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EXACT 2-STEP DOMINATION IN GRAPHS 
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Summary. For a vertex v in a graph G, the set N2(v) consists of those vertices of G 
whose distance from v is 2. If a graph G contains a set S of vertices such that the sets 
N2(v), v £ S, form a partition of V(G), then G is called a 2-step domination graph. We 
describe 2-step domination graphs possessing some prescribed property. In addition, all 
2-step domination paths and cycles are determined. 
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1. INTRODUCTION 

Two vertices u and v in a graph G for which the distance d(u, v) = 2 are said to 

2-step dominate each other. The set of vertices of G that are 2-step dominated by v 

is denoted by N2(v); that is, 

N2(v) = {ue V(G) \d(v,u) = 2}. 

A set S of vertices of G is called a 2-step domination set if |J N2(v) = V(G). A 2-
ves 

step domination set S such that the sets N2(v), v e S, are pairwise disjoint is called 
an exact 2-step domination set. If a graph G has an exact 2-step domination set, 
then G is called an exact 2-step domination graph or, for brevity, a 2-step domination 

Each of the graphs Gi , G2, and G3 of Figure 1 is a 2-step domination graph 
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with an exact 2-step domination set Si = {1.1,1.2,1.3,1.4}, S2 = {vi,V2,V3,V4}, and 

S3 = {wi,w2,W3,w4}, respectively. We adopt the convention of drawing a vertex 

with a solid circle if the vertex belongs to the exact 2-step domination set under 

discussion. In general we follow the graph theoretic notation and terminology of the 

books [1], [2]. 

U4 U5 

Figure 1. Three 2-step domination graphs. 

2. CONSTRUCTION 2-STEP DOMINATION GRAPHS 

Our primary problem is to determine which graphs are 2-step domination graphs. 

If G is a graph of order p containing a vertex v of degree p — 1, then no vertex of G 

2-step dominates v. This observation yields the next result. We denote the radius 

and diameter of a graph G by rad G and diam G, and the maximum degree of G by 

A(G). 

Lemma 1. If G is a 2-step domination graph, then r adG ^ 2. 

According to Lemma 1 then, A(G) ^ p - 2 for every 2-step domination graph G 

of order p. No further reduction in the bound for A(G) is possible. For example, 

if p = 2n, the graph nK2 is a (p - 2)-regular 2-step domination graph in which the 

only exact 2-step domination set consists of the entire vertex set. The path P4 (the 

graph G3 of Figure 1) also has the property that it is a 2-step domination graph 

whose unique exact 2-step domination set is the vertex set of the graphs. In fact, 

these are the only connected graphs with this property. 

T h e o r e m 2. A connected graph G is a 2-step domination graph with exact 2-step 

domination set V(G) if and only if G ~ F4 or G ~ nK2 for some n ^ 2. 

P r o o f . First, the graphs nK2, n > 2, and P4 have the desired property. Con­

versely, suppose that G is a connected 2-step domination graph with exact 2-step 



domination set V(G). Necessarily, every vertex v of G has a unique vertex at dis­

tance 2 from v. Hence, diamG ^ 2. If diamG ^ 4, then G contains an induced 

subgraph isomorphic to P5, the central vertex of which is at distance 2 from two 

vertices; so this is impossible. There remain two cases. 

Case 1. diam G = 2. Then, for every vertex v of G there is a unique vertex distinct 

from v and not adjacent to v. Hence p is even, say p = 2n ^ 4, and G ~ nK2. 

Case 2. diamG = 3. In this case, G contains an induced path P4: Vi,v2,v3,v4 

and hence d(v\,v4) = 3. Thus each of v\ and v3 is the unique vertex at distance 2 

from the other, as is the case for v2 and v4. We claim that vi is an end-vertex of G. 

If this is not the case, then G contains a vertex x distinct from v2 adjacent to i>i. 

If xv2 $ E(G), then d(v2,x) = 2, which is impossible; so xv2 e E(G). Necessarily, 

xv3 e E(G) as well; for otherwise, d(v3,x) = 2. However, then, xv4 G E(G); for 

otherwise, d(v4,x) = 2. The existence of the path vi, x, v4, then contradicts the fact 

that d(vi,v4) = 3. Thus, as claimed, vt is an end-vertex of G. Similarly, v4 is an 

end-vertex of G. 

We now claim that each of v2 and v3 has degree 2. If this is not the case, then v2, 

say, is adjacent to a vertex x different from Vi and v3; but then d(vt,x) = 2, which 

is impossible. Consequently, G ~ P4. D 

The fact that the graphs nK2, n ^ 2, are (2n - 2)-regular 2-step domination 

graphs shows that r-regular 2-step domination graphs exist for every even integer 

r > 2. We next show that such is the case for odd values of r as well. 

