Mathematic Bohemia

František Machala; Marek Pomp
 Disjoint and complete unions of incidence structures

Mathematica Bohemica, Vol. 122 (1997), No. 4, 365-374
Persistent URL: http://dml.cz/dmlcz/126216

Terms of use:

© Institute of Mathematics AS CR, 1997

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

DIS.JOINT AND COMPLETE UNIONS OF INCIDENCE STRUCTURES

František Machala, Olomouc, Marek Pomp, Ostrava
(Received May 2, 1996)

Abstract. Some decompositions of general incidence structures with regard to distinguished components (modular or simple) are considered and several structure theorems for them are deduced

Keywords: incidence structure (context) and its special cases: complete, open, trivial, regular, simple, modular; onto homomorphisms of incidence structures; union of substructures: disjoint, complete.

MSC 1991: 06B05, 08A35

Definition 1. Let G and M be non-empty sets and $I \subseteq G \times M$. Then the triple $\mathcal{J}=(G, M, I)$ is called an incidence structure (a context). If $A \subseteq G, B \subseteq M$ are non-empty sets, then denote

$$
\left.\begin{array}{rl}
A^{\uparrow}: & =\{m \in M ; g I m \\
B^{\downarrow} & :=\{g \in G ; g I m
\end{array} \quad \forall m \in B\right\} .
$$

Further notation: $\emptyset^{\dagger}:=M, \emptyset^{\downarrow}:=G$,

$$
\begin{aligned}
& g^{\uparrow}:=\{g\}^{\uparrow} \text { for all } g \in G, \\
& m^{\downarrow}:=\{m\}^{\downarrow} \text { for all } m \in M, \\
& A^{\uparrow \downarrow}:=\left(A^{\uparrow}\right)^{\downarrow} \text { for all } A \subseteq G, \\
& B^{\downarrow \uparrow}:=\left(B^{\downarrow}\right)^{\uparrow} \text { for all } B \subseteq M .
\end{aligned}
$$

(See [3]).
This paper was supported by GAČR Grant 201/95/1631

Definition 2. Let $\mathcal{J}=(G, M, I)$ be an incidence structure. If $G_{1} \subseteq G$, $M_{1} \subseteq M$ are non-empty subsets and $I_{1}=I \cap\left(G_{1} \times M_{1}\right)$, then the incidence structure $\mathcal{J}_{1}=\left(G_{1}, M_{1}, I_{1}\right)$ is called a substructure of \mathcal{J}.

Definition 3. Let $\mathcal{J}=(G, M, I)$ be an incidence structure. \mathcal{J} is called

1. complete if $I=G \times M$,
2. open if $g^{\uparrow} \neq M$ for all $g \in G$ and $m^{\downarrow} \neq G$ for all $m \in M$,
3. trivial if $|G|=|M|=1$,
4. regular if $g^{\dagger} \neq \emptyset$ for all $g \in G$ and $m^{\downarrow} \neq \emptyset$ for all $m \in M$,
5. simple if $\left|g^{\uparrow}\right|=1$ for all $g \in G$ and $\left|m^{\downarrow}\right|=1$ for all $m \in M$

Let $\mathcal{J}=(G, M, I)$ be a simple incidence structure. It will be useful to express G and M as indexed families $G=\left\{g_{\nu} ; \nu \in T_{1}\right\}, M=\left\{m_{\mu} ; \mu \in T_{2}\right\}$ where $g_{\nu_{1}}{ }^{\cdot}=g_{\nu_{2}}$ iff $\nu_{1}=\nu_{2}$ and $m_{\mu_{1}}=m_{\mu_{2}}$ iff $\mu_{1}=\mu_{2}$. By Definition 3, for every $g_{i} \in G$ there exists exactly one $m_{j} \in G$ such that $g_{i} I m_{j}$, and vice-versa. Hence the map $\alpha: T_{1} \rightarrow T_{2}$, defined by $\alpha(i)=j$ iff $g_{i} I m_{j}$ for all $i \in T_{1}$, is injective. Assume that there exists an $l \in T_{2}, l \notin \alpha\left(T_{1}\right)$. Then there exists a $g_{i} \in G$ such that $g_{i} I m_{l}$. It follows that $\alpha(i)=l$, a contradiction. Thus $\alpha\left(T_{1}\right)=T_{2}$ and the map α is a one-to-one map of T_{1} onto T_{2} so that we can identify both sets of indices. If we denote $p_{i}:=m_{\alpha(i)}$ for all $i \in T_{1}$, then we have $g_{i} I p_{j} \Leftrightarrow g_{i} I m_{\alpha(j)} \Leftrightarrow \alpha(i)=\alpha(j) \Leftrightarrow i=j$.

Let $\mathcal{J}=(G, M, I)$ be a simple incidence structure. Then T will serve as an index set for elements of G, M such that the relation I is defined by $g_{i} I m_{j}$ iff $i=j$. In what follows we will suppose that incidence relations in simple incidence structures are expressed like this.

Definition 4. An incidence structure $\mathcal{J}=(G, M, I)$ is said to be the union of substructures $\mathcal{J}_{\nu}=\left(G_{\nu}, M_{\nu}, I_{\nu}\right), \nu \in T$, if $\left\{G_{\nu} ; \nu \in T\right\}$ and $\left\{M_{\nu} ; \nu \in T\right\}$ are decompositions of G and M. In this case we will write $\mathcal{J}=\bigcup_{\nu \in T} \mathcal{J}_{\nu}$.

Remark 1. If a family $\left\{P_{\nu} ; \nu \in T\right\}$ forms a decomposition of a non-empty set P, then we will write $P=\bigcup_{\nu \in T} P_{\nu}$.

Let $\mathcal{J}=(G, M, I)$ be an incidence structure and $G_{\nu} \subseteq G, M_{\nu} \subseteq M$ non-empty subsets for all $\nu \in T$. Then denote $\mathcal{J}_{i j}:=\left(G_{i}, M_{j}, I_{i j}\right)$ the substructure of \mathcal{J}, where $I_{i j}=I \cap\left(G_{i} \times M_{j}\right)$ for $i, j \in T$. Moreover, put $\mathcal{J}_{i i}=\mathcal{J}_{i}$ and $I_{i i}=I_{i}$ for all $i \in T$.

