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Summary. Let 5 denote the class of functions /(z) = z + a2z + a3z
3 + ... univalent and 

holomorphic in the unit disc A = {z: \z\ < 1}. In the paper we obtain a sharp estimate of 
the functional \a3 — cta2| + <*ja2l in the class S for an arbitrary a 6 R. 
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1. INTRODUCTION 

Let S stand for the well-known class of functions 

(1.1) / (* ) = Z + a2z
2 + a3z

3 + ... 

holomorphic and univalent in the unit disc A = {z: \z\ < 1}. It is well known that, 
for each function / € S ([1]), 

(1.2) | a 2 | ^ 2 

with equality occurring only for the Koebe function 

(i.3) ^ = ( T ^ F zeA> |£| = 1' 

In many papers, the functional \a3 — aa\\ was studied for different classes of 

univalent functions of the form (1.1). As is known, the maximum of this functional 

in the class S for a € (0,1) is not attained for function (1.3) ([2]). Hence and from 

some applications an idea arises to consider the functional 

(1.4) F(f) = \a3-aal\ + a\a2\
n, a e R, n € {1,2,3,...}, 
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in the class S. From (1.2) and the well-known result of Jenkins [4] we immediately 

get that the maximum of functional (1.4) for a > 1, n = 1,2. . . , is attained for 

function (1.3). 

In paper [3], the Valiron-Landau lemma was applied to determinate the maximum 

of functional (1.4). The final estimate of this functional for some values of a, n is 

not sharp. 

And so, in the case n = 2, the method applied did not give a sharp estimate for 

a e ( i , 1). In the present paper, using the variational method, we have succeeded 

in getting a complete result; namely, we have obtained the maximum of functional 

(1.4) in the case n = 2 for all a e R. So, we shall consider the functional 

(1.5) H(f) = \a3-aa2
2\+a\a2\

2, f e S, a 6 R. 

In the cases a < | and a ^ 1, the estimate of the maximum of functional (1.5) 

given in paper [3] is sharp and is attained for function (1.3). Thus it will be sufficient 

to limit our further considerations to the case a 6 ( | , 1 ) . It will be seen that this 

restriction is not essential for the fundamental procedure. 

The case n ^ 2 needs additional considerations and will be a subject matter of 

separate investigations. 

2. DISCUSSION O F T H E FORM O F T H E EQUATION FOR EXTREMAL FUNCTIONS 

Let us consider the functional 

(2.1) G(f)=Re(a3-aa2)+a\a2\
2 

defined in the class 5 , where a € ( | , 1). The family S is compact, whereas functional 

(2.1) is continuous, thus, for each a e R, there exists a function fa e S for which 

G(fa) = m a x G ( / ) . In the sequel, the function / = fa will be called extremal. 

Functional (2.1) satisfies the assumptions of the Schaeffer-Spencer theorem ([6], 

pp. 36-37), hence each extremal function satisfies the following equation: 

(221 [____!2 1 + • _ _ _ - z* + c - 3 + 2B°z2 +uz+l
 e A 

[ f(z) \ f2(z) ~ z* ' 

where 

(2.3) 
Д J = a3 - aa2 + a | a 2 | 

( 2 ' 4 ) - = 2 [ R e a 2 + i ( l - 2 _ ) I m a 2 ] 



Besides, it is known ([6]) that B0 > 0, and that the right-hand side of (2.2) is 

nonnegative on the circle \z\ = 1 and possesses on it at least one double root. 

Since (2.2) is a differential-functional equation, the determination of the upper 

bound of functional (2.1) for any fixed a 6 ( | , 1) is reduced to the finding of suitable 

functions which satisfy this equation. It is worth recalling that the fulfilment of 

equation (2.2) by a function is only a necessary condition for this function to be 

extremal for the functional being examined. 

For z e A, z ^ 0, let us put 

(2.5) N{z]_z<+uz> + 2B0z>+uz + ^ 

It follows from the general properties of equation (2.2) that function (2.5) is fac-

torized in the following way ([6]): 

= ( ^ - e ^ ^ - f e - ^ + e - 2 ^ ) 

where ip,ip € (—K,TI), t ^ 2. 

