Zbigniew Grande

On some conditions which imply the continuity of almost all sections $x \rightarrow f(t, x)$

Persistent URL: http://dml.cz/dmlcz/126207

Terms of use:

© Institute of Mathematics AS CR, 1994

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use.*
ON SOME CONDITIONS WHICH IMPLY THE CONTINUITY
OF ALMOST ALL SECTIONS x → f(t, x)

Zbigniew Grande,* Slupsk

(Received December 30, 1992)

Summary. Let I be an open interval, X a topological space and Y a metric space. Some local conditions implying continuity and quasicontinuity of almost all sections x → f(t, x) of a function f : I × X → Y are shown.

Keywords: measure, density, category, Baire property, continuity, section

AMS classification: 26B05, 26B99, 28A10, 54C08

Let \(\mathbb{R} \) be the set of reals and let \(\mu \) (resp. \(\mu^* \)) be the Lebesgue measure (resp. the outer Lebesgue measure) in \(\mathbb{R} \). The upper outer density \(d_{u,e}(A, x) \) of a set \(A \subset \mathbb{R} \) at a point \(x \in \mathbb{R} \) is defined as \(\limsup_{h \to 0} \mu^*(A \cap [x - h, x + h])/2h \). If the set \(A \) is measurable (in the Lebesgue sense) then upper outer density of \(A \) at \(x \) is called the upper density of \(A \) at \(x \) and it is denoted as \(d_u(A, x) \). The corresponding lower limits are called lower outer density and lower density of \(A \) at \(x \) and denoted by \(d_{l,e}(A, x) \) and \(d_l(A, x) \) respectively. The family of all measurable sets \(A \subset \mathbb{R} \) such that if \(x \in A \) then \(d_l(A, x) = 1 \) is a topology called the density topology \(\mathcal{T}_d [1, 5] \). Moreover, the family \(\mathcal{I}_{ae} \) of all sets \(A \in \mathcal{T}_d \) such that \(\mu(A - \text{int} A) = 0 \) is a topology [5] (\(\text{int} A \) denotes the Euclidean interior of \(A \)). Let \(I \subset \mathbb{R} \) be an open interval, let \((X, \mathcal{T}) \) be a topological space, and let \((Y, g) \) be a metric space. In [2] the following condition \((a_0) \) is introduced for a function \(f : I \times X \to Y \):

\[
(a_0) \quad f \text{ satisfies } (a_0) \text{ if for every point } (t, x) \in I \times X \text{ there is a measurable set } A(t, x) \subset I \text{ such that } d_l(A(t, x), t) = 1 \text{ and the sections } f_s(x) = f(s, x), s \in A(t, x), \text{ are } \mathcal{T}-\text{equicontinuous at } x, \text{ i.e. for every } \varepsilon > 0 \text{ there is a set } U \in \mathcal{T} \text{ such that } x \in U \text{ and } f_s(U) \subset K(f_s(x), \varepsilon) = \{u \in Y; g(f(s, x), u) < \varepsilon\} \text{ for every } s \in A(t, x).
\]

* Supported by KBN grant 2 1144 91 01
In [2] this condition is used to investigate Carathéodory's superposition $h(t) = f(t, g(t))$ and it is proved that if $X = Y$ is a separable Banach space and if f satisfies the condition (a_0) then almost all sections f_t are \mathcal{T}-continuous. Moreover, if f is a bounded function and all its sections $f^*(t) = f(t, x)$ are derivatives then all sections f_t are continuous. In this article I examine some analogous conditions as (a_0).

A function $f: I \times X \to Y$ satisfies the condition:

