piecewise monotonic map with respect
to the finite partition Z of [0,1], let K € N, and let Q € Q. Then for every e > 0
and for every a > 0 there exists a & > 0 such that for every Q € Q¢ which is
-close to @, the following holds. If L is a maximal topologically transitive subset
of (R(Q),T) with heop(L,T) > a, then there exists a topologically transitive sub-
set L’ of (R(Q),T) and a topologically transitive subset L of (R(Q),T) such that
(5.5) is true and the following holds:

Mo (L T) < op(L', T) + €.
(5.16) Tiop (L T) < Itop(L, T) + €, and
Iiop(L', T) = heop(L, T)| < =.

Using (3.4) and (3.5) we can easily deduce from Theorem 1 and Theorem 2 that
the pressure and the topological entropy depend continuously on @ (see Theorem 1
and Corollary 1.1 of [8]).

Finally, we prove that for an expanding T' a result analogous to Theorem 2 con-
cerning the Hausdorff dimension of L, L and L’ is true.

Theorem 3. Let T: [0,1] = [0,1] be an expanding piecewise monotonic map
with respect to the finite partition Z of [0,1], let ¥ € N, and Q € Q. Then for
every ¢ > 0 and for every a > 0 there exists a 6 > 0 such that for every Q € Qg
which is 8-close to Q, the following holds. If L is a maximal topologically transitive
subset of (R(Q),T) with HD(L) > a, then there exists a topologically transitive
subset L' of (R(Q), T) and a topologically transitive subset L of (R(Q), T) such that
(5.5) and the following hold:

HD(L) < HD(L') +¢,
(5.17) HD(L) < HD(L) +¢, and
|HD(L') - HD(L)| < e.

Proof. By the proof of Lemma 3 in [6] we can choose an 7 > 0 such that
2 <e<a 1-(1+E) 7 < £, 8, == (x—)(1+4) < fovalle € [a,1}, and, whenever
r € [e,1] and R € [0,1] is closed and T-invariant with p(R,T. —xlog|T"|) = 0, then
(R, T, —t:10g|T"]) > n, where B is as in Lemma 3 of [9]. Again using the proof of

53



Lemma 3 in [6] we can assume that for every closed and T-invariant R C [0,1] and
for every closed and T-invariant R’ C [0,1] the property

|p(R, T, —tlog|T'|) ~ p(R', T, —tlog |T"|)| < n for all t € [0,1]
implies |tg — ta/| < §, where fp is the unique zero of ¢ = p(R, T, —tlog|T"|), and
tp is the unique zero of t = p(R', T, ~tlog |T"|).
The proof of Theorem 2 shows that there exists a finite partition Y of [0, 1] refining

Z, such that sup sup |log|T’|(z) — log|T'|(y)| < 7, and there exists a § > 0
Yey zyey

such that for every Q@ € Qg which is d-close to @, the conclusions of Theorem 2
hold with € and a replaced by 7. Let @ € Qx be d-close to @ and let L be
a maximal topologically transitive subset of (R(Q),T) with IfD(Z) > a. Then
ty == (HD(L) ~ €)(1 + %) < HD(L). As in the proof of Theorem 3 in [7] we get
”11_{1; %S,E(R(Q),——HogiT'D < 0 for all ¢ > 0, hence by Theorem 2, Lemma 3 and
Lemma 9 of {6] we get

1 .
lim =S,(R(Q),—t1log|T"|) <0< n <p(L,T,—t;log|T']).
n—co N
Now choose sets L’ and L as in the proof of Theorem 2 with f replaced by —t; log [T”].
Then we get that (5.5) is true and

Ip(Z', T, ~tlog|T"]) - p(L, T, —tlog|T"])| < n

for all t € [0,1]. Hence Lemma 3 in [9] gives |HD(L’) — HD(L)| < e. By Theorem 2
we get p(L', T, =t log|T"]) > 0 and p(L,T, -t log|T"|) > 0. Therefore Lemma 3
in [9] implies HD(Z') > HD(L) — ¢ and HD(L) > HD(L) — e, which completes the
proof. a

From (3.6), Theorem 1 and Theorem 3 we can easily deduce that the Hausdorff
dimension depends continuously on @ (see Theorem 2 in [8]).
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