Theorem 1. If $\mathcal{J}=\bigcup_{\nu \in T} \mathcal{J}_{\nu}$ as in Definition 4, then $I=\bigcup_{i, j \in T} I_{i j}$.
Proof. Consider the substructures $\mathcal{J}_{i j}$ of $\mathcal{J}, i, j \in T$. Then $\bigcup_{i, j \in T} I_{i j} \subseteq I$. Let $(g, m) \in I$. Since $G=\bigcup_{\nu \in T} G_{\nu}$ and $M=\bigcup_{\nu \in T} M_{\nu}$, there exist $i, j \in T$ such that
$g \in G_{i}$ and $m \in M_{j}$. Then $(g, m) \in I_{i j}, I=\bigcup_{i, j \in T} I_{i j}$. If $(g, m) \in I_{i_{1} j_{1}} \cap I_{i_{2} j_{2}}$, then $(g, m) \in\left(G_{i_{1}} \times M_{j_{1}}\right) \cap\left(G_{i_{2}} \times M_{j_{2}}\right)$ and $g \in G_{i_{1}} \cap G_{i_{2}}, m \in M_{j_{1}} \cap M_{j_{2}}$, a contradiction. Thus $I=\bigcup_{i, j \in T} I_{i j}$.

Definition 5. Let an incidence structure $\mathcal{J}=(G, M, I)$ be the union of substructures $\mathcal{J}_{\nu}, \nu \in T$. This union is called disjoint if $I_{i j}=\emptyset$ for distinct $i, j \in T$, and will be denoted by $\mathcal{J}=\bigcup_{\nu \in T} \mathcal{J}_{\nu}$. The union is called complete if $I_{i j}=G_{i} \times M_{j}$ for distinct $i, j \in T$, and will be denoted by $\mathcal{J}=\bigcup_{\nu \in T} \mathcal{J}_{\nu}$.

Remark 2. 1. Let $\mathcal{J}=\bigcup_{\nu \in T} \mathcal{J}_{\nu}$. Then $\mathcal{J}=\bigcup_{\nu \in T} \mathcal{J}_{\nu}$ iff $I=\bigcup_{\nu \in T} I_{\nu}$ and $\mathcal{J}=$ $\bigcup_{\nu \in T} \mathcal{J}_{\nu}$ iff $I=\left(\bigcup_{\nu \in T} I_{\nu}\right) \cup\left(\bigcup_{i, j \in T}\left(G_{i} \times M_{j}\right)\right)$ where $i \neq j$.
2. If $|T|=1$, then $\mathcal{J}=\cup \dot{J}=\overleftarrow{\cup} \mathcal{J}$. Let $\mathcal{J}=(G, M, I)$ be a simple incidence structure, where $G=\left\{g_{\nu} ; \nu \in T\right\}, M=\left\{m_{\nu} ; \nu \in T\right\}$ and $g_{i} I m_{j}$ iff $i=j$. If $\mathcal{J}_{\nu}=\left(\left\{g_{\nu}\right\},\left\{m_{\nu}\right\}, I_{\nu}\right), \nu \in T$, are substructures of \mathcal{J} then \mathcal{J} is the disjoint union of substructures $\mathcal{J}_{\nu}, \nu \in T$.
3. If \mathcal{J} is a disjoint union of substructures $\mathcal{J}_{\nu}, \nu \in T$ then \mathcal{J} is regular iff \mathcal{J}_{ν} are regular for all $\nu \in T$. If \mathcal{J} is a complete union of substructures $\mathcal{J}_{\nu}, \nu \in T$, then \mathcal{J} is open iff \mathcal{J}_{ν} are open for all $\nu \in T$.

Remark 3. If an incidence structure \mathcal{J} is a union of substructures $\mathcal{J}_{\nu}, \nu \in T$ then write operators \uparrow, \downarrow as right superscripts $\left(X^{\uparrow}\right)$ for the incidence relation I in \mathcal{J} and as left superscripts $\left({ }^{\top} X\right)$ for incidence relations I_{ν} in substructures \mathcal{J}_{ν}. Furthermore, write $G^{\nu}=G-G_{\nu}$ and $M^{\nu}=M-M_{\nu}$ for all $\nu \in T$.

Theorem 2. Let $\mathcal{J}=(G, M, I)$ be the disjoint union of substructures $\mathcal{J}_{\nu}, \nu \in T$. If $A \subseteq G_{i}, A \neq \emptyset$ and $B \subseteq M_{i}, B \neq \emptyset$ for some $i \in T$ then $A^{\dagger}={ }^{\uparrow} A, A^{\uparrow \downarrow}={ }^{\downarrow} A$ and $B^{\downarrow}={ }^{\downarrow} B, B^{\downarrow \uparrow}={ }^{\dagger} B$, respectively. If $a \in G_{i}, b \in G_{j}$ and $m \in M_{i}, n \in M_{j}$ for $i, j \in T, i \neq j$, then $\{a, b\}^{\dagger}=\emptyset$ and $\{m, n\}^{\downarrow}=\emptyset$, respectively.

Proof. Let $A \subseteq G_{i}, A \neq \emptyset$. Then $m \in A^{\uparrow}$ iff $a I m$ for all $a \in A$. Since $I=\bigcup_{\nu \in T} I_{\nu}$, we obtain $\bar{a} I_{i} m$ for all $a \in A, A^{\uparrow}=\uparrow A$ and $A^{\uparrow} \subseteq M_{i}$. Similarly we obtain $B^{\downarrow}=\downarrow B, B^{\downarrow} \subseteq G_{i}$. This yields $A^{\downarrow \downarrow}={ }^{\downarrow} A$ and $B^{\downarrow \uparrow}={ }^{\uparrow \downarrow} B$.

Let $a \in G_{i}, b \in G_{j}, i \neq j$. If $m \in\{a, b\}^{\dagger}$ then $a I m$ and $b I m$, hence $m \in M_{i} \cap M_{j}$, which is a contradiction to $M_{i} \cap M_{j}=\emptyset$. Similarly we proceed when elements $m \in M_{i}, n \in M_{j}$ are under consideration.

Theorem 3. Let an incidence structure \mathcal{J} be the complete union of substructures $\mathcal{J}_{\nu}, \nu \in T$.

