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ON THE MEASURES OF DIPERNA AND MAJDA 

MARTIN KRUŽÍK and TOMÁŠ ROUBÍČEK, Praha 

(Received June 11, 1996) 

Abstract. DiPerna and Majda [5] generalized Young measures (Young [19]) so that it is 
possible to describe "in the limit" oscillation as well as concentration effects of bounded se­
quences in Lp-spaces. Here the complete description of all such measures is stated, showing 
that the "energy" put at "infinity" by concentration effects can be described in the limit 
basically by an arbitrary positive Radon measure. Moreover, it is shown that concentration 
effects are intimately related to rays (in a suitable locally convex geometry) in the set of 
all DiPerna-Majda measures. Finally, a complete characterization of extreme points and 
extreme rays is established. 

Keywords: bounded sequences in Lebesgue spaces, oscillations, concentrations, Young 
s, DiPerna and Majda's measures, rays, extreme points, extreme rays 

MSC 1991: 28C15, 40A30 

0. I N T R O D U C T I O N — N O T A T I O N 

The DiPerna-Majda measures (DiPerna and Majda [5], see also DiPerna and Ma­
jda [6, ], Greengard and Thomann [9], Kruzik and Roubicek [12], Roubicek [13, 14]) 
represent a modern mathematical tool to hold a certain "limit" information about 
oscillations and concentrations in nonlinear problems admitting only Lp—but not 
L°°—apriori estimates, which arise quite often in variational calculus, partial dif­
ferential equations, optimal control theory, game theory etc.; cf. e.g. Roubicek [13], 
Warga [18]. 

They represent a deep generalization of Young measures (Young [19]) which can 
record in the limit only fast oscillation effects but not the concentration ones. 

While the precise characterization of all Young measures attainable by bounded 
sequences in Lebesgue spaces has been known (see Kruzik and Roubicek [12]), a 
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similar characterization of all DiPerna-Majda measures was missing so far. The main 

goal of this paper is to fill this gap. Besides, we will investigate basic geometrical 

properties of the convex set of all DiPerna-Majda measures; in particular, using our 

explicit characterization, we will be able to describe all extreme points, all rays and 

all extreme rays. 

Let us start with a few definitions. For p > 0 w e define the following subspace of 

the space C ( R m ) of all continuous functions on Rm: 

Cp(R
m) = {v e C(Um);v(s) = o(\s\p) for \s\ -> oo}. 

Let us take a complete (i.e. containing constants, separating points from qlosed sub­

sets and closed with respect to the Chebyshev norm) separable (i.e. containing a 

dense countable subset) ring TZ of continuous bounded functions Rm -+ R. It is 

known that there is a one-to-one correspondence H >-> /3^R"1 between such rings 

and metrizable compactifications of Rm; by a compactification we mean here a com­

pact set, denoted by /3ftWm, into which Rm is embedded homeomorphically and 

densely. For simplicity, we will not distinguish between Rm and its image in Pn^m• 

Besides, we will consider an open bounded domain f2 in Rn. Then its closure, 

denoted by fi, is compact and rca(O) S C(Q)* will denote the space of all regular 

countably additive set functions on the Borel cr-algebra on fi, i.e. the so-called Radon 

measures, see Dunford and Schwartz [8]. Having a positive Radon measure a on 0 , we 

denote by L^(Q., a; rca^S^R"1)) the space of mappings v: x i-> i>x : U -> rca(/foRm) 

which are weakly a-measurable (i.e., for any v0 e 1Z, the mapping Q -> R: x i-> 

L R B v0(s)i>x(ds) is u-measurable in the usual sense) and o--essentially bounded. 

Note that we have used informally the fact that every v0 e 7Z has a uniquely defined 

continuous extension on /3TCRm. Besides, let us denote by y(n,a;0nRm) the set 

of v e L^(n,CT;rca(/3KRm)) such that iix e r c a ^ f c R 7 " ) for cr-a.a. x e H where 

"rca5f"(-)" stands for probability Radon measures; for such 0 the collection {£x} l6fj 

is called a Young measure on (S\,a), see Young [19] or also Alibert and Bouchitte 

[1], Ball [4], Roubicek [13], Tartar [16], Valadier [17], Warga [18]. 

As usual, Lp(fl; Rm) with 1 ^ p < +oo will denote the space of Lebesgue measur­

able functions ft -f Rm whose p-power is integrable. 

DiPerna and Majda [5] showed that, having a bounded sequence {u*},teN in 

Lp(Q;Rm), there exist its subsequence (denoted by the same indices), a positive 

a e rca(H) and a Young measure v e y(tt,a;0nRm) such that the couple (a, v) is 

attainable by this subsequence {ujJfcgN C LP(Q; Rm) in the sense 

(1) 

V 5 e C ( 0 ) Vv0eK: lim / g(x)v(uk(x))dx = f f g(x)v0(s)i>x(ds)ff(dx), 
fe-+0° Jn JnJp^W" 
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where v(s) = v0(s)(l + | s | p ) . In particular, putting v0 = 1 e K in (1) we can see that 

(2) lim (1 + \uk\
p) = a weakly* in rca(H). 

Let us denote by VMp
n(il; Rm) the set of all pairs (a, v) e rca(H) x y(n, a; 0nR

m) 

attainable by sequences from LP(Q; Rm ) ; note that, taking v0 = 1 in (1), one can 

see that these sequences must be inevitably bounded in LP(Q; R m ) . The explicit 

description of the elements from VMn(U;Rm), called DiPerna-Majda measures, 

was done by the authors (Kruzik and Roubicek [12, Theorem 2], see also Roubicek 

[13, Proposition 3.2.13]) only for the case when v is essentially not supported on the 

remainder f3nR
m \ Rm in the sense of (9) below. 