Let S consist of 2n vertices of the graph nC4, n > 2, two adjacent vertices from 

each component. Then S is an exact 2-step domination set in the complement nC4-

Since nC4 is (in - 3)-regular, r-regular 2 step domination graphs exist for r s 1 

(mod 4). It remains to show the existence of r-regular 2-step domination graphs, 

where r = 3 (mod 4). 

For n ^ 0, define the vertex set of the graph G'n (as shown in Figure 2) by 

V(G'n) = {u,u'}U {v,v'} U {w,w'}uVuV, 

where V = {vi, v2,..., 1)4,1+2} and V = {v[,v2,..., v'4n+2} and the edge set of G'n 

by 
E(G'n) = {uu', vw, v'w'} U { H I , WX \ x £ V} U {u'x, w'x \ x £ V'}. 

Next let F ~ F' ~ K, U (2n + l)K2, where V(F) = Vu{v} and V(F') = V'u{v'}, 

such that degFV = degF , v' = 4n + 2. Now define the graph Gn by V(G„) = V(G'n) 

and 

£ ( G „ ) = £ ( G ; ) U £ ( F ) U . E ; ( E ' ) . 
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Figure 2. The graph G'n. 

The graph Gn is a (4n + 3)-regular 2-step domination graph with exact 2-step dom­

ination set {u,u',w,w'}. We now summarize these observations. 

T h e o r e m 3 . For every integer r > 2, there exists an r-reguiar 2-step domination 

graph. 

The composition G[H] of graphs G and H is constructed by replacing each vertex of 

G by a copy of H and each edge ViVj of G by the join Hi + Hj [Hi ~ Hj ~ H) of these 

respective copies of H. This operation has been often extended to the generalized 

composition G[H\ ,H2,..., Hp] of the labeled graph G with V(G) = {vi, v2,..., vp } 

determined by any p graphs Ht. Again, each vertex u; of G is replaced by Hi and 

each edge ViVj by the join Hi + Hj. This is illustrated in Figure 3. 

With the aid of the generalized composition, we can construct new 2-step domi­

nation graphs from given 2-step domination graphs. 

T h e o r e m 4 . Let G be a 2-step domination graph with V(G) = {^1,^2, • • • ,vp}. 

For positive integers n\,n2,... ,np, the generalized composition G[Kni, Kn2,..., 

Knv] is a 2-step domination graph. 

P r o o f . Since G is a 2-step domination graph, there exists an exact 2-step domi-

antion set S, say, without loss of generality, S = {vi,v2,... ,vk}. For i = 1,2, . . . ,k, 

let Hi be a graph such that H{ ~ Kni and let v'{ be a vertex of Hi. Then S' = 
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1/, 1/2 " 3 ^ 4 

G: o ° ° 

ffi: 

Я 2 : 

Я 3 : C [Hi, H2 , HЗ j H4 

Я 4 : 

Figure 3. Construction of G[HltH2, H3,H4]. 

{v[,v2,... ,v'k} is an exact 2-step domination set of the graph G[H\,H2,... ,HP]. 

a 
Since the path P 4 is a 2-step domination graph (in which every vertex belongs to 

a 2-step domination set), by varying the orders of four complete graphs, we have the 

following. 

Corollary 5. For every integer n ^ 4, there exists a 2-step domination graph of 

ordern. 

Furthermore, the proof of Theorem 4 shows that the graph P4[Kn,Kn,Kn, Kn] 

illustrates the fact that for every positive integer n, there exists a 2-step domination 

graph whose vertex set can be partitioned into n subsets, each of which is an exact 

2-step domination set. 

We now describe some additional examples of 2-step domination graphs. First 

we present some other terms, whose definitions are expected. A set S of vertices 

of a graph G is an exact 1-step domination set if the union (JN(v) of the open 

neighborhoods of the vertices v of S is V(G) and the sets N(v), v E S, are pairwise 

disjoint. A graph then is a 1-step domination graph if it contains an exact 1-step 

domination set. The graphs shown in Figure 4 are 1-step domination graphs. So the 

complete bipartite graphs Km,n, for any pair m, n of positive integers, are 1-step 

domination graphs. 

Our special interest is in disconnected 1-step domination graphs. 

Theorem 6. A disconnected graph G is a 1-step domination graph if and only if 

its complement G is a 2-step domination graph. 
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Figure 4. Four 1-step domination graphs. 