1. If $A \subseteq G_{i}$ and $B \subseteq M_{i}, i \in T$, then $A^{\uparrow}=M^{i} \cup{ }^{\dagger} A$ and $B^{\downarrow}=G^{i} \cup \downarrow$. If the incidence structure \mathcal{J} is open then $A^{\downarrow \downarrow}={ }^{\downarrow} A$ and $B^{\downarrow \uparrow}={ }^{\uparrow}{ }^{\uparrow} B$.
2. Let $a \in G_{i}$ and $b \in G_{j}$ for distinct $i, j \in T$. Then $\{a, b\}^{\uparrow}=\left(M^{i} \cap M^{j}\right) \cup^{\uparrow} a \cup^{\dagger} b$. If the incidence structure \mathcal{J} is open then $\{a, b\}^{\downarrow \downarrow}={ }^{\downarrow \uparrow} a \cup{ }^{\downarrow} b$. Let $m \in M_{i}$, $n \in M_{j}, i \neq j, i, j \in T$. Then $\{m, n\}^{\dagger}=\left(G^{i} \cap G^{j}\right) \cup{ }^{\downarrow} m \cup \downarrow^{\downarrow} n$. If \mathcal{J} is open then $\{m, n\}^{\downarrow \uparrow}=\uparrow \downarrow_{m} \cup \downarrow^{\uparrow} n$.

Proof. Let $g \in G$. Since $G=\bigcup_{\nu \in T} G_{\nu}$, there exists $l \in T$ such that $g \in G_{l}$. By Definition $1, g^{\dagger}=\{m \in M ; g I m\}$ and from $I=\left(\bigcup_{\nu \in T} I_{\nu}\right) \cup\left(\bigcup_{i, j \in T}\left(G_{i} \times M_{j}\right)\right)$ where $i \neq j$, we obtain $g^{\dagger}=M^{l} \cup^{\uparrow} g$. Similarly, for $m \in M$ there exists $k \in T$ such that $m \in M_{k}$ and $m^{\downarrow}=G^{k} \cup^{\downarrow} m$.

1. Let $A \subseteq G_{i}$ and $A=\emptyset$. Then $A^{\dagger}=M=M^{i} \cup M_{i}=\mathrm{M}^{i} \cup{ }^{\dagger} \emptyset=M^{i} \cup \dagger$. If $A \neq \emptyset$ then $A^{\dagger}=\bigcap_{a \in A} a^{\uparrow}=\bigcap_{a \in A}\left(M^{i} U^{\uparrow} a\right)=M^{i} \cup\left(\bigcap_{a \in A}^{\dagger} a\right)=M^{i} \cup^{\dagger} A$.

Let \mathcal{J} be an open incidence structure. Then $\left(M^{i}\right)^{\downarrow}=G_{i}$ for all $i \in T$. We obtain $A^{\uparrow \downarrow}=\left(A^{\dagger}\right)^{\downarrow}=\left(M^{i} \cup^{\dagger} A\right)^{\downarrow}=\left(M^{i}\right)^{\downarrow} \cap\left({ }^{\dagger} A\right)^{\downarrow}$. As ${ }^{\dagger} A \subseteq M_{i}$, we have $\left({ }^{\uparrow} A\right)^{\downarrow}=G^{i} \cup{ }^{{ }^{\dagger}} A$ and $A^{\downarrow \downarrow}=G_{i} \cap\left(G^{i} \cup \downarrow A\right)=\left(G_{i} \cap G^{i}\right) \cup\left(G_{i} \cap{ }^{\downarrow} A\right)={ }^{\downarrow} A$.

If $B \subseteq M_{i}$ then the proof is similar.
2. Let $a \in G_{i}, b \in G_{j}, i \neq j$. Then $\{a, b\}^{\uparrow}=a^{\uparrow} \cap b^{\uparrow}=\left(M^{i} \cup \uparrow a\right) \cap\left(M^{j} \cup^{\dagger} b\right)=$ $\left(M^{i} \cap M^{j}\right) \cup\left(M^{j} \cap{ }^{\uparrow} a\right) \cup\left(M^{i} \cap^{\uparrow} b\right) \cup\left({ }^{\uparrow} a \cap{ }^{\dagger} b\right)$. Since $M^{j} \cap^{\dagger} a={ }^{\uparrow} a, M^{i} \cap{ }^{\uparrow} b={ }^{\dagger} b$, ${ }^{\uparrow} a \cap^{\uparrow} b=\emptyset$ we have $\{a, b\}^{\uparrow}=\left(M^{i} \cap M^{j}\right) \cup^{\uparrow} a \cup^{\dagger} b$.

Let \mathcal{J} be an open incidence structure. For every $i, j \in T$ we obtain $\left(M^{i} \cap M^{j}\right)^{\downarrow}=$ $\left(\bigcup^{\downarrow}{ }^{\prime} M_{l}\right)^{\downarrow}=G_{i} \cup G_{j}$. Hence, $\{a, b\}^{\uparrow \downarrow}=\left(\{a, b\}^{\dagger}\right)^{\downarrow}=\left(\left(M^{i} \cap M^{j}\right) \cup^{\uparrow} a \cup^{\uparrow} b\right)^{\downarrow}=\left(M^{i} \cap\right.$ $\stackrel{l \neq i, j}{ }$ $\left.M^{j}\right)^{\downarrow} \cap\left({ }^{\uparrow} a\right)^{\downarrow} \cap\left({ }^{\dagger} b\right)^{\downarrow}=\left(G_{i} \cup G_{j}\right) \cap\left(G^{i} \cup^{\downarrow \uparrow} a\right) \cap\left(G^{j} \cup^{\downarrow \downarrow} b\right)=\left[\left(G_{i} \cup G_{j}\right) \cap\left(G^{i} \cap G^{j}\right)\right] \cup\left[\left(G_{i} \cup\right.\right.$ $\left.\left.G_{j}\right) \cap^{\downarrow^{\uparrow}} a\right] \cup\left[\left(G_{i} \cup G_{j}\right) \cap^{\downarrow \uparrow} b\right]$. Now, $\left(G_{i} \cup G_{j}\right) \cap\left(G^{i} \cap G^{j}\right)=\left(G_{i} \cup G_{j}\right) \cap\left(\bigcup_{l \neq i, j} G_{l}\right)=\emptyset$. By virtue of ${ }^{{ }^{\downarrow}} a \subseteq G_{i},{ }^{\downarrow} b \subseteq G_{j}$, it follows that $\left(G_{i} \cup G_{j}\right) \cap^{{ }^{\downarrow}} a={ }^{{ }^{\downarrow}} a,\left(G_{i} \cup G_{j}\right) \cap^{{ }^{\downarrow}} b={ }^{{ }^{\downarrow}} b$. Thus $\{a, b\}^{\dagger \downarrow}={ }^{\star+} a \cup{ }^{{ }^{\dagger}} b$.