Alternatively, DiPerna and Majda [5] worked with measures from rca(fi x 0nR
m); 

let us put here 

DM£, (fi; Rm) = J?? G rca(n x (3nR
m); 3{uk}km C Lp(fi; Rm) 

V/i0 € C(fi x /3nR
m): (r),h0) = lim / h0(x,uk(x))(l + \uk(x)\p)dx). 

k-+coJn ) 

Without causing any misunderstanding, the elements of T>Mn(Sl; Rm) will be also 

addressed as DiPerna-Majda measures. We write r) = (a,v) for r\ E D M ^ f i ; Rm) 

and (a,i>) eVMp
n(Q;Rm) if 

(r),h0) = I h0(x,s)r)(dxds) = / / ho(x,s)i>x(ds)a(dx) 
JnxPnK'" JaJpnR'" 

for any h0 6 (7(0 x /3nR
m). It is known (Roubicek [13]) that DM£, (ft; Rm) is a con­

vex, closed, non-compact but locally compact and locally sequentially compact subset 

of the locally convex space rca(H x pnR
m) considered in its weak* topology. Be­

sides, DMn(tt; Rm) contains no straight line, see Corollary 3. As such, D M ^ ( n ; Rm ) 

inevitably contains a ray (i.e. half-line) and coincides with the closed convex hull of 

all its extreme points and extreme rays, cf. Kothe [11, Section 25.5]. Recall that 

rj £ DMPj(Q; Rm ) is an extreme point if r) = 5*71 + 5% for some 171, ffc G DM^(H; Rm) 

implies ?/i = i)2. A ray R = {i)0 + ti); t > 0} C DMP
?(f!; R'") is extreme if every 

open interval in DM^(fi; Rm) which intersects R is a subset of R. 

Our main results (see Theorems 3 and 4 below) give the explicit characterization of 

the measures from VMn(fl; Rm) in the general case. To this end, in Section 1 we first 

investigate in detail some properties of the first component of (a, v) £ VMn(fl; R m ) , 

i.e. of the measure a. Such explicit characterization has, beside its own theoretical 

value, an importance in implementation of (discretized) DiPerna-Majda measures 

on computers to solve effectively problems where concentration and oscillations can 
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appear; however, the numerical approximation will not be treated in this paper. 

Eventually, Section 3 deals with geometrical properties of the set DMTC(f2; Rm) and, 

in particular, we will fully characterize its extreme points, rays, and extreme rays. 

Let us remark that the precise knowledge of extreme points can be exploited to es­

tablish existence of solutions to special nonconvex optimization problems via Bauer's 

extremal principle, as proposed by Balder [3]. 

1. S O M E PROPERTIES OF a 

First we shall show that, for any DiPerna-Majda measure (a, v), the points x for 

which vx is supported purely on the remainder /3K Rm \ Rm are rare: 

L e m m a 1. Let (a, v) £ VMp
n(Q.; Rm) and let 

A> = Ixeti; f Ox(ds) = o | . 

Then the Lebesgue measure of Ac, is zero. 

P r o o f . It follows from (2) that the Lebesgue measure is absolutely continuous 

with respect to a in the sense that (cf. Halmos [10, §30]) 

ECU, a(E) = 0 => meas(E) = 0. 

On the other hand, the Lebesgue measure and a are finite on Q and therefore. 

due to the Radon-Nikodym theorem, the Lebesgue measure has the density with 

respect to a denoted by d\. Always, v0 defined by v0(s) = 1/(1 + \s\p) belongs to Tl 

because the ring 7?. is complete and lim v0(s) does exist. Thus we can put v = 1, 

i.e. v0(s) = 1/(1 + \s\p), into (1) to get that the density d\ has the form 

™-Lm-
This density is inevitably zero on Ac, and we obtain 

meaS(^) = ^ d , = / ^ / ^ M | , ( d , ) = 0 . 
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Let us recall that for any (a.v) e VMn(fl; Rm) there is precisely one (o°,v°) e 

VMn(tt; Rm) , called a p-nonconcentrating modification of (a, v), such that 

/_ / v0(s)vx(ds)g(x)a(dx) = v0(s)i>°(ds)g(x)a°(dx) 
Ja Jw Jn Jw 

for any v0 e C 0 (Rm ) and any g e C(fi) and (a°,v°) is attainable by a sequence 

{«A:}fceN such that the set {\uk\"; k eN} is relatively weakly compact in L^H) ; see 

Kruzik and Roubicek [12], Roubicek [13, 14] for details. 

Let us emphasize that any sequence {ujJfcgN which generates (<r°,!>0) has the 

property that {ju /t|
p; k e M} is relatively weakly compact in L J(H). This is quite a 

different situation in comparison with e.g. LP-Young measures. Moreover, whenever 

(a, v) 7^ (a°, v°) then there is no sequence {fjtHgN which generates (a, v) and {\vk\p; 

fc e ^1} is relatively weakly compact in L^H) ; cf. Kruzik and Roubicek [12, proof 
of Lemma]. 

The following assertion shows the relation between a° and a. 

Theorem 1. Let (a, v) e VMn(ft; Rm) and let (a°, v°) e VMn(Ct; Rm) be its 

p-nonconcentrating modification. Then o° is absolutely continuous with respect to 

a and 

o°(dx) = ( J vx(ds)) o(dx). 

