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Summary. Two types of a distance between isomorphism classes of graphs are adapted for
rooted trees.
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Various distances between isomorphism classes of graphs were introduced and
studied by various authors. In this paper we shall adapt the definitions of two of
them for rooted trees and study their properties. We consider finite trees. The symbol
V(T) denotes the vertex set of the tree T.

Let T;, T, be two trees with the same number n of vertices. The subtree distance
6(Ty, T,) is equal to n minus the maximum number of vertices of a tree which is
isomorphic simultaneously to a subtree of T; and to a subtree of T,. This distance
was introduced by the author of this paper in [2].

Let u, v, w be three pairwise distinct vertices of an undirected graph G such that u
is adjacent to v and is not adjacent to w. Let e be the edge joining 4 and v. To perform
a rotation of the edge e to the position uw means to delete e from G and add the edge
uw to G.

The edge rotation distance was introduced by G. Chartrand, F. Saba and H.-B.
Zou in [1]. Let Gy, G, be two finite undirected graphs with the same number of
vertices and the same number of edges. In [1] it was proved that G, can be trans-
formed to a graph isomorphic to G, by a finite number of edge rotations. The mini-
mum number of edge rotations necessary for it is called the edge rotation distance
3r(Gy, G,) of the graphs G, and G,.

Both the above described distances are metrics. If we wanted to speak precisely,
we should speak about the distance between isomorphism classes of graphs instead of
the distance between graphs. Namely, if two graphs have the distance equal to zero,
they need not be identical, but they are isomorphic. Nonetheless, for the sake of
simplicity and brevity we shall speak about distances between graphs.

We shall adapt these definitions for rooted trees.

A rooted tree is an ordered pair (T, r), where T is a tree and r is a vertex of T;
the vertex r is called the root of the rooted tree (T, r). Two rooted trees (T, r,),
(T, r,) are called isomorphic, if there exists an isomorphic mapping of T; onto T,
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which maps r; onto r,. When we speak about the number of vertices of a rooted
tree (T, r), we mean the number of vertices of T. A rooted subtree of (T, r) is a rooted
tree (To, r), where T, is a subtree of T containing the vertex r.

Let (T}, ry), (T3, r,) be two rooted trees with the same number n of vertices. The
distance 61((Ty, ry), (T2, r,)) is equal to n minus the maximum number of vertices
of a rooted tree which is isomorphic simultaneously to a rooted subtree of (T, r1)
and to a rooted subtree of (T3, r,).

Theorem 1. The distance 6 is a metric on the set of all isomorphism classes of
rooted trees with n vertices for any positive integer n.

Proof. It is clear that 6((T}, r,), (Ty, r;)) = O for any two rooted trees (Ty, ry)
(T, r,) with the same number of vertices, and 67((T}, ry), (T2, 7,)) = 0 if and only
if (Ty,ry) = (Te,r,). Also it is evident that 6((Ty, 74), (Tp, 73)) = 6¢((T2, 72),
(T}, 74)). It remains to prove the triangle inequality. Let (Ty, ry), (T3, r3), (T3, r3) be
three rooted trees with n vertices each. There exists a rooted tree (T}, r12) with
n — 64((Ty, ry), (Ty, r;)) vertices which is simultaneously isomorphic to a rooted
subtree of (T, r;) and to a rooted subtree of (T3, r,), and a rooted tree (Ts3, 753)
with n — 6{((Ty, r;), (T, 73)) vertices which is simultaneously isomorphic to a rooted
subtree of (T3, r;) and a rooted subtree of (T3, r3). We may consider (T2, 712) and
(T3, r23) directly as rooted subtrees of (T,, r,) With 7y, = r,5 = r,. Let Ty3 be the
intersection of the trees T),, T,,; it contains r, and thus it has at least one vertex.
The rooted tree (T}, r;) is evidently isomorphic to a rooted subtree of (Ty, 1) and
to a rooted subtree of (T;, r3) and thus

(l) 6T((Tl’ rl)a (T3’ rS)) é n — IV(T13)I .
Let T;, be the union of T}, and T,;. Then
[V(Ti5)| = [V(Ti2)| + |V(Tas)| = [V(Tis)| =
=2n — 51’((T1’ "1), (Tzs rz)) - 5T((T2a 7’2); (T3, 7‘3)) - IV(Tm)I .
As Ty, is a subtree of T,, we have |V(T{,)| < n. This yields
2n = 84((Ti> 70)s (T2s 72)) = 82((T2s 72), (Ts 13)) = [V(Ty5)| S 1,
ie.
(B IV(T13)| =< 51'((T1, "1), (Tz, 7'2)) + 51'((T2, "2), (Ts’ "3)) . O

Together with (1) this implies the triangle inequality for 6.

