
Mathematica Bohemica

Ján Jakubík
Sequential convergences on free lattice ordered groups

Mathematica Bohemica, Vol. 117 (1992), No. 1, 48–54

Persistent URL: http://dml.cz/dmlcz/126229

Terms of use:
© Institute of Mathematics AS CR, 1992

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/126229
http://dml.cz


117 (1992) MATHEMATICA BOHEMICA No. 1, 48-54 

SEQUENTIAL CONVERGENCES ON FREE LATTICE ORDERED 

GROUPS 

JAN JAKUBIK, Kosice 

(Received January 8, 1990) 

Summary. In this paper the partially ordered set Conv G of all sequential convergences 
on G is investigated, where G is either a free lattice ordered group or a free abelian lattice 
ordered group. • 
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J. Nov&k [16] proved that every free group admits a nontrivial sequential conver­
gence such that the group operation is sequentially continuous. Compatible sequen­
tial convergences on free groups were dealt with by Frifc and Zanolin [7] (cf. also 
further references quoted there). 

Let G be a lattice ordered group. The partially ordered set Conv G of all com­
patible sequential convergences on G was studied by Harminc [10]. The questions 
dealing with ConvG were investigated also in the papers [8], [9], [12], [13], [14]. 

In what follows, we will apply the shorter term "convergence" rather than "com­
patible sequential convergence". 

Let a be a cardinal. The free (abelian) lattice ordered group with a free generators 
will be denoted by G(a) (or A(a), respectively). 

A natural question arises whether G(a) and A(a) admit a nontrivial convergence. 
In the present paper the following results will be proved: 
(A) If a = 1, then G(a) = -4(a) has no nontrivial convergence. 
(B) If a ^ 2, then G(a) admits a nontrivial convergence. 
(C) If a ^ 2, then A(a) admits 22 ° nontrivial convergences. 
(D) If a ^ 2, then the partially ordered set Conv.A(a) has no atom. 
The question whether the assertions of (C) and (D) are valid for G(a) remains 

open. 
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1. PRELIMINARIES 

In the whole paper the symbol a denotes a cardinal. The group operation in a 
lattice ordered group will be denoted additively. 

The free abelian lattice ordered group A(a) of rank a has benn investigated by 
Weinberg [17], [18], Bernau [2] and Conrad [4]. For the non-abelian case, the free 
lattice ordered group G(a) with a free generators was studied by Conrad [5] (cf. also 
the monographs [1], [6], [15]). 

The following two results will be applied below. 

Lemma 1.1, (Cf. [17], p. 197.) Let a ^ 2,0 < he A(a). Then there are elements 
0i and 02 in A(a) such that 0 < g% < h is valid for t = 1,2 and g\ A 02 = 0. 

Proposition 1.2. (Cf. [5]J) Let X be the lAdeal of G(a) generated by the set 
z -f y — x— y, where z and y run over G(a). Then the factor lattice ordered group 
G(a)/X is isomorphic to A(a). 

Next let us recall, for the sake of completeness, the basic definitions concerning 
convergences in a lattice ordered group G. The notation from [12] will be applied. 

Let N be the set of all positive integers. The direct product \[ Gn, where Gn = G 
n£N 

for each n G N, will be denoted by GN. If (gn) G GN, g eG, and if gn = g is valid for 
each n € N, then we write (gn) = const g. The elements of GN are called sequences 
in G; the notion of a subsequence has the usual meaning. 

A subset /? of the positive cone (GN)+ of GN is said to be a convergence in G if /? 
is a convex subsemigroup of (GN)+ such that the following conditions are satisfied: 

(I) If (gn) G /?, then each subsequence of (gn) belongs to /?. 
(II) Let (gn) G (GN)+. If each subsequence of (gn) ha« a subsequence belonging 

to (/?), then (gn) belongs to 0. 
(III) Let g eG. Then const g belongs to 0 if and only if g = 0. 
The system of all convergences in G will be denoted by Conv G\ this system is 

partially ordered by inclusion. 
For (gn) G (GN)+ and g G G we put gn -+p g if and only if (|$ - gn\) G ,1?. 

Proposition 1.3. (Cf. [10].) The partially ordered set ConvG is a A-semilattice 
having a least element. Each interval of ConvG is a complete Brouwerian lattice. 