P r o o f . Let G be a disconnected graph. Suppose first that G is a 1-step dom­

ination graph. Then diam G = 2 and the vertices adjacent to a vertex v of G are 

precisely the vertices at distance 2 from v in G. Thus if 5 is an exact 1-step domi­

nation set of G, then 5 is an exact 2-step domination set of G. Conversely, if G is a 

2-step domination graph, then G is a 1-step domination graph. • 

If G is a disconnected graph whose four components G;, 1 ^ i ^ 4, are given in 

Figure 4, then by Theorem 6, G is a 2-step domination graph. We already observed 

in Theorem 2 that nK2, n ^ 2, is a 2-step domination graph. We have now seen 

several examples of 2-step domination graphs. If 5 is an exact 2-step domination set 

of a 2-step domination graph G, then, of course, 5 C V(G), but there need not be 

any relationship between the numbers \S\ and |V(G)|. 

Theorem 7. For any rational number a/b, with 0 < a/b ^ 1, there exists a 2-step 

domination graph G with an exact 2-step domination set 5 such that \S\/\V(G)\ = 

a/b. 

P r o o f . Since we have already characterized those 2-step domination graphs G 

with | 5 | / |V(G) | = 1, we assume that 0 < a/b < 1. We have already noted that the 

graph H ~ 2aK2 is a 2-step domination graph. Let G be the generalized composition 

obtained by replacing some vertex of H by the graph K^-ia+i (and replacing all 

other vertices by K\). By Theorem 4, G is a 2-step domination graph with \S\ = 4a 

and \V(G)\ = 46. Consequently, \S\/\V(G)\ = a/b. D 
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3 . 2-STEP DOMINATION PATHS AND CYCLES 

We now determine all those paths and cycles that are 2-step domination graphs. 

We begin by showing that if m = 1, 2, or 3 (mod 8), then Pm is not a 2-step 

domination graph. 

Theorem 8. For every nonnegative integer n, none of the paths Psn+i, P&n+2, 

and Pgn+3 are 2-step domination graphs. 

P r o o f . Suppose that the result is false. Since none of Pi , P 2 , and P3 are 2-step 

domination graphs, there is a smallest positive integer m (of the form 8n + 1 , 8n + 2, 

or 8n + 3) such that Pm is a 2-step domination graph. Suppose that P m is the path 

Di, v2, . . . , vm. Let S be an exact 2-step domination set of P m . We consider three 

cases. 

Case 1. Suppose that m = 8n + 1. We now consider two subcases. 

Subcase 1.1. Assume that four consecutive vertices among vi, v2, v3, v4, v5, i>6 

belongs to S. If i>i, v2, v3, v4 G S, then the vertices l>i, v2, ..., v6 of Psn+i are 

2-step dominated by the vertices vi, v2, v3, v4. Consequently, Psn-5 = Ps(n-i)+3 is 

a 2-step domination graph, contrary to assumption. 

Suppose next that v2, v3,v4, v5 G S. Then the vertices vi, v2, ..., vi of Psn+i are 

2-step dominated by the vertices v2, v3, v4, i>5. This implies that Psn-6 = Ps(n-i)+2 

is a 2-step domination graph, which is impossible. Similarly, we cannot have v3, v4, 

i>5, v6 G S. 

Subcase 1.2. Assume that vi G S. Since t>i and v2 must be 2-step dominated by 

elements of S, it follows that v3, v4 G S. We can assume that v2 $ S; otherwise, the 

situation is covered by Subcase 1.1. Since v4 is 2-step dominated by some vertex, 

vB G S. Because v5 ^ S and v7 is 2-step dominated by some vertex, v9 G S. If 

n = 1, we have a contradiction; if n. ^ 2, we are repeating this Subcase with the 

path P8(n- i)+i- Continuing in this manner, we see that v3n+\ G S but that v3n+i is 

2-step dominated by no vertex, producing a contradiction. 

If neither t>i G S nor four consecutive vertices among v\, v2, v3, v4, v5, vs belong 

to S, then we must still have v3, v4 G S in order to have vi and v2 2-step dominated. 

Now since t>3 must be 2-step dominated, u5 G S. In order for v4 to be 2-step 

dominated, either t>2 G S or v6 G S, producing four consecutive vertices among vi, 

v2, v3, v4, v&, ve in S. That is, Subcases 1.1 and 1.2 are exhaustive. 

The proofs of the cases where m = 8n + 2 and m = 8n + 3 are similar and are, 

therefore, omitted. D 
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We next complete the problem for paths by showing that all other paths are 2-step 

domination graphs. 