In other words, the Radon-Nikodym derivative do° /do is just the o-integrable func­

tion x i-> fRm vx(ds). 

P r o o f . First, note that o and o° are finite, o ^ o° and therefore o° is absolutely 

continuous with respect to a. It is a straightforward consequence of the Radon-

Nikodym theorem that o° has a density with respect to a, i.e. that the Radon-

Nikodym derivative da°/da exists. Let us denote (in this proof only) the Lebesgue 

measure by A. 

We can write (see Halmos [10, §32, Theorem A]) that 

do-" _ dcr° dA 
1 ' da dA da' 

However, we know due to Kruzik and Roubicek [12, Theorem 3] that 

_£lw _ /n- ^(ds) 
dA ( ' ~ r ^iM ' 

JW l+\s\P 
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On the other hand, the density d\ from Lemma 1 equals the Radon-Nikodym deriva­

tive dA/dd (see Halmos [10, §32]), which means that 

(X) - [ - - - - - -
{x) 'L i+w 

dA _ /• i>4ds) 
d<7 (~ 

The assertion now follows from (3). D 

The next theorem characterizes the support of the singular part of a and, in par­

ticular, it can also characterize the situation where this singular part vanishes, which 

means just that a is absolutely continuous with respect to the Lebesgue measure. 

Theorem 2. Let Ap be defined as in Lemma 1. Let further as be the singular 

part of a from the Lebesgue decomposition of a. Then the support of as, denoted 

by supp as, is equal to 

A°=A>\ ( J B 
B(ZAz,cr(B)=0 

in the sense that as(A) = as(Q) for any Borel set A such that A" C A C H. 

Let us start with the following auxiliary lemma. 

Lemma 2. LetHi,[i2 6 rca(H) be positive finite measures and let p,2 be absolutely-

continuous with respect to the Lebesgue measure. Moreover, let /J,IS be the singular 

part of Hi from the Lebesgue decomposition of Hi and let the following implication 

hold for a Borel set E C U: 

V Borel set FcE: ^2\E(F) = 0 = > m\E(F) = 0. 

Then /J.IS(E) = 0. 

P r o o f . The above implication says that HI\E is absolutely continuous with re­

spect to HI\E and because \1V\E is absolutely continuous with respect to the Lebesgue 

measure it follows that III\E is absolutely continuous with respect to the Lebesgue 

measure, too. It means that \II\E has a density with respect to the Lebesgue measure 

and therefore supp/ii s V\E = 0 and Pu{E) = 0. D 

P r o o f of Theorem 2. First, note that A" is correctly defined, i.e. that it is 

independent of an element of the class of CT-equivalent measure-valued functions i> 

which we choose. Moreover, it is closed because it cannot have interior elements due 

to the fact that the Lebesgue measure of A" is zero (see Lemma 1). Therefore, all 

elements of it make its boundary. 



We are to prove that E C H a Borel set and E n A" = % imply that as(E) = 0. 

Due to Lemma 2 with p,\ = a and u.2 = c° it suffices to prove that En A" = 0 yields 

that 

(4) V B o r e l s e t E C E a°\E(F) = 0 = > CT|E(F) = 0. 

Let us prove (4). Supposing that <7°(iJ n F) = 0, due to Theorem 1 we have 

0 = / a°(dx)= f f Ox(ds)a(dx). 
JEnF JEnF Jw 

But / R m i>x(ds) > 0 for cr-a.a. x e EnF. Clearly, for the set 

C= LeEnF; f i>x(ds) = o | 

such that a(C) > 0 we have A" n C ^ 0 contradicting the fact that E n A" = 0 . 

Therefore U\B(F) = a(E n f ) = 0 . Altogether we have proved that (4) holds and 

as(E)=0. a 

R e m a r k 1. Theorem 2 implies that (a,v) 6 VM^il; Um) with a absolutely 

continuous with respect to the Lebesgue measure if and only if A" = 0. 

R e m a r k 2. It follows immediately from Theorems 1, 2 and Kruzik and Rou-

bicek [12, Theorem 2] that the density dav with respect to the Lebesgue measure of 

aT (i.e. of the absolutely continuous part of a), is given by 

d„(x)=> ^{ds) 

,„ 1 + \S\P 

2. A CHARACTERIZATION OF THE DlPERNA-MAJDA MEASURES 

The next theorem establishes a sufficient condition for a pair (a, i>) to form a 

DiPerna-Majda measure. 

T h e o r e m 3. Let TZ be a separable complete subring of the ring of all continuous 

bounded functions on Rm , let ft C R71 be a bounded open domain, 1 ^ p < oo and 

let (a,0) e rca(H) x y(tl,a; /3ftRm) with JRm i>x(ds) > 0 for a.a. x € H be such that 

the measure ac,(dx) = (JRm i>x(ds))a(dx) 6 rca(Q) has the density d„0 with respect 

to the Lebesgue measure, for a.a. x € H, given by the function 

^<LMY'L^ 
Then (<r,P) EVM^(U;Um). 
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P r o o f . We are to construct explicitly a sequence in Lp(fi; Rm) which attains 

(a, v) in the sense of (1). 