For $m \in M_{i}$ and $n \in M_{j}$ the proof is similar.
Definition 6. Let $\mathcal{J}=(G, M, I), \mathcal{J}_{1}=\left(G_{1}, M_{1}, I_{1}\right)$ be incidence structures. A map $\varphi: G \cup M \rightarrow G_{1} \cup M_{1}$ is called a homomorphism of \mathcal{J} onto \mathcal{J}_{1} if

1. $\varphi(G):=\{\varphi(g) ; g \in G\}=G_{1}, \varphi(M):=\{\varphi(m) ; m \in M\}=M_{1}$,
2. $a \operatorname{Im} \Longrightarrow \varphi(a) I_{1} \varphi(m)$,
3. for $a^{\prime} I_{1} m^{\prime}$ there are elements $a \in G, m \in M$ such that $a I m, \varphi(a)=a^{\prime}$ and $\varphi(m)=m^{\prime}$.

Remark 4. 1. Let $\mathcal{J}=(G, M, I)$ be an incidence structure and let \bar{G}, \bar{M} be decompositions of G, M. Put $\mathcal{R}=(\bar{G}, \bar{M})$ and consider the incidence structure
$\mathcal{J}_{\mathcal{R}}=\left(\bar{G}, \bar{M}, I_{\mathcal{R}}\right)$ where $\bar{g} I_{\mathcal{R}} \bar{m}$ iff there is an $h \in \bar{g}$ with $n \in \bar{m}, h I m$ for every $\bar{g} \in \bar{G}$, $\bar{m} \in \bar{M}$. The map $\varphi_{\mathcal{R}}$ defined by

$$
\varphi_{R}: \begin{cases}g \mapsto \bar{g} & \forall g \in G \\ m \mapsto \bar{m} & \forall m \in M\end{cases}
$$

is a homomorphism of \mathcal{J} onto $\mathcal{J}_{\mathcal{R}}$. (See [1], Theorem 1.)
2. Let φ be an incidence structure homomorphism of $\mathcal{J}=(G, M, I)$ onto $\mathcal{J}_{1}=$ $\left(G_{1}, M_{1}, I_{1}\right)$. If we put $\bar{g}=\{h \in G ; \varphi(h)=\varphi(g)\}, \bar{m}=\{n \in M ; \varphi(n)=\varphi(m)\}$ then $G_{\varphi}=\{\bar{g} ; g \in G\}$ is a decomposition of the set G and $M_{\varphi}=\{\bar{m} ; m \in M\}$ is a decomposition of the set M. If we denote $\mathcal{R}_{\varphi}=\left(G_{\varphi}, M_{\varphi}\right)$ then the map ξ defined by

$$
\xi: \begin{cases}\bar{g} \mapsto \varphi(g) & \forall \bar{g} \in G_{\varphi} \\ \bar{m} \mapsto \varphi(m) & \forall \bar{m} \in M_{\varphi}\end{cases}
$$

is an isomorphism (i.e., both sided homomorphism) between $\mathcal{J}_{\mathcal{R}_{\varphi}}$ and \mathcal{J}_{1}. (See [1], Theorem 1.)

Theorem 4. Let $\mathcal{J}=(G, M, I)$ be an incidence structure. Then the following conditions are equivalent.

1. \mathcal{J} is the disjoint union of substructures $\mathcal{J}_{\nu}=\left(G_{\nu}, M_{\nu}, I_{\nu}\right), \nu \in T$, where $|T| \geqslant 2$ and $I_{\nu} \neq \emptyset$ for all $\nu \in T$.
2. There exists a homomorphism of \mathcal{J} onto a simple non-trivial incidence structure.

Proof. 1. $\Longrightarrow 2$. Let the assumption 1 hold. Then the sets $\bar{G}=\left\{G_{\nu} ; \nu \in T\right\}$, $\bar{M}=\left\{M_{\nu} ; \nu \in T\right\}$ are decompositions of the sets G, M. Put $\mathcal{R}=(\bar{G}, \bar{M})$ and consider the incidence structure $\mathcal{J}_{\mathcal{R}}=\left(\bar{G}, \bar{M}, I_{\mathcal{R}}\right)$ from Remark 4. We will prove that $\mathcal{J}_{\mathcal{R}}$ is a simple incidence structure. Let $G_{i} \in \bar{G}$. Then there exist $g \in G_{i}$ and $m \in M_{i}$ such that $g I_{i} m$, because $I_{i} \neq \emptyset$. By Theorem 1 , we have $g I m$ and by Remark 4, we obtain $G_{i} I_{\mathcal{R}} M_{i}$ and $\left|G_{i}^{\uparrow}\right| \geqslant 1$. Similarly we get $\left|M_{j}^{\downarrow}\right| \geqslant 1$ for every $M_{j} \in \bar{M}$. Now suppose that $G_{i} I_{\mathcal{R}} M_{j}$ for $i, j \in T$. Then there exist $g \in G_{i}$ and $m \in M_{j}$ such that $g I m$, and according to Definition 5 and Remark 2 there exists an $l \in T$ such that $g \in G_{l}, m \in M_{l}$ and $g I_{l} m$. But $g \in G_{i} \cap G_{l}$ and $m \in M_{j} \cap M_{l}$, which means that $i=j=l$ so that $\left|G_{i}^{\dagger}\right|=1$. Similarly we obtain $\left|M_{j}^{\dagger}\right|=1$ for all $M_{j} \in \bar{M}$. Thus $\mathcal{J}_{\mathcal{R}}$ is simple. Because of $|T| \geqslant 2$, we have $|\bar{G}| \geqslant 2,|\bar{M}| \geqslant 2$ and $\mathcal{J}_{\mathcal{R}}$ is not trivial.

