Bohdan Zelinka

Edge-domatic numbers of cacti

Mathematica Bohemica, Vol. 116 (1991), No. 1, 91–95

Persistent URL: http://dml.cz/dmlcz/126190

Terms of use:

© Institute of Mathematics AS CR, 1991

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
Edge-Domatic Numbers of Cacti

Bohdan Zelinka, Liberec

(Received February 10, 1989)

Summary. The edge-domatic number of a graph is the maximum number of classes of a partition of its edge set into dominating sets. This number is studied for cacti, i.e. graphs in which each edge belongs to at most one circuit.

Keywords: edge-domatic number, cactus.

AMS classifications: 05C35.

In [1] E. J. Cockayne and S. T. Hedetniemi have introduced the domatic number of a graph. One of its variants is the edge-domatic number of a graph; introduced in [2].

We shall consider finite undirected graphs without loops and multiple edges. Two distinct edges are called adjacent, if they have a common end vertex.

A subset D of the edge set $E(G)$ of a graph G is called dominating, if for each $e \in E(G) - D$ there exists an edge $f \in D$ adjacent to e. An edge-domatic partition of G is a partition of $E(G)$, all of whose classes are dominating edge sets of G. The maximum number of classes of an edge-domatic partition of G is called the edge-domatic number of G and denoted by $ed(G)$.

It is sometimes convenient to consider edge-domatic colourings instead of edge-domatic partitions. A colouring \mathcal{C} of edges of G is called edge-domatic, if each edge of G is adjacent to edges of all colours of \mathcal{C} different from its own. The maximum number of colours of an edge-domatic colouring of G is the edge-domatic number of G. This definition is evidently equivalent to the previous one.

In this paper we shall investigate cacti. A cactus is a connected graph which has the property that each of its edges is contained in at most one circuit.

Thus each block of a cactus is either a circuit, or a complete graph K_2 with two vertices. If a cactus contains only one block, it will be called trivial; otherwise it will be called non-trivial. A cactus in which all blocks are circuits will be called round.

The edge-domatic number of G is evidently equal to the domatic number [1] of the line graph of G. Therefore it easily follows from the results in [1] that $ed(G) \geq 2$ for each graph G, none of whose connected components is K_2, and $ed(G) \leq \delta_e(G) + 1$, where $\delta_e(G)$ is the minimum degree of an edge of G. (The degree of an edge is
the number of edges adjacent to it.) As any circuit is isomorphic to its line graph, the
edge-domatic number of a circuit is equal to its domatic number. Thus we have the
following propositions.

Proposition 1. The edge-domatic number of K_2 is 1.

Proposition 2. The edge-domatic number of a circuit is 3 if and only if its length
is divisible by 3; otherwise it is 2.

Thus, in the sequel we shall study only non-trivial cacti. We shall prove a theorem
concerning round cacti. Before formulating it, we prove some lemmas.

Lemma 1. Let G be a round cactus. Then $ed(G) \leq 3$.

Proof. For trivial cacti this follows from Proposition 1 and Proposition 2. Let G
be a non-trivial cactus. Let C be a terminal block of G, i.e. a block containing only
one articulation of G. (Such a block must always exist.) The block C is a circuit and
thus it contains two adjacent vertices u, v which are not articulations of G. The
vertices u, v have degree 2 and thus also the degree of the edge uv is 2. Thus $\delta_e(G) \leq 2$
and, according to the above mentioned inequality, $ed(G) \leq \delta_e(G) + 1 \leq 3$. □

Now we shall define a certain property of a graph.
A graph G is said to have the property P, if $ed(G) = 3$ and there exists an edge-
domatic colouring of G with colours such that each vertex of G is incident with edges
of at least two colours.

Lemma 2. Let G be a non-trivial round cactus, let C be its terminal block. Let G_0
be the union of all blocks of G except C. Let $ed(G_0) = 3$ and let G_0 have the property P.
Then $ed(G) = 3$ and G has the property P.