Let again (T}, ry), (T3, ;) be two rooted trees with the same number n of vertices.
The edge rotation distance Sx((T}, 74), (T, r2)) between these rooted trees is the
minimum number of edge rotations necessary for transforming (T}, r,) to a rooted
tree isomorphic to (T3, r,), where all graphs occurring at performing these rotations
are trees and are considered as rooted trees with the same root r,.
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To show that the edge rotation distance between two rooted trees is well-defined,
we shall prove a theorem. '

Theorem 2. Let (Ty, r;), (T;, r,) be two rooted trees with the same number n of
vertices. Then there exists a finite number of edge rotations which transform
(Ty, 1) to a rooted tree isomorphic to (T,, 1) and this number is less than or equal

to 6;((Ty, r1), (T2, 12))-

Proof. We shall use induction with respect to the distance 6((Ty, r1), (T, 73))-
If 6;((Ty, 1), (T3, 72)) = O, then evidently the rooted trees (Ty,ry), (T3, r,) are
isomorphic and the assertion holds trivially. Let k = 1 and suppose that the assertion
is true for any two rooted trees whose subtree distance is at most k — 1. Let
6:((Ty, 74), (Ty, 73)) = k. Then there exists a rooted tree (To, ro) With n — k vertices
which is isomorphic simultaneously to a rooted subtree (To4, 74) or (T}, 74) and to
a rooted subtree (T,,, ;) of (T, r,). As n — k < n, there exists a vertex x, of T,
which does not belong to T,, and is adjacent in T, to a vertex y, of Ty,. Let « be an
isomorphic mapping of T,, onto Ty, such that a(r,) = ry, let y; = a(y,). Let x,
be a vertex of T; which does not belong to Tj,; and is adjacent to a vertex z of T,,.
We perform the rotation of the edge x,z to the position x,y;. Let Ty, (or Tg,) be the
tree obtained from Ty, (or T,;) by adding the edge x;y; (or x,y,, respectively).
Let o’ be the mapping of T, onto Ty, defined in such a way that «'(x,) = x, and
«'(v) = a(v) for each vertex v of Tp,. Then o' is an isomorphic mapping of Ty,
onto Ty,. Let T] be the tree obtained from T; by the rotation of x,z to the position
x,y;. Each of the trees Ty, Ty, has n — (k — 1) vertices. We have o'(r,) = ry.
Thus the rooted trees (Tg,, 1), (Ty,, 1) are isomorphic and therefore 6.((Ty, 7,),
(Ty, r,)) < k — 1. By the induction hypothesis there exists a finite number of edge
rotations which transform (TY, r,) into (T3, r;) and this number is at most k — 1.
The rooted tree (T, ;) is obtained from (T, r,) by the rotation of the edge x;z
to the position x,y;, and this proves the assertion. []

Corollary 1. For any two rooted trees (Ty, 71), (T, ;) with the same number of
vertices the inequality ‘

Or((T1> 71)s (T2, 72)) < 6((Ty, 71)s (T2, 12))
holds. [

Let (T, r) be a rooted tree. By A(T,r) we denote the degree of the root r in T,
by D(T, r) we denote the maximum distance of a vertex of T from r.

Theorem 3. Let (Tl, r1)s (T, r,) be two rooted trees with the same number of
vertices. Then

5R((T1’ rl)’ (T2’ rl)) = IA(TI’ tl) - A(Tz’ rz)l ’
51-((T1, 7‘1), (T29 rl)) g IA(TI’ rl) - A(TZ, rz)l .
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Proof. Consider edge rotations which transform (T}, ;) to a rooted tree iso-
morphic to (T3, ;). At each of them the degree of r can change at most by one and
therefore the number of such rotations is at least A(Ty, r,) — A(T,, r,), which
implies the inequality for dg. The inequality for 6, follows from this inequality and
from Theorem 2. [] '

Theorem 4. Let (Tl, 7‘1), (Tz, r,) be two rooted trees with the same number of
vertices. Then

o7((Ty, r1)s (T, 7)) 2 |D(T1, ry) — D(T, "2)1 .