As 0 and /3-RR*71 \ Rm are metrizable compact sets, for every / e N there exist 

finite partitions V\ = { f i / } ^ of 0 and V\ = { r j}^ ' ] of / JRR" 1 \ Rm such that 

flf n n{2 = 0, 1 ^ j t < j 2 <. / ( . ) and i f n Tf = 0, 1 < j i < j 2 < j(0 and 

moreover all tt] and P? are measurable with diam(fij) < 1/7 and diam(r^) < l/l for 

all j . Besides, we may suppose that, for any / G N, the partitions Vl+\ and Vi+\ are 

respectively refinements of the partitions Vi and J'; and that int(fif) ^ 0 for all j . We 

shall denote by Co the continuous extension of v0 e V, on / 3 K R " \ i.e. Co G C(f3-jiUm). 

We know due to Kruzik and Roubicek [12, Theorem 2] that there exists a DiPerna-

Majda measure (a°, v°) where the density of a" is defined by the right hand side of 

(5) and i>° by 

K(ds) = ^ d ^ . 

Having now a pairwise disjoint decomposition of H and /JRR1™ \ Rm we can define 

(6) <4 = ( j vx(ds)a(dx), l<_i4 J(l), 1 <. j < J(l). 
Jn\ JT\ 

Let us choose Xij 6 int(fif), 1 ^ i ^ J (I), 1 < j ^ ./(/), Zij ^ z.m, J / TO, Sj 6 rf. 
and define a measure 17' G rca(fl x /3wRm) by the formula 

(7) f g(x)v0(s)n'(dxds)= f [ v0(s)i>(ds)g(x)a(dx) 
JSIXPTZW" JQJW 

J(l) j(l) 

+ Y,Y.i'o{si)9(xiMj 

t=l j = l 

for any g G C(H) and any v0 G "R.; here we have used also the facts that Rm is a 

Borel subset in /3TC Rm and that the linear hull {g ® v0; g G C(tt), c0 6 TZ} is dense 

in C(H x /3KRm) . 

Now let us take I G W fixed. As Rm (if embedded into /3-RR*") is dense in /?reRm, 

for any j there is a sequence {s1- }kew C Rm such that lim s1- = Sj in /?7jRm, which 

means precisely that lim v0(s^) = V0(SJ) for any v0 G H. Inevitably, lim \s^\ = 

+00. We can define neighborhoods N^ of points xy for fe G M, 1 ^ i ^ J ( ' ) 

and 1 ^ j sC J ( 0 by 7V£ = [ x ; | x - x y | < ( a y / | s ) | " B ( l ) ) 1 / n } where B( l ) is the 

Lebesgue measure of the unit ball in Rn. Note that, since |s*| -¥ +00 for k -> 00, 

/V;̂  are pairwise disjoint and N^ C Q\, 1 < i ^ J(Z) and 1 ^ j < J(l) whenever k is 

large enough. 
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Now we are to prove that if is generated by a bounded sequence {iojj.}*eN C 

Lp(f2; Rm) in the sense that 

lim v(wl
k(x))g(x)dx= _ g(x)v0(s)ijl(dxds) 

k^°°Jn JfixfaK"' 

for any g 6 C(0 ) and v(s) = v0(s)(l + |s|p) with Do 6 ft. Let us seek a generating 

sequence {wJtHeN for rf in the form 

j(i) j(i) 

uk(x) i f x 6 f i \ U U ^ 
W f c ( X ) = < ,= l j = l 

if x 6 N?_ 

where {u/JteN C Lp(f); Rm) is a generating sequence of (a°,u°). We have 

lim [ v(wl
k(x))g(x)dx= lim ( / , g(x)v0(uk(x))(l + \uk(x)\") dx 

j(i) j(i) 

+ £ £ / 9(^o(sí)(l + |s |̂p)d3 

= / / i>0(s)i>°(ds)c;(x)tTo(dx) + Y]Y]0o^^Xi^a'-'i 
Jn Ju<" i_j J--J 

= / / v0(s)ux(ds)g(x)a(dx) + _r___]vo(Sj)g(Xij)a
l
ij 

Ja Ja<" i=l j=l 

because meas(JV,*) = o, : ; / |s^|p , which follows from the fact that the volume of the 

ball of the radius r in the space Rn is given by the formula B(l)rn and therefore 

lim meas ( J V ^ ) ( 1 + \s_ \") = a__, 

and because 

(8) lim / -(x)«b(uj.(t-))(l + |u . ,( .-) | ' )dx = 0. 

fc^°° JN,_ 

Note that Theorem 1 is also used. Let us pi-ove (8). We may suppose that vo and g 

are not identically zero functions since otherwise (8) is obvious. As {|ut|p, k a N) 

is relatively weakly compact in LX(Q) (see Kruzik and Roubicek [12, Lemma]) we 

obtain due to the Dunford-Pettis compactness criterion that it is equicontinuous. 
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Moreover, it is only a simple observation that lim meas(jV,_) = lim a i : ; / |S j | p = 0. 

Let us take e > 0. Due to the equicontinuity we can find k0 £ M such that for k ^ A~o 

[ (l + \uk(x)\») 
JNÍ 

dx < 
max\g(x)\ sup \v0(s)\ 
*eíí seR'" 

and we have the estimate 

I / g(x)vo(uk(x))(l + \uk(x)\')dx\ 
I JNf. I 

< max \g(x)\ sup \v0(s)\ / (1 + |«*(x)|p) dx < e, 
xsn S£R'" JNJ-J 

which proves (8). Altogether we have shown that rf is attainable by {vjl
k}keN, 

i.e. rf e DM£,(H;Rm) . 