Proof. Let φ_0 be the colouring of G_0 satisfying the condition of the property P.
Let a be the articulation of G contained in C. By the assumption the vertex a is
incident in G_0 with edges of at least two colours of φ_0; without loss of generality we
may assume that these colours are 2 and 3. Let c be the length of C and let the vertices
of C be u_1, \ldots, u_c and its edges u_iu_{i+1} for $i = 1, \ldots, c - 1$ and u_cu_1. Let $a = u_1$.
We shall colour the edges of C in such a way that each edge u_iu_{i+1} for $i = 1, \ldots, c - 1$
obtains the colour congruent with i modulo 3 and the edge u_cu_1 obtains the
colour congruent with c modulo 3. This colouring together with φ_0 gives
a colouring φ of G with the property that each vertex of G is incident with edges of
at least two colours of φ. It remains to prove that φ is edge-domatic. As φ_0 is an
edge-domatic colouring of G_0, any edge of G_0 is adjacent to edges of all colours
different from its own. The edge u_1u_2 has this property, too, because its colour is 1
and it is adjacent to edges of G_0 of the colours 2 and 3 which are incident to $a = u_1$.
The edge u_cu_1 is adjacent also to these two edges of G_0 and moreover to u_1u_2 of the
colour 1. If $2 \leq i \leq c - 2$, then the edge u_iu_{i+1} has the colour congruent with i.
modulo 3 and is adjacent to the edge $u_{i-1}u_{i}$ of the colour congruent with $i - 1$
and to the edge $u_{i+1}u_{i+2}$ of the colour congruent with $i + 1$ modulo 3. This proves
the assertion. \hfill \Box

Lemma 3. Let G be a cactus consisting of two circuits C_1, C_2 of lengths c_1, c_2, respectively, let $c_1 \not\equiv 1 \pmod{3}$. Then $ed(G) = 3$ and G has the property P.

Proof. Denote the vertices of C_1 by u_1, \ldots, u_{c_1} and the vertices of C_2 by v_1, \ldots, v_{c_2} in an analogous way as in the proof of Lemma 2. Let the articulation of G be $a = u_1 = v_1$. We colour the edges of C_1 in such a way that u_iu_{i+1} is coloured with the colour congruent with i modulo 3 for each $i = 1, \ldots, c_1 - 1$ and $u_{c_1}u_1$ with the colour congruent with c_1 modulo 3. As $c_1 \not\equiv 1 \pmod{3}$, the edges incident with a have different colours. Now let φ be a cyclic permutation of $\{1, 2, 3\}$ such that $\varphi(1)$ is the colour different from the colours of the edges of C_1 incident with a. We colour the edges of C_2 in such a way that v_iv_{i+1} for $i = 1, \ldots, c_2 - 1$ is coloured with the colour $\varphi(j)$, where $j \in \{1, 2, 3\}, j \equiv i \pmod{3}$, and $v_{c_2}v_1$ with the colour $\varphi(j)$, where $j \in \{1, 2, 3\}, j \equiv c_2 \pmod{3}$. Analogously as in the proof of Lemma 2 we prove that this colouring is edge-domatic and satisfies the condition of the property P. \hfill \Box

Lemma 4. Let G be a cactus consisting of two circuits of lengths congruent with 1 modulo 3. Then $ed(G) = 2$.

Proof. Suppose $ed(G) = 3$. Denote the circuits and their vertices in the same way as in the proof of Lemma 3. Without loss of generality let u_1u_2 be coloured with 1. Then u_2u_3, having the degree 2, must have a colour other than 1; without loss of generality let it be 2. Then the colouring of all edges u_iu_{i+1} for $i = 1, \ldots, c_1 - 1$ is uniquely determined; each edge u_iu_{i+1} must have the colour congruent with i modulo 3. The edge $u_{c_1}u_1$ must have the colour 1. Thus both the edges of C_1 incident with a have the colour 1. Analogously the edges of C_2 must be coloured in such a way that both edges incident with a have the same colour. If this colour is 2 (or 3), then u_1u_2 (or $u_1u_{c_1}$) is not adjacent to an edge of the colour 3 (or 2, respectively). If this colour is 1, then u_1u_2 is not adjacent to an edge of the colour 3, either, and $u_1u_{c_1}$ is not adjacent to an edge of the colour 2. This is a contradiction and therefore $ed(G) = 2$. \hfill \Box

Lemma 5. Let G be a round cactus with three blocks. Then $ed(G) = 3$ and G has the property P.

