Gary Chartrand; Frank Harary; Moazzem Hossain; Kelly Schultz
Exact 2-step domination in graphs

Mathematica Bohemica, Vol. 120 (1995), No. 2, 125–134

Persistent URL: http://dml.cz/dmlcz/126228

Terms of use:
© Institute of Mathematics AS CR, 1995

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz
EXACT 2-STEP DOMINATION IN GRAPHS

GARY CHATRANDB, 1 Kalamazoo, FRANK HARRARY, 2 Las Cruces, MOAZZEM HOSSAIN, San Jose, KELLY SCHULTZ, 1 Kalamazoo

(Received September 7, 1993)

Summary. For a vertex \(v \) in a graph \(G \), the set \(N_2(v) \) consists of those vertices of \(G \) whose distance from \(v \) is 2. If a graph \(G \) contains a set \(S \) of vertices such that the sets \(N_2(v), v \in S \), form a partition of \(V(G) \), then \(G \) is called a 2-step domination graph. We describe 2-step domination graphs possessing some prescribed property. In addition, all 2-step domination paths and cycles are determined.

Keywords: 2-step domination graph

AMS classification: 05C38

1. INTRODUCTION

Two vertices \(u \) and \(v \) in a graph \(G \) for which the distance \(d(u, v) = 2 \) are said to 2-step dominate each other. The set of vertices of \(G \) that are 2-step dominated by \(v \) is denoted by \(N_2(v) \); that is,

\[
N_2(v) = \{ u \in V(G) \mid d(v, u) = 2 \}.
\]

A set \(S \) of vertices of \(G \) is called a 2-step domination set if \(\bigcup_{v \in S} N_2(v) = V(G) \). A 2-step domination set \(S \) such that the sets \(N_2(v), v \in S \), are pairwise disjoint is called an exact 2-step domination set. If a graph \(G \) has an exact 2-step domination set, then \(G \) is called an exact 2-step domination graph or, for brevity, a 2-step domination graph. Each of the graphs \(G_1, G_2, \) and \(G_3 \) of Figure 1 is a 2-step domination graph.

1 Research supported in part by Office of Naval Research Grant N00014-91-J-1050
2 Research supported in part by Office of Naval Research Grant N00014-90-J-1850
with an exact 2-step domination set $S_1 = \{u_1, u_2, u_3, u_4\}$, $S_2 = \{v_1, v_2, v_3, v_4\}$, and $S_3 = \{w_1, w_2, w_3, w_4\}$, respectively. We adopt the convention of drawing a vertex with a solid circle if the vertex belongs to the exact 2-step domination set under discussion. In general we follow the graph theoretic notation and terminology of the books [1], [2].

\[G_1 : \hspace{1cm} G_2 : \hspace{1cm} G_3 : \]

Figure 1. Three 2-step domination graphs.

2. CONSTRUCTION 2-STEP DOMINATION GRAPHS

Our primary problem is to determine which graphs are 2-step domination graphs. If G is a graph of order p containing a vertex v of degree $p - 1$, then no vertex of G 2-step dominates v. This observation yields the next result. We denote the radius and diameter of a graph G by $\text{rad} G$ and $\text{diam} G$, and the maximum degree of G by $\Delta(G)$.

\textbf{Lemma 1.} If G is a 2-step domination graph, then $\text{rad} G \leq 2$.

According to Lemma 1 then, $\Delta(G) \leq p - 2$ for every 2-step domination graph G of order p. No further reduction in the bound for $\Delta(G)$ is possible. For example, if $p = 2n$, the graph nK_2 is a $(p - 2)$-regular 2-step domination graph in which the only exact 2-step domination set consists of the entire vertex set. The path P_4 (the graph G_3 of Figure 1) also has the property that it is a 2-step domination graph whose unique exact 2-step domination set is the vertex set of the graphs. In fact, these are the only connected graphs with this property.

\textbf{Theorem 2.} A connected graph G is a 2-step domination graph with exact 2-step domination set $V(G)$ if and only if $G \simeq P_4$ or $G \simeq nK_2$ for some $n \geq 2$.

\textbf{Proof.} First, the graphs nK_2, $n \geq 2$, and P_4 have the desired property. Conversely, suppose that G is a connected 2-step domination graph with exact 2-step
domination set $V(G)$. Necessarily, every vertex v of G has a unique vertex at distance 2 from v. Hence, $\text{diam } G \geq 2$. If $\text{diam } G \geq 4$, then G contains an induced subgraph isomorphic to P_5, the central vertex of which is at distance 2 from two vertices; so this is impossible. There remain two cases.