Now we want to show that rf approaches t) = (a, v) for I -> oo in the sense that, 

for any g e C(U) and any v0 6 R, we have 

lim /_ g(x)v0(s)ril(dxds) = / uo(s)i>-(d~)ff(:~)-r(d-;)-
'-*00 inx/3KR'" JnJf3nW" 

Indeed, in view of (6)-(7), this convergence follows from the estimate 

1 / g(x)v0(s)ii(dsdx)- í í v0(s)Úx(ds)g(x)a(dx 

-(') -W . . 

= _c S"°(s-)5(xi-)aíj ~ /- / 
1

 i = l j = l " « -0,jR".\R." 

- (0 -W 

0oWí/~(ds)íK- ;)er(d- :)| 

- (0 Л') , , 
^ Е ! Е / / Ы^М^з)-М^Мх)\0х(й\)а(йх) 

г~г тгт ^п'. ^г^, tei . = i -«î -г; 

J(І) j(o 

E S - X J Í . (Mí»(y)llí?llc<n;> +^(7)11-01^)) í>-(dA)<r(dx) 

< (MH (7)llsllc(n) + M-(7) ll-ollcíft-u-)) o-(f-) 

where M-0 , M g : R+ —> R+ are respectively moduli of continuity of v0 and g, 

i.e. |«o(-i) - 0 o W ) | < J - J o W ' i i * . ) ) a n d l9(-'Ci) - f f f e ) ! =S M S ( | . T I - x 2 | ) , where 

£>(•,•) denotes a metric inducing the (metrizable) compact topology of / J R R " 1 . Of 

course, lim Mio(e) = lim M_,(e) = 0 because tJ0 and g are uniformly continuous 

due to the Cantor theorem. Note also that the assumption a ^ 0 has been used here. 
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Now we are in the situation that 

lim lim 
í->oo fc->« 

v(w'k(x))g(x)dx = I í v0(s)ůx(ds)g(x)a(dx) 
JQ JsiJ/3nU"' 

for any g 6 C(O) andu(s) = w0(s)(l + |s | p ) with?j0 e U. By a suitable diagonalization 
procedure, one can choose a net {wk( }$e= C Lp(Cl; R m ) such that 

lim / v(w'k
i(x))g(x) dx = / / v0(s)i>x(ds)g(x)a(dx). 

££=./« JciJ0Kw 

On the other hand, for arbitrary /, fc £ W we have 

I K I I W R " . ) ^ (.l«*ll_...(l.;R«) + L C>x(ds)a(dx) 

< (C"+ f f Oz(ds)a(dx)) < + o o , 
V JQ JpKR"'\R'" J 

where C bounds {uk}keN in Lp(fl; R m ) . This means that the whole net {wk(}ies is 

bounded in Lp(fl; Rm ) . As C(H) and 7?. are separable we can even suppose E = N. 

a 
R e m a r k 3. One can find in DiPerna and Majda [5] or Roubicek [13, Theo­

rem 3.2.10] that any measure t}1, I G N generated by an Lp-bounded sequence and 

defined above admits a representation (a',C>1) € VMn(fl; Um). 

R e m a r k 4. Note that (a°,0°) is the common p-nonconcentrating modification 

of all rf = (<T!, Pl) independently of I 6 N. 

R e m a r k 5. Note that the situation when 

(9) /_ / Px(ds)a(dx) = 0 
Jn J0Ktt"'\U"' 

has been already completely solved in Kruzik and Roubicek [12, Theorem 2]. 

Linking our Theorems 1 and 3 with Kruzik and Roubicek [12, Theorems 2 and 3] 

we get a generalization of Kruzik and Roubicek [12, Theorem 2], 

T h e o r e m 4. Let Q. C Rn be a bounded open domain, let H be a separable 

complete subring of the ring of all continuous bounded functions on Rm and (a, i>) e 

rca(O) x y(n,a;@n^m)- Then the following two statements are equivalent to each 

other: 

(i) the pair (a, 0) is a DiPerna-Majda measure, i.e. (a, 0) € VMn(U; R m ) , 
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(ii) the following conditions are satisfied simultaneously: 

1. a is positive, 

2. oc, € rca(H) defined by Ot>(dx) = (/„,„ vx(As))a(Ax) is absolutely continuous 

with respect to the Lebesgue measure (d„. will denote its density), 

3. for a.a. x e ft, 

L^>°^^<LШГĹ vx(ds). 

3. E X T R E M E POINTS AND RAYS IN DM^(f2; R m ) 

In this section we want to study some geometric properties of the set of the 
DiPerna-Majda measures DM^(f2; R m ) , especially we give a characterization of the 
extreme points and the extreme rays in this set. We shall see the usefulness of the 
notion of the p-nonconcentrating modification in studying them. 

We shall denote the p-nonconcentrating modification of n by r), i.e. r) = (o°,v°) 
whenever r\ = (a, v). Let us say that r\ £ DM^(f2; Rm) is p-nonconcentrating if 

n = r\. This is equivalent to the fact that the appropriate (a, v) e VM^(fl; R"1), 

such that r\ = (a,v), is p-nonconcentrating, i.e (a, v) =(a°,v°). 

Let us denote by rem(f2 x /3rcRm) the subset of rca(H x /?KR"*) that contains 

positive measures supported on the set U x (j3n^m \ Rm) . Note that it follows from 

the proof of Theorem 3 that {?/ + tfj; t > 0} is a ray in DM^(f2; Rm) whenever 

T? e DM£,(f2; Rm) and r] e rem(H x /3TCRm). 