According to Remark 4 the map $\varphi_{\mathcal{R}}: \mathcal{J} \rightarrow \mathcal{J}_{\mathcal{R}}$ is a homomorphism of \mathcal{J} onto $\mathcal{J}_{\mathcal{R}}$.
2. \Longrightarrow 1. Let $\varphi: \mathcal{J} \rightarrow \mathcal{J}^{\prime}$ be a homomorphism of \mathcal{J} onto a simple incidence structure $\mathcal{J}^{\prime}=\left(G^{\prime}, M^{\prime}, I^{\prime}\right)$. Suppose that $G^{\prime}=\left\{g_{\nu}^{\prime} ; \nu \in T\right\}, M^{\prime}=\left\{m_{\nu}^{\prime} ; \nu \in T\right\}$ and $g_{i}^{\prime} I^{\prime} m_{j}^{\prime}$ iff $i=j$. Since \mathcal{J}^{\prime} is non-trivial, it follows that $|T| \geqslant 2$.

By Remark 4, we obtain the structure $\mathcal{J}_{\mathcal{R}_{\varphi}}=\left(G_{\varphi}, M_{\varphi}, I_{\mathcal{R}_{\varphi}}\right)$, where $\mathrm{G}_{\varphi}=\{\bar{g}$; $g \in G\}, M_{\varphi}=\{\bar{m} ; m \in M\}$ and $\bar{g} I_{\mathcal{R}_{\varphi}} \bar{m}$ iff there are $h \in \bar{g}, n \in \bar{m}$ such that $h I n$. Furthermore, put $G_{i}:=\bar{g}$ iff $\varphi(g)=g_{i}^{\prime}$ and $M_{i}:=\bar{m}$ iff $\varphi(m)=m_{i}^{\prime}$ and consider substructures $\mathcal{J}_{i}=\left(G_{i}, M_{i}, I_{i}\right)$, where $I_{i}=I \cap\left(G_{i} \times M_{i}\right)$ for all $i \in T$. Then $\varphi\left(G_{i}\right)=g_{i}^{\prime}, \varphi\left(M_{i}\right)=m_{i}^{\prime}$ and $g_{i}^{\prime} I^{\prime} m_{i}^{\prime}$. By Condition 3 from Definition 6 there exist $g \in G_{i}$, and $m \in M_{i}$ such that $g I m$. Then $g I_{i} m$ and hence $I_{i} \neq \emptyset$ for all $i \in T$.

We will prove that $\mathcal{J}=\bigcup_{\nu \in T} \mathcal{J}_{\nu}$. Since G_{φ}, M_{φ} are decompositions of G, M, the sets $\left\{G_{\nu} ; \nu \in T\right\}$ and $\left\{M_{\nu} ; \nu \in T \in T\right\}$ are decompositions of G, M, too. Now the set $\left\{I_{\nu} ; \nu \in T\right\}$ is a decomposition of the set I. We have $g I m$ so that $\varphi(g) I^{\prime} \varphi(m)$. If $\varphi(g)=g_{i}^{\prime}$ then $\varphi(m)=m_{i}^{\prime}$ and $(g, m) \in G_{i} \times M_{i}$. This yields $(g, m) \in I_{i}$ and $I_{i} \subseteq I$ for all $i \in T$. From $G_{i} \cap G_{j}=\emptyset$ and $M_{i} \cap M_{j}=\emptyset$ for $i \neq j$, we get $I=\bigcup_{\nu \in T} I_{\nu}$.

Remark 5. There exists a homomorphism of an arbitrary incidence, structure with non-empty incidence relation onto a trivial simple incidence structure.

Theorem 5. Every regular incidence structure is a homomorphic image of a certain simple incidence structure.

Proof. Let $\mathcal{J}=(G, M, I)$ be a regular incidence structure. Set $G=\left\{g_{\nu}\right.$; $\left.\nu \in P_{1}\right\}, M=\left\{m_{\mu} ; \mu \in P_{2}\right\}$ and define the set $U \subseteq P_{1} \times P_{2}$ by $(i, j) \in U$ iff $g_{i} I m_{j}$. Let $U=\left\{u_{\xi} ; \xi \in T\right\}$. We consider the map $\alpha: U \rightarrow P_{1}$, given by $\alpha(i, j)=i$ for all $(i, j) \in U$. If $i \in P_{1}$, then $\left|g_{i}^{\dagger}\right| \neq \emptyset$ because \mathcal{J} is regular. Hence there exists $m_{j} \in M$ such that $g_{i} I m_{j}$. It follows that $(i, j) \in U, \alpha(i, j)=i$ and so α is a map onto P_{1}. For every $i \in P_{1}$, put $\alpha^{-1}(i)=U_{i}=\left\{u_{\eta} ; \eta \in T_{i}\right\}$ where $T_{i} \subseteq T$. Similarly, define a map $\beta: U \rightarrow P_{2}$ such that $\beta(i, j)=j$. This map is onto. Denote $\beta^{-1}(j)=U^{j}=\left\{u_{\kappa}\right.$; $\left.\kappa \in T^{j}\right\}$ where $T^{j} \subseteq T$.

Now consider the simple incidence structure $\mathcal{J}_{1}=\left(G_{1}, M_{1}, I_{1}\right)$ where $G_{1}=\left\{b_{\xi}\right.$; $\xi \in T\}, M_{1}=\left\{p_{\xi} ; \xi \in T\right\}$ and $b_{i} I_{1} p_{j}$ iff $i=j$. Put $\bar{b}_{i}=\left\{b_{\xi} ; \xi \in T_{i}\right\}$ for $i \in P_{1}$ and $\bar{p}_{j}=\left\{p_{\xi} ; \xi \in T^{j}\right\}$ for $j \in P_{2}$.