Note that if the function f(z) is extremal with respect to the functional considered, 

then also the functions -f(-z) and f(z) are extremal. Hence it appears that, in our 

further considerations, it is enough to assume that tp e (0, §). 

Taking into account all the factorizations of function (2.5) and the above remarks, 

it is easy to prove that equation (2.2) can only be of the form 

\zf'(z)V l + uf(z) _(z-z0?(z-z1)(z-z2) 

ÍM \zf'(z)]2l+uf(z) (z - z0f(z - zzÝ 
(b) [-fW] ~T(zT = ? ' w#0' 

ÏІЩ ________ (Z-ZQ)* 
/(-) J f2(z) 

uфO, 

\zf(z)y i {z-Zo?[z-Zi? 

(d) liwl m — ? — ' u=0' 
where z0 = é*, 21 = gé*, z2 = i g _ (0,1), V € (0, f ) , ip £ (-7t,7t), \z3\ = \z0\ = 1, 

z3 + z0. 
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The next sections of the paper will be devoted to the investigation of solutions 

of equations (a), (b), (c), (d), respectively. A part of detailed computations will be 

omitted because they are similar to the reasonings in many other papers. 

3. E Q U A T I O N OF T H E FORM (a) 

Let us first consider the case when equation (2.2) is of the form (a). Comparing 

the right-sides of (2.2) and (a), we get 

(3.1) 

(3.2) 

(3.3) 

z 0 = e'V\</>e<0,§), . 6 ( 0 , 1 ) . 

From formulae (2.3) and (3.3) it can be seen that the value of the expression 

a 3 - aa\ + a | a 2 | 2 for an extremal function satisfying an equation of form (a) is 

determined by two real parameters ip and _>. Hence it appears that, in order to 

determine the upper bound of functional (2.1), one has to find some relationships 

between ip, g and a. 

In virtue of (3.1), equation (a) is equivalent to 

\zf'(z)]2 1 + uf(z) (__ zozni - ez0zfl-^e

zaz 

Z\ = '• Єžo, 
1 . 

Z2 — ~Z0, e 
(=-.2e-* - ( . + !>», 

в0 = 6 + - + cos2V>, 
e 

«"> ilWlnW'' -•„•-•--• ..A 

Integrating (3.4) and, next, expanding both sides of the equation obtained in a 

Laurent series with centre z = 0 and comparing the coefficients at the corresponding 

powers of z, we get 

rttt i 2 + ( g +

g

) z ° , e + \ + 2zo , 1-6 2(a2z0 + 2) (3.5) log —-j - _ h 
( _ - ^ 0

2 T 2 + (. + ^ & i + e 2 + (e+\)zl 

From (2.4) and (3.2) we have 

(3.6) a 2 = - I ( , + I + 2 ) C 0 S . ^ i 2 _ 2 _ T y ( , + I-2)sin^. 
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By isolating the real and the imaginary part in (3.5), in view of (3.6) we obtain 

the following system of equations: 

(3.7) 

[g-\ 1-2) cost 
v / ( í - + ì ) 2 + 4 ( í l + ì ) c o s 2 1 / > + 4 

í 1 „ \ . , 2sin2tó / 1 „\ , „ 
+ ť? H 2 sin 4> arctan -, H [g -\ 2 cos ip = 0, 

V p / 0 + ^ + 20032^ Ve p I 

(,+ -- 2 sin V1 
^ / ( в + ^ ) 2 + 4 ( ŕ + ì ) c o в 2 V > + 4 

(3.8) 

^ ~ 2 

/ 1 \ , 2 s i n 2 é 
— ť? H h 2 cos w arctan ; V 4 sin \b 

V* Q I e + ± + 2cos2t/> 

g-\ 2 ) s in^, 
2a - 1 VK ' g 

where V e (0, | ) , ge (0,1). 
Let us first observe that if ip = 0, then case (a) does not hold; this follows from 

estimate (1.2) and equality (3.6) for ip = 0 and g e (0,1). 