Proof. Without loss of generality we may suppose that D(Ty, r,) = D(T,, r,).
Let v be a vertex of T; whose distance from r, is equal to D(Ty, ry). Let P be the
path connecting r; and v in T}, let w be the vertex of P whose distance from r, is
equal to D(Ty, r,). Let P’ be the path in T; connecting v and w. For any rooted
subtree of (T, r;) the value of D is at most D(T5, r,); therefore no rooted subtree
of (T}, r,) isomorphic to a rooted subtree of (T3, r,) can contain the vertices of P’
except w. The number of these vertices is D(Ty, r;) — D(T;, r;), which implies the
assertion. [

Now we shall consider pairs (T, r,), (T, r,) of rooted trees, where the tree is the
same and the roots are different.

Let T be a tree with n vertices. The maximum distance 5((T, r,), (T, r,)), where
ry, 1, are two vertices of T, will be called the subtree elongation of T and denoted
by e7(T). The maximum distance 8g((T, r1), (T; 7)), where ry, r, are vertices of T,
will be called the edge rotation elongation of T and denoted by eg(T).

Theorem 5. Let T be a tree with n = 3 vertices. Then
[n2] -1 2 eT)sn-2.

The lower bound is attained for a snake, the upper bound for a star.

Proof. Consider the decompositions of T into two edge-disjoint subtrees having
exactly one vertex in common. Let {T;, T} be such a decomposition with the pro-
perty that the absolute value of the difference |V(T;)| — |V(T3)| is minimum. Let u
be the common vertex of T; and Ty. (In [3] it is proved that u is a median of T; i.e.
a vertex having the minimum sum of distances from all vertices of T.) We shall prove
that no branch of T at the vertex u has more than [n/2] + 1 vertices. Without loss
of generality suppose that |V(T,)| = |V(T3)|. We evidently have |V(T,)| + |V(T3)| =
= n + 1. Therefore if |[V(Ty)| — |V(T2)| < 1, then [V(T3)| < |V(Ty)| < [n/2] + 1.
As each branch of T at the vertex u is a subtree of T; or T, the assertion holds. Thus
let |[V(Ty)| — |V(T3)| = 2. Suppose that a branch B of T'at u with more than [n/2] +
+ 1 vertices exists. Let u’ be its vertex adjacent to u. It is clear that B is a subtree
of Ty. Let T} be the tree obtained from B by deleting the vertex u and the edge uu’.
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Let T, be the subtree of T formed by all edges not belonging to T, and by all vertices
incident to them. The tree T; is a proper subtree of T; and T, is a proper subtree
of T;. Hence |V(T})| < |V(Ty)| — 1, |V(T3)| 2 |[V(Ty)| + 1. The pair {Tj, T;} is
a decomposition of T'into two edge-disjoint subtrees with the unique common vertex
u'. As |V(B)| 2 |n/2] + 1, we have |V(T})| = [#/2] + 1 = [n[2], |V(T3)| =n +
+ 1 [UT) < [nf2]. Henee 0= [V(TY)| - V(T3 < V()] - (V(T3)] - 2
which is a contradiction with the minimality of the absolute value of |V(Ty)| —
— |V(T;)|. We have proved that any branch of T at u has at most [n/2] + 1 vertices.
Let v be a terminal vertex of T and consider rooted trees (7, u), (T, v). Let T, be
a subtree of T containing u and such that (T, u) is isomorphic to a rooted subtree
of T with the root v. As the degree of v is 1, the tree T, is a subtree of one branch
of Tat u and |V(Tp)| < [n/2] + 1. Hence e(T) 2 64((T, u), (T, v)) = n — ([n/2] +
+ 1) = [n/2] — 1. On the other hand, a rooted tree with two vertices is a rooted
subtree of every rooted tree with at least two vertices, which implies e(T) < n — 2.

Let T be a snake with n vertices. Then at each vertex of T there exists a branch
with at least [n/2] + 1 vertices and this branch is a snake. This implies &(T) =
= [n/2] - 1.

Let T be a star with »n vertices, let ¢ be its center, let » be a vertex of T different
from c. Then 6,((T, ¢), (T,v)) = n — 2, because any branch of T at ¢ has only two
vertices. This implies ex(T) = n — 2. [0

Theorem 6. Let k, n be two positive integers such that [nf2] — 1 < k < n — 2.
Then there exists a tree T with n vertices such that er(T) = k.