\begin{enumerate}
 \item[(a_1)] if for every point $(t, x) \in I \times X$ there is a measurable set $A(t, x) \subset I$ such that $d_u(A(t, x), t) > 0$ and the sections $f_s, s \in A(t, x)$, are \mathcal{T}-equicontinuous at x;
 \item[(a_2)] if for every point (t, x) there is a measurable set $A(t, x) \subset I$ such that $d_u(A(t, x), t) > 0$ and the sections $f_s, s \in A(t, x)$, are \mathcal{T}-quasi-equicontinuous at x;
 \item[(a_3)] if for every point (t, x) there is a measurable set $A(t, x) \subset I$ such that $d_u(A(t, x), t) > 0$ and the sections $f_s, s \in A(t, x)$, are \mathcal{T}-equicontinuous at x, i.e. for every $\varepsilon > 0$ and for every \mathcal{T}-open set $U \ni x$ there is a nonempty \mathcal{T}-open set $V \subset U$ such that $f_s(V) \subset K(f(s, x), \varepsilon)$ for every $s \in A(t, x)$;
 \item[(b_1)] if for every point (t, x) there is a set $A(t, x) \subset I$ having the Baire property and of the second category at t such that the sections $f_s, s \in A(t, x)$, are \mathcal{T}-equicontinuous at x;
 \item[(b_2)] if for every point (t, x) there is a set $A(t, x) \subset I$ having the Baire property and of the second category at t such that the sections $f_s, s \in A(t, x)$, are \mathcal{T}-continuous at x;
 \item[(b_3)] if for every point (t, x) there is a set $A(t, x) \subset I$ having the Baire property and of the second category at x such that the sections $f_s, s \in A(t, x)$, are \mathcal{T}-quasi-equicontinuous at x.
\end{enumerate}

Theorem 1. Suppose that $(X; \mathcal{T})$ is a topological space having a countable basis of open sets. If the function $f: I \times X \to Y$ satisfies the condition (a_1) then there is a set $Z \subset I$ of measure zero such that all sections $f_t, t \in I - Z$, are \mathcal{T}-continuous.

Proof. Assume that the set $B = \{t \in I; f_t$ is not continuous at some point $x(t) \in X\}$ is of positive outer measure. Then there are a set $C \subset B$ of positive outer measure and a positive number s such that for every $t \in C$ the oscillation $\text{osc} f_t(x(t)) = \inf \{\sup \{g(f(t, u), f(t, v)) ; u, v \in U\} ; U \in \mathcal{T}, x(t) \in U\} > s$. Let U_1, \ldots, U_n, \ldots be an enumeration of all open sets of a basis of the topology \mathcal{T} and let $C_n = \{t \in C; x(t) \in U_n\}$ and $D_n = \{t \in C_n; d_{t, e}(C_n, t) < 1\}$, $n = 1, 2, \ldots$. Evidently, $\mu(D_n) = 0$ for every $n = 1, 2, \ldots$. Let $D = C - (D_1 \cup D_2 \cup \ldots)$. Then $\mu(C - D) = 0$ and $D \subset C$ is a set of positive outer measure. Let $t \in D$ be a point such that $d_{t, e}(D, t) = 1$. Since f satisfies the condition (a_1), there is
a measurable set $A(t, x(t)) \subset I$ such that $d_u(A(t, x(t)), t) > 0$ and the sections $f_r, r \in A(t, x(t))$, are equicontinuous at $x(t)$. Consequently, there is an integer n such that $x(t) \in U_n$ and $\text{osc}_{f_r} < \frac{1}{2}s$ on U_n for every $r \in A(t, x(t))$. Since $t \in D = C - (D_1 \cup D_2 \cup \ldots) = (C - D_1) \cap (C - D_2) \cap \ldots$, we have $d_{i, \varepsilon}(\{r \in C; x(r) \in U_n\}, t) = 1$. Observe that the set $E = A(t, x(t)) \cap \{r \in C; x(r) \in U_n\} \neq \emptyset$. If $p \in E$ then $x(p) \in U_n$ and $\text{osc}_{f_p}(x_p) > s$, in a contradiction with the fact that $\text{osc}_{f_p} < \frac{1}{2}s$ on U_n. This completes the proof. □

Theorem 2. Suppose that a topological space (X, \mathcal{T}) has a countable basis of open sets. If the function $f : I \times X \to Y$ satisfies the condition (a_3) then there is a set $Z \subset I$ of measure zero such that all sections $f_t, t \in I - Z$, are \mathcal{T}-quasicontinuous, i.e. for every $\varepsilon > 0$, for every $x \in X$ and for every set $U \in \mathcal{T}$ with $x \in U$ there is a nonempty set $V \subset U$ such that $V \in \mathcal{T}$ and $f_t(V) \subset K(f(t, x), \varepsilon)$ [6].