Following Ball [4] and Schonbek [15], we denote by 

yp(Q; Rm) = iv e L^(f2;rca(R"')); v(x) = vx 6 rca+(Mm) for a.a. x € 0 

and(xi-+ / \s\"ux(ds)) €L1(Q)\ 

the set of the so-called Lp-Young measures; see Kruzik and Roubicek [12], Roubicek 

[13] for details. 

L e m m a 3 . A Young measure v is an extreme point in yp(0.; Rm) if and only if 

it is a.e. a Dirac mass, i.e. vx = 6U(X) for a.a. x e fi with some u £ Lp(il; R m ) . 

P r o o f . If v is not an extreme point in yp(fl; Rm) , then there are vx,v2 6 

yp(U; Rm) such that v = \vl + \v2 but v\ ^ v\ for all x from a positive-measure 

set 0„ C f2. It means that vx is not an extreme point in the set rca+(Rm) of the 
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probability measures on Rm for x £ £l„, hence vx is not a Dirac mass for such x; 

cf. Kothe [11, §25.2] and realize that extremality of vx e rca+(Rm ) is equivalent to 

the extremality in rca+ (p-nUm) because vx vanishes on the remainder /J^R"1 \ Rm . 

Conversely, suppose that vx is not a Dirac mass for x e Qo with meas(fio) > 0. 

Hence it is not an extreme point in the set of the probability measures rca+(Rm ) so 

that there are v\,v\ 6 rca+(Rm ) such that vx = \v\ + \v^ but v\±v\. 

Let us put 

M(n) = { (n\n2) e r c a + ( / ^ R m ) x rca+(/?TCRm); \ ^ + \tf = M } . 

Note that M(n) contains only the pairs of measures that vanish on the remainder 

fcRm \ Rm provided n vanishes on it. Alternatively, we can also write M(n) = 

D Mv (fi) where 7J.0 is a countable dense subset of 1Z and 
«6R„ 

Mv(») = { (v\»2) e rca+(/3TCRm) x rca+(/3KRm) ; \(»\v) + \(fi2,v) = {>,«> } . 

As x i-> vx is weakly measurable, x H-> (vx,v) is measurable, hence the multivalued 

mapping x t~¥ Mv(vx) is measurable, too, provided rca+(/3rcRm) x rca+(/?KRm) is 

considered in its weak* topology, which makes it a separable complete metric space; 

cf. Aubin and Frankowska [2, Theorem 8.2.9]. Since UQ is countable, also the multi­

valued mapping x i-> M(vx) = f| Mv(vx) is measurable; cf. Aubin and Frankowska 

ven0 

[2, Theorem 8.2.4]. Besides, this multivalued mapping is obviously convex and closed-
valued, hence weakly* closed-valued as well. By Aubin and Frankowska [2, Theo­
rem 8.1.4], this multivalued mapping is a.e. a closed union of a countable number of 
its measurable selections, i.e. there are (vl'k, v2'k) such that x t-> (v\'k, vx'

k) C M(vx) 
is measurable and M(vx) = w*-cl (J (v\<k,v2'k). The convex closed set M(vx) is 

k&t 

not a singleton at least if x e H0 because certainly M(^ x ) 3 {(i/„, i/x), (^i, J>x)} a n d 

therefore there is at least one measurable selection (v\'k,v2'k) which is not equal to 
(vx, vx) for a.a. x e ft. 

Eventually, by the obvious estimate 

/ / \s\pvl'k(ds)dx = [ [ \s\p(2vx - vl'k)(ds)dx 
Jn Jw" Jn Jw" 

< 2 / / \s\pvx(ds)dx < +00 
J a Jw" 

we can see that vl-k e y p ( 0 ; Mm). Analogously, v2'k e y?(fi; Rm) as well. 

In other words, we have found v\by j/2,* e yp(ft; Rm) such that v = \vl-k + \v2'k 

and vl'k yt v2'k, which shows that v ~ {vx}x€Q is not an extreme point in yp(ft; Rm)-
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L e m m a 4. Let r, € T>Mp
n(tt;R

m) and let v G yp(Q;Rm) be the V-Young 

measure generated by the same sequence as n. Then 77 is an extreme point in 

DMJJ(S7; Rm) if and only if it is p-nonconcentrating and v is a.e. a Dirac mass, 

i.e. vx = <5u(a;) for a.a. x G SI with some u G LP(U; Rm ) . 

P r o o f . First, let us realize that an extreme point can be found only among 

p-nonconcentrating measures. Indeed, for any 77 6 DM^(S1; Rm) not p-nonconcentra­

ting we can write n = 77 + 77 with fj G rem(S! x /3TCRm) nonvanishing. It follows that 

such 77 lies on the ray {77 + tfj; t > 0} and therefore it cannot be an extreme point. 

Clearly, 77 being p-nonconcentrating is not an extreme point in DM^(S7; Rm) im­

plies that it is not an extreme point in the p-nonconcentrating measures, i.e. there 

exist 771, 772 G DM^(f2;Rm) , both p-nonconcentrating, 771 ^ n2 such that 7/ = 

(fli + i72)/2. The converse implication is trivial. 

Since there is a one-to-one affine mapping 

v «• 77: yp(Q; Rm) «-> {77 G DM£,(S7; R m ) ; 77 p-nonconcentrating} 

(cf. (10) below), the extreme points in yp(Q; Rm) are thus mapped uniquely onto 

extreme points in p-nonconcentrating DiPerna-Majda measures, hence onto extreme 

points in DM^(H; Rm) . However, the extreme points in yp(U; Rm) have been already 

described by Lemma 3. • 

Theorem 5. Let n G DM£, (SI; Rm) and let 77 = (a, v) for (a, v) e VMn(fl; Rm ) . 