The family $\left\{\bar{b}_{i} ; i \in P_{1}\right\}$ forms a decomposition of G_{1}. If $b_{l} \in G_{1}$ then $l \in T$, and there exists a $u_{l} \in U$. We express it as $u_{l}=(p, q)$ so that $\alpha\left(u_{l}\right)=p, u_{l} \in U_{p}$ and consequently, $l \in T_{p}, b_{l} \in \bar{b}_{p}, G_{1}=\bigcup_{i \in T_{1}} \bar{b}_{i}$. If $b_{l} \in \bar{b}_{i_{1}} \cap \bar{b}_{i_{2}}$ then $l \in T_{i_{1}} \cap T_{i_{2}}$ and $u_{l} \in U_{i_{1}} \cap U_{i_{2}}$, which yields $i_{1}=i_{2}$. Obviously, $\bar{b}_{i} \neq \emptyset$ for all $i \in P_{1}$. Similarly one can prove that the family $\left\{\bar{m}_{j} ; j \in P_{2}\right\}$ forms a decomposition of M_{1}.

It is clear that

$$
u_{l}=(i, j), l \in T \Leftrightarrow u_{l} \in U_{i} \cap U^{j} \Leftrightarrow l \in T_{i} \cap T^{j} \Leftrightarrow b_{l} \in \bar{b}_{i}, p_{l} \in \bar{p}_{j}
$$

Finally consider the map $\varphi: G_{1} \cup M_{1} \rightarrow G \cup M$ given by $\varphi\left(b_{i}\right)=g_{j}$ iff $b_{i} \in \bar{b}_{j}$ for all $b_{i} \in G_{1}$ and $\varphi\left(p_{i}\right)=m_{j}$ iff $p_{i} \in \bar{p}_{j}$ for all $p_{i} \in M_{1}$. We claim that φ
is a homomorphism of \mathcal{J}_{1} onto \mathcal{J} : In deed, first it is obvious that $\varphi\left(G_{1}\right)=G$, $\varphi\left(M_{1}\right)=M$. If $b_{l} I_{1} p_{k}$ then $l=k$. If $\varphi\left(b_{i}\right)=g_{i}$ then $b_{l} \in \bar{b}_{i}$ and similarly for $\varphi\left(p_{l}\right)=m_{j}, p_{l} \in \bar{p}_{j}$. This implies $u_{l}=(i, j) \in U$ and we obtain $g_{i} \operatorname{Im} m_{j}, \varphi\left(b_{l}\right) I \varphi\left(p_{l}\right)$.

If $g_{i} I m_{j}$ then there exists an $l \in T$ with $u_{l}=(i, j)$ and it follows that $b_{l} \in \bar{b}_{i}$, $p_{l} \in \bar{p}_{j}$. This yields $\varphi\left(b_{l}\right)=g_{i}, \varphi\left(p_{l}\right)=m_{j}$ and $b_{l} I_{1} p_{l}$.

Modular incidence structures have been defined in [2]:
Definition 7. An incidence structure $\mathcal{J}=(G, M, I)$ is said to be modular if it satisfies the following conditions:

$$
\begin{equation*}
\{a, b\}^{\uparrow} \neq \emptyset \quad \forall a, b \in G \tag{M1}
\end{equation*}
$$

$$
\begin{equation*}
\{m, n\}^{\downarrow} \neq \emptyset \quad \forall m, n \in M \tag{M2}
\end{equation*}
$$

$$
\begin{equation*}
a, b \in G, x \in\{a, b\}^{\downarrow \downarrow}, x \neq a \Longrightarrow\{a, x\}^{\dagger} \subseteq\{a, b\}^{\dagger} \tag{M3}
\end{equation*}
$$

Theorem 6. Let an incidence structure $\mathcal{J}=(G, M, I)$ be the complete union of incidence structures $\mathcal{J}_{\nu}=\left(G_{\nu}, M_{\nu}, I_{\nu}\right)$ where $\nu \in T$ and $|T|>1$. Then the following two conditions are equivalent:

1. \mathcal{J} is open modular.
2. $|G| \geqslant 3$ and each of \mathcal{J}_{ν}, is either open modular, or simple non-trivial, or a trivial incidence structure with empty incidence relation.

Proof. 1. $\Longrightarrow 2$. As \mathcal{J} is open, all substructures \mathcal{J}_{ν} are open by Remark 2 . Since $|T|>1$, we have $|G| \geqslant 2$ and $|M| \geqslant 2$. Suppose that $|G|=2, G=\{a, b\}$. It follows that $\mathcal{J}_{1}=\left(\{a\}, M_{1}, I_{1}\right), \mathcal{J}_{2}=\left(\{b\}, M_{2}, I_{2}\right)$ where $M=M_{1} \dot{\cup} M_{2}$. Moreover, $\mathcal{J}_{12}=\left(\{a\}, M_{2}, I_{12}\right), \mathcal{J}_{21}=\left(\{b\}, M_{1}, I_{21}\right)$ where $I_{12}=\{a\} \times M_{2}, I_{21}=\{b\} \times M_{1}$. Since $\mathcal{J}_{1}, \mathcal{J}_{2}$ are open, $I_{1}=I_{2}=\emptyset$ and $\left|m^{\downarrow}\right|=1$ for all $m \in M$. But \mathcal{J} is modular so that, according to Theorem 3 of [2], \mathcal{J} is not open, which is a contradiction. Hence $|G| \geqslant 3$ and similarly, $|M| \geqslant 3$.

Let $\mathcal{J}_{i}=\left(G_{i}, M_{i}, I_{i}\right), i \in T$, be substructures of \mathcal{J}.
(1) Let $\left|G_{i}\right|=1$. Then $G_{i}=\{a\}$ for some $a \in G$. Furthermore, suppose that $I_{i} \neq \emptyset$. Then there exists an $m \in M_{i}$ such that $a I_{i} m$ and it follows that $\{a\}={ }^{\downarrow} m$. According to Theorem $3, m^{\downarrow}=G^{i} \cup{ }^{\downarrow} m=G^{i} \cup G_{i}=G$. We have obtained a contradiction to Condition 1. Therefore $I_{i}=\emptyset$.