Next, putting V = | in system (3.7)-(3.8), we obtain g + i = 8a - 2. Then from 
(3.3) we get 

Lemma 1. If, for ip = | , a e ( | , 1), tiie extremal function satisfies the equation 
of the form (a) witii ip = §, ti2en 

(3.9) B 0 = 8a - 3. 

Equality (3.9) noids oniy for Koebe function (1.3) witii £ = i. For ?/> = 0, ti2e 

extremal function does not satisfy the equation of form (a). 

Consequently, we shall consider the system of equations (3.7)-(3.8) for ip e (0, | ) , 

g e (0,1). Of course, the following questions arise: for what a's does the system of 

equations (3.7)-(3.8) possess a solution, and is this solution the only one? 

Let us consider the first equation of this system. For ip £ (0, | ) , equation (3.7) 

will take the form 

(3.7') *iW>,<?) = 0 
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where 

(3.10) 

! . J ( ^ + i ) 2 + 4 ( e + i ) c o s 2 ^ + 4 
* r ( ^ ) = ( , + - +2) log V _ _ _ 

/ 1 \ 2sin2?/> 1 „ 
+ W? H 2 tan ip • arctan ; h Q H 2. 

VL
 e / r

 e + i + 2 cos 2ip Q 

Prom the investigation of the function # i as a function of p, Q 6 (0,1), we conclude 
tha t equation (3.7') has the only solution Q for any fixed ip 6 (0, | ) . Hence equation 
(3.7') defines a function Q = g(ip), ip e (0, | ) . Moreover, from (3.7') and (3.10) we 
have 

(3.11) lim gltp) = 1 
i>->0+ 

and 

(3.12) lim ety) = !dz±. 
,(,->§- Ve + i 

Since # ' l e ^ 0, therefore from (3.7') we have 

"»---.£& -*>• •«(•.!)• 
Hence and from (3.10), after some transformations, we obtain 

( 3 13) 'M = 1 ^ + t - 2 ) 2 a r c t a % + | + ' 2 c 2 o t 2 , - ^ l 
6 4 ( 1 - 4 ) C 0 S 2 V , v/(^T|)^r4(£.+ i)cos2V.+4 

l o g ^ — ^ 

where Q = Q(ip), ip € (0, | ) . In view of (3.13), it can be demonstrated that 

(3.14) e'W<0 for ( 0 , | ) . 

It follows from the above that equation (3.7') defines one function Q = g(ip), 
ip G (0, | ) , and, moreover, this function is decreasing from the value 1 to the value 

Let next 

(3.15) D = {(rl>,e): (0, £ ) A <? = < # ) } 
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where d(ip) is defined by equation (3.7'). Let us consider the second equation of 
system (3.7)-(3.8). From (3.8) we have 

(3.8') _ L _ - # ^ , 0 ) 

where 

t/( i?+^ a +4(ť>+±)cos20 + 4 
(3.16) faftM = log-- ^ T ^ J  

Q+\ + 2 , 2sin2V> 
- cotan ip • arctan -£ + j - 2 £>+i + 2cos2)/) £ + ± - 2 ' 

Prom the investigation of equation (3.7') and the form of equation (3.8') it follows 

that if {ip, Q) G D where D is defined by (3.15), then there exists exactly one a as 

the function of variable ip 6 (0, | ) ; so, from (3.8') we have 

(3.17) _ 1 - ф ^ W ) , ( 0 , ï ) . 
2a{i>) - 1 

Differentiating both sides of equation (3.17) and taking account of (3.16) and 

(3.13) in it, after suitable transformations we get 

(3-18> VaWTW^ 
( g + I - 2 c o s 2 V > ) ( g + i + 2cos2V) arctan g g g g ~ ,,+ j + ' - ~ - » 

, \/(<?+i)2+4(e+i)cos2v+4 (Q+ i - 2 ) ( p + i + 2) sin2 V cos2 0 
l o g ^ j + r + j 

where (0 , £>) £ D. Hence it is easy to check that a'(V>) > 0 for ij> 6 (0, | ) . 