Proof. Let C_1, C_2, C_3 be the blocks of G; they are circuits. If some of them has the length not congruent to 1 modulo 3, then the assertion follows from Lemma 3 and Lemma 2. Thus suppose that the lengths c_1, c_2, c_3 of C_1, C_2, C_3 are all congruent with 1 modulo 3. The graph G can have either one or two articulations. Consider
the first case. Let \(\varphi_1 \) be the identity permutation of \(\{1, 2, 3\} \), let \(\varphi_2, \varphi_3 \) be the cyclic permutations of \(\{1, 2, 3\} \) such that \(\varphi_2(1) = 2, \varphi_3(1) = 3 \). Let the vertices of \(C_j \) for \(j = 1, 2, 3 \) be \(u^{(j)}_i, \ldots, u^{(j)}_{c_j} \), and let the edges be \(u^{(j)}_iu^{(j)}_{i+1} \) for \(i = 1, \ldots, c_j - 1 \) and \(u^{(j)}_{c_j}u^{(j)}_1 \). Let the articulation of \(G \) be \(a = u^{(1)}_1 = u^{(2)}_1 = u^{(3)}_1 \). We colour any edge \(u^{(j)}_iu^{(j)}_{i+1} \) with the colour congruent with \(\varphi_j(i) \) modulo 3 and any edge \(u^{(j)}_{c_j}u^{(j)}_1 \) by \(j \). The reader may verify that \(G \) has the property \(P \). Now consider the second case. The vertices and edges of \(C_1 \) and \(C_3 \) will be the same as in the preceding case. The articulations will be \(a_1 = u^{(1)}_1 \) and \(a_2 = u^{(3)}_1 \). Both \(a_1, a_2 \) will be contained in \(C_2 \). Then \(C_2 \) is the union of two edge-disjoint paths \(P_1, P_2 \) connecting \(a_1 \) with \(a_2 \). Let \(p_1, p_2 \) be their lengths. We have \(p_1 + p_2 \equiv c_2 \equiv 1 \mod 3 \); therefore (without loss of generality) either \(p_1 \equiv 1 \mod 3 \) and \(p_2 \equiv 0 \mod 3 \), or \(p_1 \equiv p_2 \equiv 2 \mod 3 \). Let the vertices of \(P_1 \) (or \(P_2 \)) be \(v_0, \ldots, v_{p_1} \) (or \(w_0, \ldots, w_{p_2} \)) and let the edges be \(v_iv_{i+1} \) (or \(w_iw_{i+1} \)) for \(i = 0, \ldots, p_1 - 1 \) (or \(i = 0, \ldots, p_2 - 1 \), respectively). The notation will be chosen so that \(v_i = w_i = a_1 \), \(v_{p_1} = w_{p_2} = a_2 \). If \(p_1 \equiv 1 \mod 3 \) and \(p_2 \equiv 0 \mod 3 \), we colour each edge \(v_iv_{i+1} \) with the colour congruent with \(\varphi_3(i) \) modulo 3 and each edge \(w_iw_{i+1} \) with the colour congruent with \(i \) modulo 3. Then the edges of \(C_2 \) incident with \(a_1 \) have the colours 2 and 3 and the edges of \(C_2 \) incident with \(a_2 \) have the colours 1 and 2. Now we colour the edges of \(C_1 \) and \(C_3 \) in the same way as in the preceding case. The graph \(G \) has the property \(P \), as the reader may verify himself. If \(p_1 \equiv p_2 \equiv 2 \mod 3 \), then we colour the edges of \(C_2 \) in the same way. The edges of \(C_2 \) incident with \(a_1 \) have again the colours 2 and 3, and the edges of \(C_2 \) incident with \(a_2 \) have the colours 1 and 3. The edges of \(C_1 \) will be coloured as in the preceding case and the edges of \(C_3 \) in such a way as the edges of \(C_2 \) in the case of the articulation. Again \(G \) has the property \(P \). \(\square \)

Now we can prove a theorem.

Theorem. Let \(G \) be a non-trivial round cactus. Then \(ed(G) = 2 \) if and only if \(G \) consists of two circuits of lengths congruent with 1 modulo 3; otherwise \(ed(G) = 3 \).

Proof. According to Lemma 1 we have \(ed(G) \leq 3 \). If \(G \) consists of two circuits of lengths congruent with 1 modulo 3, then \(ed(G) = 2 \), according to Lemma 4. Otherwise \(G \) contains a subcactus \(G_0 \) consisting either of two circuits, at least one of which has a length non-congruent with 1 modulo 3, or of three circuits. Then from Lemma 3 or Lemma 5 by using iteratively Lemma 2 we obtain the assertion. \(\square \)

For cacti which are not round the theorem does not hold. For trees (which are a particular case of cacti) it was proved in \([2]\) that \(ed(G) = \delta_1(G) + 1 \).

References

Souhrn

HRANOVĚ DOMATICKÁ ČÍSLA KAKTUSŮ

BOHDAN ZELINKA

Hranově domatické číslo grafu je maximální počet tříd rozkladu množiny jeho hran na dominantní množiny. Toto číslo je v článku studováno pro kaktusy, tj. grafy, v nichž každá hrana patří do nejvýše jednoho cyklu.

Author's address: Katedra matematiky VŠST, Sokolská 8, 460 01 Liberec 1.