T h e o r e m 9. For every positive integer n, PSn is a 2-step domination graph, 

and for every nonnegative integer n, PSn+4, Pgn+s, PSn+6, and PSn+7 are 2-step 

domination graphs. 

P r o o f . Consider the path Pm: v\, V2, ..., vm, where m is of the form described 

in the statement of the theorem. For m < 8, Figure 5 shows that each path Pm 

is a 2-step domination graph. For j = 4, 5, 6, 7, denote by Sj the exact 2-step 

domination set of the path Pj. 

P 4 : . . . . p 5 : . . . . o 

Figure 5. 

We now make some observations that will be useful to us later. For the path PSn, 

n ^ 1, an exact 2-step domination set Si = {vt \ i = 3,4,5,6 (mod 8)} is described 

in Figure 6. The set S2 = {v{ | i = 1,2,3,4 (mod 8)} is also shown in Figure 6. It 

is not an exact 2-step domination set, but in this case, every vertex of PSn is 2-step 

dominated except vSn-\ and vSn. 

vSn 

~~~în 
Figure 6. 

The set Si shows that PSn, n > 1, is a 2-step domination graph. Now label 

the vertices of the paths Pj (j = 4,5,6,7) in Figure 5 from left to right as vSn+i, 

^8n+2, • • •, vSn+j. The paths PSn+j can be formed by taking the union of PSn (see 

Figure 6) and Pj and joining vSn and vSn+l. The set S2 U Sj is an exact 2-step 

domiantion set for PSn+j for j = 4,5,6; while Si U S7 is an exact 2-step domination 

set for PSn+7. • 

Coro l l a ry 10. The path Pm is a 2-step domiantion graph if an only if m = 

0,4,5,6, or 7 (mod 8), 

In order to characterize the 2-step domination cycles, we begin with a preliminary 

result. 

L e m m a 1 1 . If a cycle Cn: v\, v2, ..., vn, V\ (n ^ 4J is a 2-step domination graph 

with exact 2-step domination set S, then there is an integer i (1 <_ i <_ n) such that 
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either (1) vit vi+i, vi+2, vi+3 £ S or (2) vt, vi+2t Vi+3 £ S and vi+i $ S (where all 

addition is performed modulo n). 

P r o o f . If n = 4, then S = {vj ,v 2 , v 3 ,u 4 } is the only exact 2-step domination 

set, and the result follows. Thus we may assume that n ^ 5. Suppose that there are 

no vertices vi, vi+i, vi+2, vi+3 for which (1) or (2) holds. 

Every vertex Vj £ S (1 ^ j ^ n) is 2-step dominated by either v,_2 or Vj+2. Hence, 

without loss of generality, we may assume that vi, v3 £ S. By our assumption, there 

are now two possibilities for u2 and v4. 

Case 1. v2,Vi $ S. Hence vn £ S and so v n _ 2 G S. (See Figure 7a.) If vn-i 6 S, 

then (1) is satisfied; while if v„_i $ S, (2) is satisfied, producing a contradiction. 

Case 2. v2 £ S and v4 $ S. (See Figure 7b.) Since v2 is not 2-step dominated by 

v4, it follows that vn e S. Thus, vn, Vi, v2, v3 £ S, producing a contradiction. D 

Figure 7. 

We can now describe all 2-step domination cycles. 

T h e o r e m 12. A cycJe Cn is a 2-step domination graph if and only if n = 4 or 

n = 0 (mod 8). 

P r o o f . We have already seen that C4 is a 2-step domination graph. It is 

straightforward to see that for other values of m < 8, the cycle Cm is not a 2-step 

domination graph. Now let Cin: vi,v2,... ,vgn,vi (n ^ 1) be a cycle. The set 

S = {vi | i = 1,2,3,4 (mod 8)} is an exact 2-step domination set. 

For the converse, assume that Cm: Vi ,V2, . . . ,vm ,Vi is a 2-step domination graph 

with m ^ 8 and with exact 2-step domiantion set S. By Lemma 11, we can assume, 

without loss of generality, that either (1) Vi,V2,Vs,V4 £ S or (2) vi,v3,v^ £ S and 

v2 ^ S. If (1) occurs, then i>5, v6, V 7 , D 8 ^ S. If m > 8, then the vertices of Pm must 

repeat in this manner in groups of 8, that is, v, 6 S if i s 1, 2, 3, 4 (mod 8) and 
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V{ £ S otherwise. Thus m = 0 (mod 8). If (2) occurs, then i>5,̂ 7> v8 $ & a n ^ v6 e &• 
If m > 8, then the vertices of Pm must repeat in this manner as well. In any case, 
m = 0(mod8). • 
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