Let m, n be distinct elements of M_{i}. Then ${ }^{\downarrow} m=\emptyset={ }^{\downarrow} n$ and $m^{\downarrow}=n^{\downarrow}=G^{i}$, in contradiction to Theorem 4 of [2]. Thus $m=n$ and $\left|M_{i}\right|=1$. Hence \mathcal{J}_{i} is trivial and its incidence relation is empty. The case $\left|M_{i}\right|=1$ can be considered analogously.
(2) Let $\left|G_{i}\right|>1$. Then $\left|M_{i}\right|>1$, too. Suppose that ${ }^{\dagger} a=\emptyset$ for some $a \in G_{i}$. By Theorem 3 we have $a^{\uparrow}=M^{i} \cup^{\uparrow} a=M^{i}$. Since $\left|G_{i}\right|>1$, there exists a $b \in G_{i}, b \neq a$ and from $b^{\uparrow}=M^{i} \cup{ }^{\uparrow} b$ we get $a^{\uparrow} \subseteq b^{\uparrow}$. But this is a contradiction to Theorem 4 of $[2]$, so that $\left.\right|^{\dagger} a \mid \geqslant 1$. Similarly we prove $\left.\right|^{\downarrow} m \mid \geqslant 1$.
(a) Suppose that $\left.\right|^{\dagger} a \mid=1$ for some $a \in G_{i}$. Then there exists an $m \in M_{i}$ such that $a I_{i} m$ and ${ }^{\uparrow} a=\{m\}$. Further suppose that there exists a $b \in G_{i}, b \neq a$ such that $b I_{i} m$. Then $m \in^{\uparrow} b$ and ${ }^{\uparrow} a \subseteq{ }^{\dagger} b$. Since $a^{\uparrow}=M^{i} \cup^{\uparrow} a$ and $b^{\dagger}=M^{i} \cup^{\dagger} b$, we have $a^{\uparrow} \subseteq b^{\uparrow}$, which is again a contradiction to Theorem 4 of [2]. This implies $\left.\right|^{\downarrow} m \mid=1$ and ${ }^{\downarrow} m=\{a\}$.

Let n be an arbitrary element of $M_{i}, n \neq m$. Then $n \not{ }^{\uparrow} a$. Suppose there exist distinct $b, c \in G_{i}$, such that $b I_{i} n, c I_{i} n$. Clearly $\uparrow\{a, b\}=\emptyset$ and by Theorem 3, $\{a, b\}^{\dagger}=M^{i}$. Now ${ }^{{ }^{~}}\{a, b\}=G_{i}$ and $c \in{ }^{\downarrow \dagger}\{a, b\}$. By Theorem 3 it follows that ${ }^{\downarrow}\{a, b\}=\{a, b\}^{\uparrow \downarrow}$. Hence $c \in\{a, b\}^{\downarrow}$ and from $n \notin M^{i}$, one gets $n \notin\{a, b\}^{\uparrow}$. Moreover, $n \in\{b, c\}^{\uparrow}$, hence $\{b, c\}^{\uparrow} \nsubseteq\{b, a\}^{\dagger}$, which is a contradiction to (M3). From $|\downarrow n| \geqslant 1$ we obtain $|\downarrow n|=1$.

Let b be an arbitrary element of $G_{i}, b \neq a$. Suppose there exist distinct $n, p \in M_{i}$ such that $b I_{i} n, b I_{i} p$. Then ${ }^{\downarrow}\{m, n\}=\emptyset$ and ${ }^{\uparrow}\{m, n\}=M_{i}$, and therefore $p \in$ ${ }^{\dagger}\{m, n\}=\{m, n\}^{\downarrow \uparrow}$. Moreover, $b \in\{n, p\}^{\downarrow}$ and $b \notin\{m, n\}^{\downarrow}$ so that $\{n, p\}^{\downarrow} \mathbb{Z}$ $\{m, n\}^{\downarrow}$, in contradiction to (M4). Hence $\left.\right|^{\uparrow} b \mid=1$ and \mathcal{J}_{i} is simple.

Similarly we prove that $|\downarrow m|=1$ implies that \mathcal{J}_{i} is simple.
(b) Let us suppose that there exists $a \in G_{i}$ such that $\left.\right|^{\dagger} a \mid>1$. Then by part (a) $\left.\right|^{\uparrow} x \mid>1$ for all $x \in G_{i}$ and $\left.\right|^{\downarrow} m \mid>1$ for all $m \in M_{i}$. We prove that every incidence structure \mathcal{J}_{i} satisfies conditions (M1)-(M4).

To (M1): Let $a, b \in G_{i}$ such that ${ }^{\uparrow}\{a, b\}=\emptyset$. Then ${ }^{\downarrow}\{a, b\}=\{a, b\}^{\uparrow}=G_{i}$ and for arbitrary $x \in G_{i}$ we obtain $x \in\{a, b\}^{\uparrow \downarrow}$. As \mathcal{J} is modular, (M3) implies $\{x, a\}^{\uparrow} \subseteq\{a, b\}^{\uparrow}$ whenever $x \neq a$, in other words $M^{i} \cup^{\dagger}\{x, a\} \subseteq M^{i} \cup^{\uparrow}\{a, b\}$. As ${ }^{\uparrow}\{a, b\}=\emptyset$, we obtain ${ }^{\uparrow}\{x, a\}=\emptyset$. By $\left.\right|^{\uparrow} a \mid>1$, there exists an $m \in M_{i}$ such that $a I_{i} m$. As $\left.\right|^{\dagger} m \mid>1$, there exists a $c \in G_{i}, c \neq a$ such that $c I_{i} m$. Hence $m \in \uparrow\{c, a\}$, which is a contradiction. Then $\uparrow\{a, b\} \neq \emptyset$.

Condition (M2) can be proved similarly as (M1).
To (M3): Let $a, b \in G_{i}$ and $c \in{ }^{\downarrow}\{a, b\}, c \neq a$. Then $c \in\{a, b\}^{\uparrow \downarrow}$. By (M3), $\{c, a\}^{\dagger} \subseteq\{a, b\}^{\dagger}$ i.e. $M^{i} \cup^{\dagger}\{c, a\} \subseteq M^{i} \cup^{\dagger}\{a, b\}$. If $x \in{ }^{\uparrow}\{c, a\}$ then $x \in M^{i} \cup^{\dagger}\{a, b\}$ and, regarding $x \notin M^{i}$, we obtain $x \in{ }^{\dagger}\{a, b\}$. It follows that ${ }^{\uparrow}\{c, a\} \subseteq{ }^{\dagger}\{a, b\}$.