Then r\ is an extreme point in DMn(il; Rm) if and oniy if vx = 5U^ and a has the 

density with respect to the Lebesgue measure da given by da(x) = 1 + |u(x)|p for 

a.a. x S n for some u € LP(Q; Rm ) . 

P r o o f . It is proved in (Kothe [11, §25.2]) that the set of extreme points of 

the set of probability measures on the compact space is equal to the set of Dirac's 

measures on this space. Let us take 0nRm as this space. On the other hand, we know 

that, for v G yp(Cl; Rm) , vx with x £ SI can be supported only on Rm C 0nRm. As 

the space of probability measures supported on Rm is the subspace of rca^ (/3KRm), 

it follows that vx is an extreme point in the set of all probability measures supported 

on Rm if it equals the Dirac measure supported at some point of Rm, say u(x), where 

u: fl -> Rm. This v defines (<r; v) G VMv
n(U; Rm) by (see Kruzik and Roubicek [12] 

and Roubicek [13]) 

(10) vx(As) = ( 1 + | s | P ) ? ( d 6 ' ) < da(x) = 1 + / \s\pvx(As) for a.a. x G fi, 
da(x) JR„< 

which gives vx = <5„(x) and da(x) = 1 + \u(x)\p. Lemma 4 implies that the corre­

sponding 77 G DM^(fi; Rm) is an extreme point. 
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Let us prove the converse implication. Let us suppose that j ; is an extreme point in 

DM£, (fi; R m ) . We know due to Lemma 4 that the Lp-Young measure v € 3>p(fi; Km) 

generated by the same sequence as n is such that vx = 8n{x) for a.a. i £ 0 and some 

u 6 Z/P(fi; R m ) . Our assertion now follows from (10). O 

T h e o r e m 6. There is no ray in the set of Lp-Young measures. 

P r o o f . Let vl,v2 e yp(il; Rm) such that vl ^ v2. Moreover, let us suppose 

{tv2 + (1 - t)vl ; t > 0} is a ray in y(il; R m ) . It follows that {tv2
x + (1 - t)vx

x ; 

t > 0} is a ray (or a point provided that v\ = v2) in rca+(Rm) for a.a. x e fJ. Let 

us take B C Rm a compact set. Then i/* and v\ restricted on B are subprobability 

measures on B. But subprobability measures on the compact set form a weakly* 

compact, hence bounded set which apparently cannot contain any ray. This implies 

that vx\B = v2\B. As B is an arbitrary compact set and Rm is o--compact we obtain 

that vx = v2
x for a.a. x £ fi, contradicting the fact that vl ^ v2. D 

Coro l l a ry 1. There is no ray in the set of p-nonconcentrating DiPerna-Majda's 

measures, i.e. in {77 e DMP
e(f2; R m ) ; 77 p-nonconcentrating}. 

P r o o f . It follows directly by Theorem 6 because there is a one-to-one affine 

mapping given by (10) between yp(tt; Rm) and the set of p-nonconcentrating 

DiPerna-Majda's measures, namely 

v -H 77: yp(tt; Rm) <-> {j; G DM^(fi; R m ) ; n p-nonconcentrating} 

is affine. D 

Coro l l a ry 2. Any ray in D M ^ ( n ; Rm) has the form {rj + tfj; t > 0} with some 

n e DM^(fi; Rm) and some 77 6 rem(Q x /3TCRm). 

P r o o f . Let us take 771,77a 6 DM^(H; Rm) and define n(t) = «J72 + (1 - t)m, 

t > 0. We are to find conditions which must be fulfilled by 771 and 772 so that 

n(t) € DM^(f); Rm) for any t positive. Let us recall that " ° " indicates the p-non­

concentrating modification. We can write 77; = m + fii and n(t) = f)(t)+f)(t) provided 

•ri(t) 6 D M ^ ( n ; R m ) , where f)i,r)(t) 6 rem(f2 x /3TCRm) (i = 1,2). This implies that 

flit) = tf/2 + (1 - t)fh and f)(t) = tf)2 + (1 - t)T,u t > 0. 

It follows by Corollary 1 that 771 = 772. So we obtain that n(t) = f)i+ttJ2 + (l~t)fji = 

771 + t(fj2 -f)i). Putting 7] = 7>2 - fji and 77 = r/x, we get the desired result. D 
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Corollary 3. There is no straight line in DM^(n ; Rm)-

P r o o f . Let L = {n + tfj; t e R} be a line in DM£,(n; Rm ) . Then both 

{J; + tfj; t > 0} and {JJ + tf);t< 0} 

would be rays in D M ^ ( n ; Rm) , which implies by Corollary 2 that both f) and -?j 

lie in rem(Sl x )3nU
m). This is possible only if TJ vanishes, so that L is actually a 

singleton. • 

R e m a r k 6. Note that any ray in DM^(n; Rm) is composed of DiPerna-Majda's 

measures that have the same p-nonconcentrating modification. 

Our last theorem together with Theorem 5 characterizes completely the extreme 

rays in the set of DiPerna-Majda's measures. 

Theorem 7. Aray{r)+tfj; 1 > 0} withn € DM£,(n ; Rm) andrj 6 rem(O.x0nU
m) 

is an extreme ray if and only if r) is an extreme point in DM^(n ; Rm) and fj is the 

Dirac measure supported at sojne point offix (f3nU
m \ Rm ) . 