Proof. Let U_1, \ldots, U_n, \ldots be an enumeration of all open sets of a basis in X. Assume that the set $B = \{t \in I; f_t$ is not \mathcal{T}-quasicontinuous at some point $x(t) \in X\}$ is of positive outer measure. Consequently, there are a positive number s and a set U_k such that the set $C = \{t \in B; x(t) \in U_k$ and $\text{osc}_{f_t} > s$ on $V \cup \{x(t)\}\}$ for every nonempty set $V \in \mathcal{T}$ such that $V \subset U\}$ is of positive outer measure. For $n = 1, 2, \ldots$, let $C_n = \{t \in C; x(t) \in U_n\}, D_n = \{t \in C; d_{i, \varepsilon}(C_n, t) < 1\}$, and $D = C - (D_1 \cup D_2 \cup \ldots)$. Evidently, $D \subset C$ is of positive outer measure. Let $t \in D$ be such that $d_{i, \varepsilon}(D, t) = 1$. Since f satisfies the condition (a_3) there are a measurable set $A(t, x(t))$ and a set $U_n \subset U_k$ such that $d_u(A(t, x(t)), t) = 1$ and $\text{osc}_{f_r} < \frac{1}{2}s$ on $U_n \cup \{x(t)\}$ for every $r \in A(t, x(t))$. Observe that $d_{i, \varepsilon}(C_n, t) = 1$. So, $A(t, x(t)) \cap C_n \neq \emptyset$. If $p \in A(t, x(t)) \cap C_n$ then $x(p) \in U_n \subset U_k$ and $\text{osc}_{f_p} < \frac{1}{2}s$ on U_n, in a contradiction with the fact that $\text{osc}_{f_p} > s$ on $V \cup \{x(p)\}$ for every nonempty set $V \in \mathcal{T}$ such that $V \subset U_k$. This contradiction completes the proof. □

Theorem 3. Suppose that (X, \mathcal{T}) is a topological space having a countable basis of open sets. If $f : I \times X \to Y$ satisfies the condition (b_1) then there is a set $Z \subset I$ of the first category such that all sections $f_t, t \in I - Z$, are \mathcal{T}-continuous.

Proof. Assume that the set $B = \{t \in I; f_t$ is not continuous at some point $x(t) \in X\}$ is of the second category. Then there are a set $C \subset B$ of the second category and a positive number s such that $\text{osc}_{f_t}(x(t)) > s$ for each $t \in C$. Let U_1, \ldots, U_n, \ldots be an enumeration of all open sets of a basis in (X, \mathcal{T}) and let $C_n = \{t \in C; x(t) \in U_n\}$, and $D_n = \{t \in C_n; C_n$ is of the first category at $t\}, n = 1, 2, \ldots$. Every set $D_n, n = 1, 2, \ldots, n$ is of the first category. Put $D = C - (D_1 \cup D_2 \cup \ldots)$. Let $t \in D$ be a point. There is an open interval $J \subset I$ such that $t \in J$ and every set $K \subset J - D$ having the Baire property is of the first
category. Since \(f \) satisfies the condition \((b_1)\), there is a set \(A(t, x(t)) \subset J \) having the Baire property and of the second category at \(t \) and such that all sections \(f_r, r \in A(t, x(t)) \), are \(\mathcal{T} \)-equicontinuous at \(x(t) \). Consequently, there is an integer \(n \) such that \(x(t) \in U_n \) and for every \(r \in A(t, x(t)) \) we have \(\text{osc} f_r < \frac{1}{2}s \) on \(U_n \). Since \(t \in D = C - (D_1 \cup D_2 \cup \ldots) \), there is an open interval \(L \subset J \) such that \(t \in L \) and every set \(K \subset L - \{ r \in C; x(r) \in U_n \} \) with the Baire property is of the first category. So the set \(E = A(t, x(t)) \cap \{ r \in C \cap L; x(r) \in U_n \} \) is nonempty. If \(p \in E \) then \(x(p) \in U_n \) and \(\text{osc} f_p(x(p)) > s \), in a contradiction with the fact \(\text{osc} f_p < \frac{1}{2}s \) on \(U_n \). This contradiction finishes the proof.

Remark 1. The Continuum Hypothesis \(CH \) implies that there is a function \(f: \mathbb{R}^2 \to \mathbb{R} \) satisfying the conditions \((a_2), (b_2)\) (with respect to the Euclidean metric in \(\mathbb{R} = X = Y \)) and such that all its sections \(f_t \) are not quasicontinuous. Really, there is a nonmeasurable set \(D \subset \mathbb{R}^2 \) which has not the Baire property and which is such that all its sections \(D_t = \{ z \in \mathbb{R}; (t, z) \in D \} \) are singletons or contain two points. The construction of such set \(D \) is analogous to the construction of Sierpinski's set.
in [7]. Then the function \(f(t, x) = 1 \) for \((t, x) \in D\) and \(f(t, x) = 0 \) otherwise satisfies the conditions \((a_2), (b_2)\), but all its sections \(f_t \) are not quasicontinuous.