Condition (M4) can be proved similarly as (M3).
2. $\Longrightarrow 1$. Each of $\mathcal{J}_{\nu}, \nu \in T$ is an open and consequently \mathcal{J} is open. We show that \mathcal{J} satisfies conditions (M1)-(M4).

To (M1): Let a, b be elements of G such that $a, b \in G_{i}$ for some $i \in T$. By virtue of $|T|>1$, it follows that $M^{i} \neq \emptyset$ and $\{a, b\}^{\dagger}=M^{i} \cup^{\dagger}\{a, b\} \neq \emptyset$.

Let $a \in G_{i}, b \in G_{j}$ where $i \neq j$ and let $|T|=2$. Then $\mathcal{J}=\mathcal{J}_{1} \cup \mathcal{J}_{2}$. According to the hypothesis $|G| \geqslant 3$ both structures \mathcal{J}_{1} and \mathcal{J}_{2} are non-trivial. Hence, for instance, \mathcal{J}_{1} is simple non-trivial or modular and so regular. If $a \in G_{1}$ and $b \in G_{2}$ then $\uparrow a \neq \emptyset$ and, by Theorem 3, $\{a, b\}^{\dagger}=\left(M^{i} \cap M^{j}\right) \cup^{\dagger} a \cup^{\uparrow} b={ }^{\top} a \cup^{\dagger} b \neq \emptyset$. If $|T|>2$ then $M^{i} \cap M^{j} \neq \emptyset$ and again $\{a, b\}^{\uparrow} \neq \emptyset$.

The condition (M2) can be proved similarly as the condition (M1).
To (M3): Let a, b be elements of G and $c \in\{a, b\}^{\uparrow \downarrow}, c \neq a$. We have to prove that $\{a, c\}^{\dagger} \subseteq\{a, b\}^{\dagger}$.
(a) Let $a, b \in G_{i}$ for a certain $i \in T$. Then $\{a, b\}^{\dagger \downarrow}={ }^{\downarrow}\{a, b\}$. If \mathcal{J}_{i} is trivial with $I_{i}=\emptyset$ then $G_{i}=\{a\}, c=a=b$ and ${ }^{\dagger}\{a, c\}={ }^{\dagger}\{a, b\}=\emptyset$. Further, $\{a, c\}^{\dagger}=$ $M^{i}=\{a, b\}^{\dagger}$. If \mathcal{J}_{i} is simple then, because of $a \neq c$, it follows that ${ }^{\uparrow}\{a, c\}=\emptyset$ and ${ }^{\dagger}\{a, c\} \subseteq{ }^{\dagger}\{a, b\}$. If \mathcal{J}_{i} is modular then we obtain the same conclusion as a consequence of $(\mathrm{M} 3)$. Hence $\{a, c\}^{\uparrow}=M^{i} \cup^{\uparrow}\{a, c\} \subseteq M^{i} \cup^{\uparrow}\{a, b\}=\{a, b\}^{\dagger}$.
(b) Let $a \in G_{i}, b \in G_{j}, i \neq j$.

If $x, y \in G_{l}$ for an arbitrary $l \in T$ then ${ }^{\dagger} y \subseteq{ }^{\uparrow} x$ iff $y=x$. If \mathcal{J}_{l} is simple then ${ }^{\dagger}\{x, y\}={ }^{\dagger} x \cap{ }^{\uparrow} y=\emptyset$ for $x \neq y$ and (M3) is valid. If \mathcal{J}_{l} is modular, then \mathcal{J}_{l} is open and we obtain (M3) by Theorem 4 of [1].

By the hypothesis $c \in\{a, b\}^{\dagger \downarrow}$. That means, by Theorem 3, $c \in{ }^{{ }^{\dagger}} a \cup{ }^{\downarrow \uparrow} b$. Since ${ }^{{ }^{\dagger}} a \cap{ }^{{ }^{\dagger}} b=\emptyset, c$ belongs to exactly one of the sets ${ }^{\downarrow} a$ and ${ }^{\downarrow} b$. Let $c \in{ }^{{ }^{\downarrow \dagger}} a$. Hence ${ }^{\uparrow} a \subseteq{ }^{\dagger} c$ and $a=c$. This yields $\{a, c\}^{\dagger}=\left(M^{i} \cap M^{j}\right) \cup{ }^{\dagger} a \cup^{\uparrow} c=\left(M^{i} \cap M^{j}\right) \cup{ }^{\dagger} a \subseteq$ $\left(M^{i} \cap M^{j}\right) \cup^{\dagger} a \cup^{\dagger} b=\{a, b\}^{\dagger}$.

Condition (M4) can be proved similarly as (M3).
Remark 6. Let $\mathcal{J}=(G, M, I)$ be a simple incidence structure with $|G| \geqslant 3$. We put $G=\left\{g_{\nu} ; \nu \in T\right\}, M=\left\{m_{\nu} ; \nu \in T\right\}, g_{i} I m_{j}$ iff $i=j$. If \mathcal{J}^{\prime} is a complementary incidence structure on \mathcal{J} (i.e. $\left.\mathcal{J}^{\prime}=(G, M,(G \times M)-I)\right)$, then \mathcal{J} is open modular.

Remark 7. According to Theorem 6, we can extend every open modular incidence structure with help of other open modular or non-trivial simple incidence structures or of trivial ones the incidence relations of which is empty, to a new incidence structure which is open modular, too.

References

1] Machala, F :: Úber Homomorphismen der Kontexte. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 114 (1994), 95-104.
[2] Machala, F.: Madulare Inzidenzstrukturen. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 34 (1995), 137-145.
3] Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. Ordered sets (I. Rival, ed.). Reidel, Dordrecht-Boston, 1982, pp. 445-470.
[4] Ganter, B.; Wille, R.: Formale Begriffsanalyse. Mathematische Grundlangen. Springer, 1996, p. 296.

Authors' addresses: František Machala, Department of Algebra and Geometry, Faculty of Science, Palacký University, Tomkova 40, Hejčín, 77900 Olomouc, Czech Republic, email: machala@risc. upol.cz; Marek Pomp Department of Mathematics, Faculty of Science, University of Ostrava, Bráfova 6, 70103 Ostrava, Czech Republic, e-mail: pomp@osu.cz.