P r o o f . The end point r) of the ray in question belongs to DM^(n ; Rm) and 

therefore the extreme ray must arise from an extreme point of DM^(n; R m ) , see 

Kathe [11, §25]. 

We shall see that the problem to find all extreme rays in DM'^(n; Rm) is equivalent 

to the problem to find all extreme rays in rem(n x PnU
m). 

Due to the definition, {n + tfj; t > 0} in DMn(Q.; Um) is an extreme ray if and 

only if the following implication holds for 7/1, JJ2 G DM^(n ; Rm) : 

3to > 0 30 < r0 < 1 such that r) + t0fj = r0rji + (1 - r0)r)2 => 

V0 < r < 1 3t > 0 such that r, + tfj = rrn + (1 - r)r/2. 

We can write 771 = 771 + 771 and r)2 =f)2+fj2 with fj\,fj2 e rem(n x f3nU
m). Using 

this representation, we obtain from the above implication used for f)1 = f)2 = n (note 

that 77 = 77 ) that the following implication holds for 77x^2 € rem(n x PnU
m): 

3t0 > 0 30 < r0 < 1 such that t0fj = r0fji + (1 - r0)r72 ==* 

V0 < r < 1 3« > 0 such that tfj = rfji + (1 - r)772. 

The last implication says precisely that {tfj; t > 0} is an extreme ray in rem(n x 

0nU
m). It can be found in (Kothe [11, §25]) that {tfj; t > 0} is an extreme ray in 

rem(n x /3nU
m) if and only if fj is the Dirac measure. D 

398 



A c k n o w l e d g e m e n t . We thank Professor Robert V. Kohn for several fruitful 

comments and suggestions. 

References 

[1] J. J. Alibert, G. Bouchitte: Non uniform integrability and generalized Young measures. 
J. Convex. Anal. 4 (1997), 1-19. 

[2] J. P. Aubin, H. Frankowska: Set-valued Analysis. Birkhauser, 1990. 
[3] E. J. Balder: New existence results for optimal controls in the absence of convexity: the 

importance of extremality. SIAM J. Control Anal. 32 (1994), 890-916. 
[4] J. M. BalhPDEs and Continuum Models of Phase Transition (M. Rascle, D. Serre, M. 

Slemrod., eds.). Lecture Notes in Physics 344, Springer, Berlin, 1989, pp. 207-215. 
[5] R. J. DiPerna, A. J. Majda: Oscillations and concentrations in weak solutions of the 

incompressible fluid equations. Comm. Math. Physics 108 (1987), 667-689. 
[6] R. J. DiPerna, A.J. Majda: Concentrations in regularizations for 2-D incompressible 

flow. Comm. Pure Appl. Math. 40 (1987), 301-345. 
[7] R. J. DiPerna, A. J. Majda: Reduced Hausdorff dimension and concentration cancella­

tion for 2-D incompressible flow. J. Amer. Math. Soc. 1 (1988), 59-95. 
[8] N. Dunford, J. T. Schwartz: Linear Operators. Part I, Interscience, New York, 1967. 
[9] C Greengard, E. Thomann: On DiPerna-Majda concentration sets for two-dimensional 

incompresssible flow. Comm. Pure Appl. Math. 41 (1988), 295-303. 
[10] P. R. Halmos: Measure Theory. D. van Nostrand, 1950. 
[11] G. Kothe: Topological Vector Spaces I. 2nd ed. Springer, Berlin, 1983. 
[12] M. Kruzik, T. Roubicek: Explicit characterization of Lp-Young measures. J. Math. Anal. 

Appl. 198 (1996), 830-843. 
[13] T. Roubicek: Relaxation in Optimization Theory and Variational Calculus. W. de 

Gruyter, Berlin, 1997. 
[14] T. Roubicek: Nonconcentratin;; generalized Young functionals. Comment. Math. Univ. 

Carolin. 38 (1997), 91-99. 
[15] M. E. Schonbek: Convergence of solutions to nonlinear dispersive equations. Comm. Par­

tial Differential Equations 7(1982), 959-1000. 
[16] L. Tartar: Compensated compactness and applications to partial differential equations. 

Nonlinear Analysis and Mechanics (R. J. Knops, ed.). Heriott-Watt Symposium IV, Pit­
man Res. Notes in Math. 39, San Francisco, 1979. 

[17] M. Valadier: Young measures. Methods of Nonconvex Analysis (A. Cellina, ed.). Lecture 
Notes in Math. 1446, Springer, Berlin, 1990, pp. 152-188. 

[18] J. Warga: Optimal Control of Differential and Functional Equations. Academic Press, 
New York, 1972. 

[19] L. C. Young: Generalized curves and the existence of an attained absolute minimum in 
the calculus of variations. Comptes Rendus de la Societe des Sciences et des Lettres de 
Varsovie, Classe III 30 (1937), 212-234. 

Authors' addresses: Martin Kruzik, Institute of Information Theory and Automation, 
Academy of Sciences of the Czech Republic, Pod vodarenskou vezi 4, CZ-182 08 Praha 8, 
Czech Republic, e-mail: kruzik18utia.cas.cz; Tomds Roubicek, Mathematical Institute, 
Charles University, Sokolovska 83, CZ-186 00 Praha 8, Czech Republic and Institute of Infor­
mation Theory and Automation, Academy of Sciences of the Czech Republic, Pod vodaren­
skou vezi 4, CZ-18208 Praha 8, Czech Republic, e-mail: roubicekSkarlin.mff.cuni.cz. 

399 


		webmaster@dml.cz
	2020-07-01T13:11:59+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