IIA

Proof. Denote p = n — k — 1. Take a snake of length 2p, i.e. with 2p +1 vertices.
It has the unique center ¢. Add n — 2p — 1 new vertices and join each of them by an
edge with c¢. The resulting tree is T. Let v be a terminal vertex of the above mentioned
snake and consider the rooted trees (T, ¢), (T, v). Evidently the rooted tree isomorphic
to subtrees of both of them and having the maximum number of vertices is a snake
with p + 1 vertices and thus 8.((T; ¢), (T,v)) = n — p — 1 = k. Any vertex of T
different from ¢ has the property that it is a terminal vertex of a snake of length
at least p + 2 which is a subtree of T and thus the distance of any two rooted trees
(T, ry), (T, r,) is at most k and e-(T) = k. O

Theorem 7. Let k,n be two positive integers such that 1 < k < n — 2. Then
there exists a tree T with n vertices such that ex(T) = k.

Proof. Take a snake with n — k vertices uy, ..., U,—;—q, v and edges u;u;,, for
i=1,....,n — k—2and u,_,_,v. Add k new vertices wy, ..., w, and join them by
edges with v. The resulting tree is T. According to Theorem 3 we have 8x((T, v),
(T, x)) 2 k for any vertex x of T of degree 1, because v has degree k + 1. By k
rotations of edges yv to the position yu,, where y is a vertex of degree 1 different
from u,, we transform (7, v) to a rooted tree isomorphic to (T, u,). We can transform
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(T, v) to a rooted tree isomorphic to (T, wy) for i = 1,..., k by k — 1 rotations of
edges w;v to the position w;w;, where j + i, and by the rotation of u,u, to the position
uw;. Thus 6x((T, v), (T, uy) = 6x((T, v), (T, w,)) = k for i = 1,..., k. If u, exists,
we can transform (T,v) to (T,u,) by k — 1 rotations of wp to the position wu,
for i =1, ...,k — 1. This and Theorem 3 imply 8z((T, v), (T, u,)) = k — 1. If u;
exists for i = 3, then we can transform (T, v) to a rooted tree isomorphic to (7, u;)
by k — 1 rotations of w;v to the position w,u; forj = 1, ..., k — 1 and by the rotation
of u;_,u,_; to the position u;_,w,; therefore dz((T, v), (T, u;)) < k for i = 3. We
can transform (T, ;) for each i > 2 to a rooted tree isomorphic to (7, u) by the
rotation of u;4u; (or vu, if i = n — k — 1) to the position u;, yu, (or vu,). This
implies also that for any i,j from the numbers 2,...,n — k — 1 the rooted tree
(T, u;) can be transformed to a rooted tree isomorphic to (T; u;) by two edge rotations;
the intermediate rooted tree is (T, u,). The rooted tree (T, u;) can be transformed to
a rooted tree isomorphic to (T, w,) for each i e {1, ..., k} by k — 1 edge rotations;
they are the rotations of w;v to the position w,u, for allje {1, ..., k} — {i}. Finally,
any rooted tree (T, u ,) for j = 2 can be transformed to a rooted tree isomorphic
to (T, u,) by one edge rotation, and thus to a rooted tree isomorphic to (T, w;)
for any ie{l,..., k} by k edge rotations. We have proved that any two rooted
trees resulting from T have the distance at most max (k, 2). This proves our assertion
in the case when k = 2. In the case k = 1 the tree T'is a snake. We may denote its
vertices more simply by u, ..., u, in such a way that its edges are uu;,, for i =
= 1,...,n — 1. Let u;, u; be two vertices of T such that i > j. Then (T, uj) can be
transformed to a rooted tree isomorphic to (T, u;) by the rotation of u;_u;_;,, to
the position u;_u,. Hence in this case ex(T) = 1 = k. [
In the end we formulate two corollaries.

Corollary 2. Let T be a finite tree, let A be the maximum degree of a vertex of T,
Then

erf(T) 2 ex(T) 24— 1.

Proof. The inequality e;(T) = &(T) follows from Corollary 1, the inequality
& R(T) = A — 1from Theorem 3, because every finite tree contains a vertex of degree 1.
O

Corollary 3. Let T be a tree with n vertices, let d be its diameter. Then
BT(T) g [d/2] .

Proof. Let ¢ be a center of T, let v be a terminal vertex of a diametral path in T.
We have D(T, v) = d, D(T, c¢) = [d[2] (the radius of T). Hence the inequality follows
from Theorem 4. [J .
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Souhrn

VZDALENOSTI MEZI ZAKORENENYMI STROMY

BOHDAN ZELINKA

Dva typy vzdalenosti mezi tfidami isomorfismu stromu jsou upraveny na vzdalenosti mezi
t¥idami isomorfismu zakofen&nych stromil. Zkoumaji se jejich zakladni vlastnosti.

Author’s address: Katedra matematiky VSST, Sokolska 8, 460 01 Liberec.

107



		webmaster@dml.cz
	2020-07-01T10:57:47+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