Case 1. $\text{diam } G = 2$. Then, for every vertex v of G there is a unique vertex distinct from v and not adjacent to v. Hence p is even, say $p = 2n \geq 4$, and $G \cong \overline{K}_{2n}$.

Case 2. $\text{diam } G = 3$. In this case, G contains an induced path $P_4: v_1, v_2, v_3, v_4$ and hence $d(v_1, v_4) = 3$. Thus each of v_1 and v_4 is the unique vertex at distance 2 from the other, as is the case for v_2 and v_3. We claim that v_1 is an end-vertex of G. If this is not the case, then G contains a vertex x distinct from v_2 and v_3; but then $d(v_1, x) = 2$, which is impossible. Consequently, $G \cong P_4$.

The fact that the graphs \overline{K}_{2n}, $n \geq 2$, are $(2n - 2)$-regular 2-step domination graphs shows that r-regular 2-step domination graphs exist for every even integer $r > 2$. We next show that such is the case for odd values of r as well.

Let S consist of $2n$ vertices of the graph nC_4, two adjacent vertices from each component. Then S is an exact 2-step domination set in the complement $\overline{nC_4}$. Since $\overline{nC_4}$ is $(4n - 3)$-regular, r-regular 2-step domination graphs exist for $r \equiv 1 \pmod{4}$. It remains to show the existence of r-regular 2-step domination graphs, where $r \equiv 3 \pmod{4}$.

For $n \geq 0$, define the vertex set of the graph G'_n (as shown in Figure 2) by

$$V(G'_n) = \{u, u'\} \cup \{v, v'\} \cup \{w, w'\} \cup V \cup V',$$

where $V = \{v_1, v_2, \ldots, v_{n+2}\}$ and $V' = \{v'_1, v'_2, \ldots, v'_{n+2}\}$ and the edge set of G'_n by

$$E(G'_n) = \{uu', vv', ww', uv, u'v', uw, w'u' | x \in V\} \cup \{xx, wx \mid x \in V\} \cup \{w'x, w'x \mid x \in V'\}.$$

Next let $F \cong K_1 \cup (2n + 1)K_2$, where $V(F) = V \cup \{v\}$ and $V'(F) = V \cup \{v'\}$, such that $\deg F v = \deg F v' = 4n + 2$. Now define the graph G_n by $V(G_n) = V(G'_n)$ and

$$E(G_n) = E(G'_n) \cup E(F) \cup E(F').$$
The graph G_n is a $(4n + 3)$-regular 2-step domination graph with exact 2-step domination set $\{u, u', w, w'\}$. We now summarize these observations.

Theorem 3. For every integer $r > 2$, there exists an r-regular 2-step domination graph.

The composition $G[H]$ of graphs G and H is constructed by replacing each vertex of G by a copy of H and each edge $v_i v_j$ of G by the join $H_i + H_j$ of these respective copies of H. This operation has been often extended to the generalized composition $G[H_1, H_2, \ldots, H_p]$ of the labeled graph G with $V(G) = \{v_1, v_2, \ldots, v_p\}$ determined by any p graphs H_1. Again, each vertex v_i of G is replaced by H_i and each edge $v_i v_j$ by the join $H_i + H_j$. This is illustrated in Figure 3.

With the aid of the generalized composition, we can construct new 2-step domination graphs from given 2-step domination graphs.

Theorem 4. Let G be a 2-step domination graph with $V(G) = \{v_1, v_2, \ldots, v_p\}$. For positive integers n_1, n_2, \ldots, n_p, the generalized composition $G[K_{n_1}, K_{n_2}, \ldots, K_{n_p}]$ is a 2-step domination graph.

Proof. Since G is a 2-step domination graph, there exists an exact 2-step domination set S, say, without loss of generality, $S = \{v_1, v_2, \ldots, v_k\}$. For $i = 1, 2, \ldots, k$, let H_i be a graph such that $H_i \cong K_{n_i}$ and let v'_i be a vertex of H_i. Then $S' = \{v'_1, v'_2, \ldots, v'_k\}$ is a 2-step domination set of $G[K_{n_1}, K_{n_2}, \ldots, K_{n_p}]$. Therefore, $G[K_{n_1}, K_{n_2}, \ldots, K_{n_p}]$ is a 2-step domination graph.
{v_1', v_2', ..., v_k'} is an exact 2-step domination set of the graph $G[H_1, H_2, ..., H_4]$.