Remark 2. Observe that all sections \(f_t \) of the function \(f \) from Remark 1 are almost everywhere (with respect to the Lebesgue measure) continuous. CH implies that there exists a function \(g : \mathbb{R}^2 \to \mathbb{R} \) satisfying the conditions \((a_2), (b_2)\), but all its sections \(g_t \) are not quasicontinuous.

For every \(\alpha < \Omega \) there is a nowhere dense closed set \(A_\alpha \) of positive measure such that \(a_\alpha \) is not in \(A_\alpha \) for \(\alpha < \beta < \Omega \) and \(\Omega \) denotes the first uncountable ordinal number. For every \(\alpha < \Omega \) there is a nowhere dense closed set \(A_\alpha \) of positive measure such that \(a_\alpha \) is not in \(A_\alpha \) for \(\beta < \alpha \). Let \(g(t, x) = 1 \) for \(t = a_\alpha \) and \(x \in A_\alpha \), \(\alpha < \Omega \), and \(g(t, x) = 0 \) otherwise. Then \(g \) satisfies the conditions \((a_2), (b_2)\) and any section \(g_t \) is not quasicontinuous at a point \(x \in A_\alpha \), where \(\alpha \) is such that \(t = a_\alpha \).

Remark 3. Suppose that \(X = Y = \mathbb{R} \) and consider \(X \) with the topology \(\mathcal{T}_{ae} \) and \(Y \) with the Euclidean metric. There is a function \(f : \mathbb{R}^2 \to \mathbb{R} \) satisfying the conditions \((a_1), (b_1)\) (with respect to the topology \(\mathcal{T}_{ae} \) in \(X \)) and such that any section \(f_t \), \(t \in \mathbb{R} \), is not \(\mathcal{T}_d \)-continuous. Really, let \(C \subseteq \mathbb{R} \) be a Cantor set of measure zero and let \(g : \mathbb{R} \to C \) be an one-to-one function. Put \(f(t, x) = 1 \) if \(t \in \mathbb{R} \) and \(x = g(t) \) and \(f(t, x) = 0 \) otherwise. Since \(f / (\mathbb{R}^2 - (\mathbb{R} \times C)) = 0 \), for every \((t, x) \in \mathbb{R}^2 \) we can take the set \(\mathbb{R} - \{t\} \) as \(A(t, x) \). So, \(f \) satisfies the conditions \((a_1), (b_1)\), but any section \(f_t \), \(t \in \mathbb{R} \), is not \(\mathcal{T}_d \)-continuous at the point \(g(t) \).

In connection with Remarks 1, 2, 3 we will prove the following:

Theorem 5. Let \(J \subseteq \mathbb{R} \) be an open interval and let \(\mathcal{T} \) be a topology in \(J \) such that every set \(Z \in \mathcal{T} \) is measurable and if \(x \in Z \) then \(d_\mu(Z, x) > 0 \). Then for every function \(f : I \times J \to Y \) satisfying the condition \((a_1)\) there is a set \(U \subseteq I \) of measure zero such that for every \(t \in I - U \) the section \(f_t \) is almost everywhere (with respect to the Lebesgue measure) \(\mathcal{T} \)-continuous.