From (3.17), (3.16) and (3.11), (3.12) it can be verified that 

lim a{ip) = - , lim a{ib) = ao 
V-+o+ 2 </>-+}" 

where 

(3.19) a0 = 27JTI)' a° < -• 

In view of the above, we infer that a{tp) is an increasing function of the variable 

ip £ (0, f ) ; besides, it increases from | to a 0 . Hence, for the function a{ip), we have 

the inverse function t/j = ip{a) defined for a e ( | , a o ) where a0 is given by (3.19). 



To sum up, we have proved that, for a ' (\,a0), we have a single solution to the 

system of equations (3.7)-(3.8). Consequently, from (3.3) we obtain 

Lemma 2. If, for a ~ ( | ,OJO) , a0 = 2(e-iV' ^ne extremal function satisfies the 
equation of form (a), then 

B0 = B0(a) = Q + - + cos2r/> 
Q 

where ip, Q are the only solutions to the system of equations (3.7)-(3.8), (ip, Q) E D, 

and D is defined by (3.15). Moreover, 

e + 3 
lim B0(o) = 3, lim B0(a) = - . 

«-+$- a - a j e - 1 

For a G (ao, 1), the extremal function does not satisfy equation (a) with ip ' (0, | ) , 

ee(o,i). 

4. EQUATION OF THE FORM (b) 

Let us next consider the case when equation (2.2) is of form (b), that is, 

r £ ^ l a l + u / ( - ) = ( - - s o ) - ( - - z 3 ) -
{ ' [ m \ p(z) -- ' e A' 
where z0 = e ^ , 0 6 (0, | ) , \z3\ =l,z3? ~o, u 5̂  0. 

From the comparison of the right-hand sides of equations (2.2) and (4.1) and from 

the fact that B0 > 0 it follows that z3 = z0 = e -" ' ' and, in consequence, 

(4.2) u = -icosip, 

(4.3) B0 = 2 + cos24>. 

After integrating (4.1) and making use of the fact that there exists x ' R such 

that f(e'x) = —-, we obtain ip = 0 or ip = I . Since « ^ 0, therefore from (4.2) we 

have •0 = 0. Comparing (2.4) and (4.2), we get Rea 2 = - 2 , Ima 2 = 0, Rea 3 = 3, 

I m a 3 = 0. 

Consequently, from (4.3) we obtain 

Lemma 3. If, for a 6 ( | , 1), the extremal function satisfies the equation of form 

(b), then 

(4.4) Bo = 3. 
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Equality (4.4) holds for Koebe function (1.3) with e = —1. 

5. EQUATION OF THE FORM (C) 

In this case, equation (2.2) is equivalent to 

\zf'(z)-\*l + uf(z)_(z-zoy 
(5'1} I / W j P(z) ' z* ' ^^ 

where z0 = e'*, ij> e (0, | ) , u # 0. 

From the comparison of the right-hand sides of equations (2.2) and (5.1) and from 

the fact that Bo > 0 it follows that z0 = 1. In consequence, u = —4 and B0 = 3, 

thus Rea 2 = - 2 , Imo 2 = 0, Re03 = 3, Imo 3 = 0. So, we have 

L e m m a 4. If, for a £ ( | , 1), the extremal function satisfies the equation of the 

form (c), then 

B0 = 3 

and this equality holds for function (1.3) with e = — 1. 

6. E Q U A T I O N OF THE FORM (d) 

Let us consider the last case when equation (2.2) is of form (d), that is, 

, B 1 , K ' W l 2 1 (Z-Z0f(z-Z3? 

(M) uwi / ~ w ~ — * — • zeA 

where z0 = e'*, ip e (0, f ) , z3 ̂  z0, \z3\ = 1. 