Since the path P_4 is a 2-step domination graph (in which every vertex belongs to a 2-step domination set), by varying the orders of four complete graphs, we have the following.

Corollary 5. For every integer $n \geq 4$, there exists a 2-step domination graph of order n.

Furthermore, the proof of Theorem 4 shows that the graph $P_4[K_n, K_n, K_n, K_n]$ illustrates the fact that for every positive integer n, there exists a 2-step domination graph whose vertex set can be partitioned into n subsets, each of which is an exact 2-step domination set.

We now describe some additional examples of 2-step domination graphs. First we present some other terms, whose definitions are expected. A set S of vertices of a graph G is an exact 1-step domination set if the union $\bigcup N(v)$ of the open neighborhoods of the vertices v of S is $V(G)$ and the sets $N(v)$, $v \in S$, are pairwise disjoint. A graph then is a 1-step domination graph if it contains an exact 1-step domination set. The graphs shown in Figure 4 are 1-step domination graphs. So the complete bipartite graphs $K_{m,n}$, for any pair m, n of positive integers, are 1-step domination graphs.

Our special interest is in disconnected 1-step domination graphs.

Theorem 6. A disconnected graph G is a 1-step domination graph if and only if its complement \overline{G} is a 2-step domination graph.
Proof. Let G be a disconnected graph. Suppose first that G is a 1-step domination graph. Then $\text{diam} \ G = 2$ and the vertices adjacent to a vertex v of G are precisely the vertices at distance 2 from v in \overline{G}. Thus if S is an exact 1-step domination set of G, then S is an exact 2-step domination set of \overline{G}. Conversely, if \overline{G} is a 2-step domination graph, then G is a 1-step domination graph. •

If G is a disconnected graph whose four components $G_i, 1 \leq i \leq 4$, are given in Figure 4, then by Theorem 6, G is a 2-step domination graph. We already observed in Theorem 2 that $nK_2, n \geq 2$, is a 2-step domination graph. We have now seen several examples of 2-step domination graphs. If S is an exact 2-step domination set of a 2-step domination graph G, then, of course, $S \subseteq V(G)$, but there need not be any relationship between the numbers $|S|$ and $|V(G)|$.

Theorem 7. For any rational number a/b, with $0 < a/b < 1$, there exists a 2-step domination graph G with an exact 2-step domination set S such that $|S|/|V(G)| = a/b$.

Proof. Since we have already characterized those 2-step domination graphs G with $|S|/|V(G)| = 1$, we assume that $0 < a/b < 1$. We have already noted that the graph $H \simeq 3aK_2$ is a 2-step domination graph. Let G be the generalized composition obtained by replacing some vertex of H by the graph K_{a+b+1} (and replacing all other vertices by K_1). By Theorem 4, G is a 2-step domination graph with $|S| = 4a$ and $|V(G)| = 4b$. Consequently, $|S|/|V(G)| = a/b$. □
3. 2-STEP DOMINATION PATHS AND CYCLES

We now determine all those paths and cycles that are 2-step domination graphs. We begin by showing that if \(m \equiv 1, 2, \) or 3 (mod 8), then \(P_m \) is not a 2-step domination graph.

Theorem 8. For every nonnegative integer \(n \), none of the paths \(P_{8n+1}, P_{8n+2}, \) and \(P_{8n+3} \) are 2-step domination graphs.

Proof. Suppose that the result is false. Since none of \(P_1, P_2, \) and \(P_3 \) are 2-step domination graphs, there is a smallest positive integer \(m \) (of the form \(8n + 1, 8n + 2, \) or \(8n + 3 \)) such that \(P_m \) is a 2-step domination graph. Suppose that \(P_m \) is the path \(v_1, v_2, \ldots, v_m \). Let \(S \) be an exact 2-step domination set of \(P_m \). We consider three cases.

Case 1. Suppose that \(m = 8n + 1 \). We now consider two subcases.