Proof. We may assume that \(I \) and \(J \) are of finite measure. Assume that Theorem 5 does not hold. Then there are a set \(B \subseteq I \) of positive outer measure and a positive number \(s \) such that for every \(t \in B \) the set \(C(t) = \{ x \in J ; \text{osc} f_t(x) > s \} \) is of positive outer measure. Observe that the set \(D = \bigcup_{t \in B} \{(t) \times C(t)\} \) is of positive outer measure in \(I \times J \). Let \(\Phi_1 \) be the family of all sets \(K \times L \) such that \(K \subseteq I \) is a measurable set of positive measure and \(L \in \mathcal{T} \) is a nonempty set such that \(\text{osc} f_t < \frac{1}{2}s \) on \(L \) for every \(t \in K \). Since \(f \) satisfies the condition \((a_1)\), the family \(\Phi_1 \) is nonempty. Let \(s_1 = \sup\{\mu_2(K \times L) ; K \times L \in \Phi_1\} \), where \(\mu_2 \) denotes the Lebesgue measure in \(\mathbb{R}^2 \). Evidently, \(0 < s_1 \leq \mu_2(I \times J) \). Let \(K_1 \times L_1 \in \Phi_1 \) be such that \(\mu_2(K_1 \times L_1) > \frac{1}{2}s_1 \). If \(\mu_2((I \times J) - (K_1 \times L_1)) > 0 \) then we denote by
The family Φ_2 is nonempty. Really, for this let $E \subset (I \times J) - (I_1 \times J_1)$ be an F_σ set such that $\mu_2((I \times J) - (K_1 \times L_1)) = 0$ and for every $(t, x) \in E$ we have $d_1(E_t, x) = 1$, $d_2(E^x, t) = 1$ $(E^x = \{ r \in I; (r, x) \in E \})$ [3]. Let $(t, x) \in E$ be a point. Since f satisfies the condition (a_1), there is a measurable set $A(t, x) \subset I$ and a nonempty set $J(t, x) \in \mathcal{T}$ such that $x \in J(t, x)$, osc $\{ f(t, x) \}$ on L_n is a derivative if for every $r \in A(t, x)$ and $d_n(A(t, x), t) > 0$. Observe that $\mu(J(t, x) \cap E) = 0$ and for every $(t, x) \in E$ we have $\mu((I \times J) - (K_1 \times L_1)) > 0$. In general, for $n \geq 2$, if $\mu_2((I \times J) - (K_1 \times L_1)) > 0$ we find a set $K_n \times L_n \in \Phi_1$ such that

$$\mu_2((K_n \times L_n) - \bigcup_{i < n} (K_i \times L_i)) > \frac{1}{2} s_n,$$

where $s_n = \sup \{ \mu_2((K \times L) - \bigcup_{i < n} (K_i \times L_i)); K \times L \in \Phi_1 \}$. Since $\mu_2(I \times J) < \infty$, $\lim_{n \to \infty} s_n = 0$. From this and from (i) it follows that $\mu_2((I \times J) - \bigcup_{i < n} (K_n \times L_n)) = 0$. Since D is of positive outer measure, there are an integer n and a point $(t, x) \in D \cap (K_n \times L_n)$. Consequently, osc $f_t < \frac{1}{2} s$ on L_n, in a contradiction with the fact that $x \in C(t)$ and osc $f_t(x) > s$. This contradiction finishes the proof.

Evidently, the Euclidean topology \mathcal{T} in \mathbb{R} and the topology \mathcal{T}_d and the topology \mathcal{T}_{ae} satisfy the hypothesis of Theorem 5.

Problem 1. Let (J, \mathcal{T}) be the same as in Theorem 5 and let $f: I \times J \to Y$ satisfies the condition (b_1). If a set $U \subset I$ of the first category and such that for every $t \in I - U$ the section f_t is almost everywhere \mathcal{T}-continuous?

Theorem 6. If $X = Y = \mathbb{R}$ and $\mathcal{T} = \mathcal{T}_d [\mathcal{T} = \mathcal{T}_{ae}]$ and a function $f: I \times \mathbb{R} \to \mathbb{R}$ satisfies the condition $(a_3) [(a_2)]$ and all its sections $f^x(t) = f(t, x)$ are measurable [have the Baire property] then f is measurable [has the Baire property] as the function of two variables.

Proof. For the proof of this theorem see the proofs of Theorems 2 and 4 from [4].

Remark 5. In [2] it is proven that if Y is a separable Banach space and a bounded function $f: I \times Y \to Y$ satisfies the condition (a_0) and all its sections f^x are derivatives then all sections f_t are continuous. (f^x is a derivative if for every $t \in I$, $\lim_{h \to 0} (1/h) f_{t+h}^x f(s) ds = f(t, x)$). Obviously, it is also true for locally bounded...
We shall show that there is a function \(f: \mathbb{R}^2 \to \mathbb{R} \) satisfying the condition \((a_0)\) and such that all its sections \(f^x \) are derivatives and the section \(x \mapsto f(0, x) \) is not continuous. For this, let \(a_n = 1/n, b_n = a_n - 4^{-n}, c_n = a_n + 4^{-n}, d_n = 1/n - 1/(n + 1) \) and let \(g_n (n = 1, 2, \ldots) \) be defined as follows: \(g_n(t) = 4^k \) for \(t = a_k, k > n, g_n(t) = 0 \) for \(t \geq c_n \) or \(t \in [c_{k+1}, b_k], k \geq n, \) \(g_n(0) = 1, \) \(g_n(t) = g_n(-t) \) for \(t < 0. \) Then the function \(f(t, x) = g_n(x)g_n(t) \min(|x - b_n|, |x - c_n|) \) for \(x \in [b_n, c_n], n = 1, 2, \ldots, \) and \(f(t, x) = 0 \) otherwise, satisfies required conditions.