Putt ing u = 0 in equation (2.2) and comparing the right-hand side of this equation 

with that of (6.1), we get Z3 = zo, i> = | and B0 = 1. So, we have 

L e m m a 5. If, for a £ ( | , 1), the extremal function satisfies the equation of the 

form (d), then 

B0 = l 

and this equality holds for the function f(z) = j-fp-, z e A. 
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7. T H E MAIN THEOREM 

Note first that if / € S, then, for all 0 G (0,2n), the function ai0f(e'i0z), z e A, 

belongs to S, too. In consequence, the determination of the maximum of functional 

(1.5) is equivalent to the determination of the maximum of functional (2.1) in the 

class S. For this purpose, we make use of the lemmas just proved. From Lemmas 

1-5 and (2.1), (2.3) it follows that 

f m a x { 8 a - 3 , o + i + cos2i/;,3,1} when a e ( t , a 0 ) , 
(7.1) G ( / ) = d e 2 

[ m a x { 8 a - 3 , 3 , 1 } when a € ( a 0 , l ) , 

where ip, o are defined in Lemma 2, and a 0 = 2(e-i) • 

Since a0 > f, therefore max{8a - 3,3,1} = 8a - 3 when a e (a0,1). 

It follows from the results of Section 3 that if a e ( § , a 0 ) , then 

(7.2) B0 = B0(a) = Q+-+cos 2ip 

where i> = 4>(cx), Q = Q(i>(<*)) (cf- Lemma 2). 

It is easily noticed that B0(a) > 3 for a G ( | , a 0 ) . So, it remains to compare the 

values 8a - 3 and j30(a) given by (7.2) for a e ( | , a 0 ) . 

Let us put 

(7.3) B(a) = B0(a)-(8a-3), a G (i,a0) 

where B0 is defined by (7.2). 

Making use of the results obtained in Section 3, it can be verified that 

lim B(a) = 2 and lim B(a) = 0. 

Moreover, from (7.2) and (7.3) we have 

(7.4) B'(a)= [ ( l - g 2 ( ^ ( Q ) ) ) g 'Wt t ) ) ~ 2s in (2^ (a ) ) j ^ (a ) - 8 

where ip(a) is the inverse function of the function a(i>) defined by formula (3.17). 

Taking account of formulae (3.13), (3.18) in (7.4), after suitable transformations we 

obtain B'(a) < 0 for a £ ( | , a 0 ) . Hence and from (7.3) it follows that 

B 0 ( a ) > 8 a - 3 for ( - , ( 
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Consequently, for a 6 (\, a 0 ) we have 

m a x ( 8 a - 3 , ^ > + - + cos2^ ,3 , l l = Q + - +cos2i/> 
I Q ) Q 

where (ip,Q) e D and £> is defined by (3.13). 

To sum up, we have proved 

T h e o r e m . For any function f £ S we have 

(7.5) \a3 - aa\\ + a\a2\
2 ^ Q-\ l-cos2i/> for -<a< 

в^—v 2 " " " 2 ( e - l ) ' 

(7.6) | a 3 - a o ^ + a | o 2 | 2 ^ 8a - 3 for ^ r - — - ^ a < 1, 

where ip is the inverse function to the function a(ip) of form (3.17) and Q = g(if)) 

is defined by equation (3.7'). Estimates (7.5)-(7.6) are sharp. In case (7.6), the 

equality hoids for Koebe function (1.3). 

R e m a r k 1. As was mentioned before, by modifying the procedure presented, 

it can be proved that 

(7.7) | o 3 - aa2

2\ + a\a2\
2 ^ 3 for a ^ i 

and that estimate (7.6) holds also for a ^ 1. In paper [3], these results are also 

presented. 

R e m a r k 2. The result we have obtained also proves that, in the case of 

functional (1.5), the variational method turned out to be more effective though 

tiresome in calculations. 

R e m a r k 3. Similarly as in paper [3] (Section 4) one can use some applications 

of inequalities (7.5)-(7.7) to obtain estimates of suitable functionals considered in 

other classes of univalent functions. 

In addition, one can find some considerations of functionals of type (1.5) in other 

classes of functions, for instance, in paper [5]. 
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