Subcase 1.1. Assume that four consecutive vertices among \(v_1, v_2, v_3, v_4, v_5, v_6 \) belongs to \(S \). If \(v_i, v_{i-1}, v_{i+1}, v_{i+2} \) belong to \(S \), then the vertices \(v_1, v_2, \ldots, v_6 \) of \(P_{8n+1} \) are 2-step dominated by the vertices \(v_1, v_2, v_3, v_4 \). Consequently, \(P_{8n-5} = P_{8(n-1)+3} \) is a 2-step domination graph, contrary to assumption.

Suppose next that \(v_2, v_3, v_4, v_5 \) belong to \(S \). Then the vertices \(v_1, v_2, \ldots, v_7 \) of \(P_{8n+1} \) are 2-step dominated by the vertices \(v_2, v_3, v_4, v_5 \). This implies that \(P_{8n-6} = P_{8(n-1)+2} \) is a 2-step domination graph, which is impossible. Similarly, we cannot have \(v_3, v_4, v_5, v_6 \) belong to \(S \) in order to have \(v_1 \) and \(v_2 \) 2-step dominated.

Subcase 1.2. Assume that \(v_1 \) belong to \(S \). Since \(v_1 \) and \(v_2 \) must be 2-step dominated by elements of \(S \), it follows that \(v_3, v_4 \) belong to \(S \). We can assume that \(v_5 \notin S \); otherwise, the situation is covered by Subcase 1.1. Since \(v_4 \) is 2-step dominated by some vertex, \(v_5 \) belongs to \(S \). Because \(v_5 \notin S \) and \(v_7 \) is 2-step dominated by some vertex, \(v_5 \) belong to \(S \). If \(n = 1 \), we have a contradiction; if \(n \geq 2 \), we are repeating this Subcase with the path \(P_{8(n-1)+1} \). Continuing in this manner, we see that \(v_{8n+1} \) belong to \(S \) but that \(v_{8n+1} \) is 2-step dominated by no vertex, producing a contradiction.

If neither \(v_1 \) nor four consecutive vertices among \(v_1, v_2, v_3, v_4, v_5, v_6 \) belong to \(S \), then we must still have \(v_3, v_4 \) belong to \(S \) in order to have \(v_1 \) and \(v_2 \) 2-step dominated. Now since \(v_3 \) must be 2-step dominated, \(v_5 \) belong to \(S \). In order for \(v_4 \) to be 2-step dominated, either \(v_2 \) belong to \(S \) or \(v_6 \) belong to \(S \), producing four consecutive vertices among \(v_1, v_2, v_3, v_4, v_5, v_6 \) in \(S \). That is, Subcases 1.1 and 1.2 are exhaustive.

The proofs of the cases where \(m = 8n + 2 \) and \(m = 8n + 3 \) are similar and are, therefore, omitted.

\[\square \]
We next complete the problem for paths by showing that all other paths are 2-step domination graphs.

Theorem 9. For every positive integer \(n \), \(P_{8n} \) is a 2-step domination graph, and for every nonnegative integer \(n \), \(P_{8n+4}, P_{8n+5}, P_{8n+6}, \) and \(P_{8n+7} \) are 2-step domination graphs.

Proof. Consider the path \(P_m: v_1, v_2, \ldots, v_m \), where \(m \) is of the form described in the statement of the theorem. For \(m < 8 \), Figure 5 shows that each path \(P_m \) is a 2-step domination graph. For \(j = 4, 5, 6, 7 \), denote by \(S_j \) the exact 2-step domination set of the path \(P_j \).

![Figure 5](image)

We now make some observations that will be useful to us later. For the path \(P_{8n} \), \(n \geq 1 \), an exact 2-step domination set \(S_1 = \{v_i \mid i \equiv 3, 4, 5, 6 \pmod{8}\} \) is described in Figure 6. The set \(S_2 = \{v_i \mid i \equiv 1, 2, 3, 4 \pmod{8}\} \) is also shown in Figure 6. It is not an exact 2-step domination set, but in this case, every vertex of \(P_{8n} \) is 2-step dominated except \(v_{8n-1} \) and \(v_{8n} \).

![Figure 6](image)

The set \(S_1 \) shows that \(P_{8n}, n \geq 1 \), is a 2-step domination graph. Now label the vertices of the paths \(P_j (j = 4, 5, 6, 7) \) in Figure 5 from left to right as \(v_{8n+1}, v_{8n+2}, \ldots, v_{8n+j} \). The paths \(P_{8n+j} \) can be formed by taking the union of \(P_n \) (see Figure 6) and \(P_j \) and joining \(v_{8n} \) and \(v_{8n+1} \). The set \(S_j \cup S_1 \) is an exact 2-step domination set for \(P_{8n+j} \) for \(j = 4, 5, 6 \); while \(S_1 \cup S_1 \) is an exact 2-step domination set for \(P_{8n+7} \).