In connection with Remark 5 we have also:

Remark 6. Let \(X = Y = \mathbb{R} \) and \(\mathcal{T} = \mathcal{T}_c. \) There is a bounded function \(f: \mathbb{R}^2 \to \mathbb{R} \) satisfying the condition \((a_1)\), having derivatives as its sections \(f^x, x \in \mathbb{R}, \) and such that its section \(x \mapsto f(0, x) \) is discontinuous. For this, let \(a_n = 1/n, b_n = \frac{1}{2}(a_{n+1} + a_n), c_n = b_n + 10^{-n}, d_n = a_n - 10^{-n} \) and let \(g_n, n = 1, 2, \ldots, \) be defined as follows: \(g_n(t) = 1 \) for \(t \in [a_{k+1}, b_k], k \geq n, \) \(g_n(t) = 0 \) for \(t \in [c_k, d_k], k \geq n, \) or \(t \geq a_1, \) \(g_n \) is linear in the intervals \([b_k, c_k]\) and \([d_k, a_k]\), \(g_n(0) = \frac{1}{2}, \) \(g_n(t) = g_n(-t) \) for \(t < 0. \) Then the function \(f(t, x) = g_n(x)g_n(t) \min(|x + 4^{-n} - a_n|, |a_n + 4^{-n} - x|) \) for \(x \in [a_n - 4^{-n}, a_n + 4^{-n}], n = 1, 2, \ldots, \) and \(f(t, x) = 0 \) otherwise, satisfies all required conditions.

Theorem 7. Let \(J \subset \mathbb{R} \) be an open interval, \(\mathcal{T} = \mathcal{T}_c \) and let \((Y, \rho)\) be a metric space. If a function \(f: I \times J \to Y \) satisfies the condition \((a_1)\) and all its sections \(f^x \) are \(\mathcal{T}_c \)-continuous then all sections \(f_t, t \in \mathbb{R}, \) are \(\mathcal{T}_c \)-continuous.

Proof. If Theorem 7 does not hold then there are \(t \in I, x \in J \) such that \(\rho(f_t(x), x) > 5s. \) Consequently, there is a sequence of points \(x_n \in J \) such that \(\lim_{n \to \infty} x_n = x \) and \(\rho(f(t, x_n), f(t, x)) > 2s \) for \(n = 1, 2, \ldots. \) Since \(f \) satisfies the condition \((a_1)\) there are a measurable set \(A(t, x) \subset I \) and an open set \(K \subset J \) such that \(d_u(A(t, x), t) > 0, \) \(x \in K \) and \(\rho(f_t, x) < \frac{1}{2}s \) on \(K \) for each \(t \in A(t, x). \) Let \(x_n \in K. \) Since the sections \(t \mapsto f(t, x_n) \) and \(t \mapsto f(t, x) \) are \(\mathcal{T}_c \)-continuous, there is a measurable set \(B \subset I \) such that \(d_1(B, t) = 1, \) \(\rho(f(r, x_n), f(t, x)) < \frac{1}{2}s, \) and \(\rho(f(r, x), f(t, x)) < \frac{1}{2}s \) for each \(r \in B. \) Evidently, \(B \cap A(t, x) \neq \emptyset. \) Let \(p \in B \cap A(t, x). \) Then \(2s < \rho(f(t, x_n), f(t, x)) \leq \rho(f(t, x_n), f(p, x_n)) + \rho(f(p, x_n), f(p, x)) + \rho(f(p, x), f(t, x)) < \frac{1}{2}s + \frac{1}{2}s + \frac{1}{2}s = \frac{3}{2}s. \) This contradiction completes the proof. \(\square \)
References

Author's address: Zbigniew Grande, Department of Mathematics, Pedagogical University, ul. Arciszew-skiego 22B, 76-200 Slupsk, Poland.