Corollary 10. The path \(P_m \) is a 2-step domination graph if and only if \(m = 0, 4, 5, 6, \) or \(7 \pmod{8} \).

In order to characterize the 2-step domination cycles, we begin with a preliminary result.

Lemma 11. If a cycle \(C_n: v_1, v_2, \ldots, v_n, v_1 \) (\(n \geq 4 \)) is a 2-step domination graph with exact 2-step domination set \(S \), then there is an integer \(i \) (\(1 \leq i \leq n \)) such that...
either (1) \(v_i, v_{i+1}, v_{i+2}, v_{i+3} \in S \) or (2) \(v_i, v_{i+2}, v_{i+3} \in S \) and \(v_{i+1} \notin S \) (where all addition is performed modulo \(n \)).

Proof. If \(n = 4 \), then \(S = \{ v_1, v_2, v_3, v_4 \} \) is the only exact 2-step domination set, and the result follows. Thus we may assume that \(n \geq 5 \). Suppose that there are no vertices \(v_1, v_{i+1}, v_{i+2}, v_{i+3} \) for which (1) or (2) holds.

Every vertex \(v_j \in S \) (1 \(\leq j \leq n \)) is 2-step dominated by either \(v_{j-1} \) or \(v_{j+2} \). Hence, without loss of generality, we may assume that \(v_1, v_3 \in S \). By our assumption, there are now two possibilities for \(v_2 \) and \(v_4 \).

Case 1. \(v_2, v_4 \notin S \). Hence \(v_n \in S \). (See Figure 7a.) If \(v_{n-1} \in S \), then (1) is satisfied; while if \(v_{n-1} \notin S \), (2) is satisfied, producing a contradiction.

Case 2. \(v_2 \in S \) and \(v_4 \notin S \). (See Figure 7b.) Since \(v_2 \) is not 2-step dominated by \(v_4 \), it follows that \(v_n \in S \). Thus, \(v_n, v_1, v_2, v_3 \in S \), producing a contradiction. \(\blacksquare \)

![Figure 7](image)

We can now describe all 2-step domination cycles.

Theorem 12. A cycle \(C_n \) is a 2-step domination graph if and only if \(n = 4 \) or \(n \equiv 0 \pmod{8} \).

Proof. We have already seen that \(C_4 \) is a 2-step domination graph. It is straightforward to see that for other values of \(m < 8 \), the cycle \(C_m \) is not a 2-step domination graph. Now let \(C_m : v_1, v_2, \ldots, v_m, v_1 \) (\(n \geq 1 \)) be a cycle. The set \(S = \{ v_i \mid i \equiv 1, 2, 3, 4 \pmod{8} \} \) is an exact 2-step domination set.

For the converse, assume that \(C_m : v_1, v_2, \ldots, v_m, v_1 \) is a 2-step domination graph with \(m \geq 8 \) and with exact 2-step domination set \(S \). By Lemma 11, we can assume, without loss of generality, that (1) \(v_1, v_2, v_3, v_4 \in S \) or (2) \(v_1, v_2, v_4 \in S \) and \(v_3 \notin S \). If (1) occurs, then \(v_5, v_6, v_7, v_8 \notin S \). If \(m > 8 \), then the vertices of \(P_m \) must repeat in this manner in groups of 8, that is, \(v_i \in S \) if \(i \equiv 1, 2, 3, 4 \pmod{8} \) and

133
otherwise. Thus $m \equiv 0 \pmod{8}$. If (2) occurs, then $v_3, v_6, v_8 \notin S$ and $v_9 \in S$.
If $m > 8$, then the vertices of P_m must repeat in this manner as well. In any case, $m \equiv 0 \pmod{8}$.

References

Authors' addresses: G. Chartrand, K. Schultz, Department of Mathematics and Statistics, Western Michigan University, Kalamazoo, Michigan 49008-5152; F. Harary, Department of Computer Science, New Mexico State University, Las Cruces, New Mexico 88003; M. Hossain, Compass Design Automation, M/S 410, 1865 Lundi Ave., San Jose, California 95131.