The least element of ConvG is the trivial convergence on G; its definition is 
obvious. It will be denoted by A). 
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2. T H E PROOFS OP (A) - (D) 

P r o o f of (A): Let No be the additive group of all integers with the natural 
linear order. It is well-known (cf. [3], Chap. XIII) that the lattice ordered group 
G(l) is isomorphic to No x No; thus A(l) = G(l). 

In view of [9], Corollary 2.10 we have card Conv No = 1. According to [9], Theorem 
4.5, the partially ordered set Conv(No x No) is isomorphic to Conv No x Conv No. 
Hence cardConv(No x No) = 1. Therefore (A) is valid. • 

Let us consider the following condition for a lattice ordered group G: 
(*) For each 0 < h £ G there exist gi and g2 in G such that g\ A #2 = 0 and 

0 < # < A ( « = 1,2). 
A system {gj} (j £ J) of elements of a lattice ordered group will be called disjoint 

if gj > 0 for each j £ J and gj^ A < (̂2) = 0 whenever j ( l ) and i(2) are distinct 
elements of J . 

Lemma 2.1. Let G be a lattice ordered group} G ^ {0}. Assume that G satisfies 
the condition (*). Then there is an infinite disjoint system in G. 

P r o o f . We define by induction elements x\n and x2n (n = 1, 2, . . . ) of G such 
that 

(i) 0 < xn%, 0 < xn2 and xn\ A xn2 = 0 for each n € N, 
(ii) if 1 < n € N, then a;n+i.i a n d ^n+i,2 belong to the interval [0, xnt2] of G. 
Since G £ {0}, there is 0 < h £ G. Because G satisfies the condition (*), there 

are elements x\\ and X12 in G such that 0 < xu < h (i = 1,2) and x\\ A x\2 = 0. 
Assume that we have constructed Xk\ and Xk2 for k = 1, 2, . . . , n such that (i) 

is valid for Jb = 1, 2, . . . , n and (ii) is valid for k = 1, 2, . . . , n — 1. Put h' = xn>2. 
According to (*) there are xn+i,i and £n+i,2 in G such that 0 < -cn+i,» < h' f° r 

t = 1,2, and xn+i,i A arn+i,2 = 0. Thus (i) is valid for k = 1, 2, . . . , n + 1, and (ii) 
holds for Jb = 1, 2, . . . , n. 

In view of (i) and (ii) we infer that {xn i} (n £ N) is an infinite disjoint system in 
G. • 

P r o o f of (C): Let a ^ 2. Put A(a) = G. In view of 1.1, G satisfies the condition 
(*). Thus, according to 2.1, there is an infinite disjoint set in G. Now it follows from 
[9], Theorem 7.7 that 

card Conv G = 22K°. 

Thus (C) holds. D 

L e m m a 2.2. Let G and H be lattice ordered groups such that G is a homomorphic 
image of H. Let n £ N and assume that there is a disjoint subset S\ in G with 
card Si = n. Then there exists a disjoint S2 in H with cardS2 = n. 
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P r o o f . Without loss of generality we can suppose that there is an -Mdeal X in 
H such that G = H/X. For h £ H we denote h = h + X. Let us verify by induction 
that the following assertion a(n) is valid for each n £ N: 

(a(n)) If di, d2, . . . , dn is a disjoint subset of C?, then there are elements 61, . . . , 
6n in H such that 6, £ a, for • = 1, 2, . . . , n, and {61,62 , . . . , 6n} is a disjoint subset 
ofH. 

Let n = 1. Then a\ > 0, hence there is 0 < 61 £ di, and {61} is a disjoint subset 
ofH. 

Assume that the above assertion holds for some n £ N. Let {di, d 2 , . . . , dn+i} be 
a disjoint subset of G. Thus {di, d 2 , . . . , dn} is disjoint subset of G as well; hence 
there exist 6< £ dt- (t = 1 ,2 , . . . , n) such that {6 i ,6 2 , . . . , 6n} is a disjoint subset of 
H. 

We have 0 < dn+i, hence there is 6 n + 1 £ dn+i with 0 < 6 n + 1 . For • = 1, 2, . . . , n 
we put 

Ci = 6(- A 6 n + 1 , bi = 6J - a. 

Then c, £ X for • = 1, 2, . . . , n. Next, if 6, = 0 for some « £ {1 ,2 , . . . , n} then 6J G 0, 
which is a contradiction. Thus 6,- > 0 for • = 1, 2, . . . , n. Clearly 6,- € dt- for • = 1, 
2, . . . , n. 

Denote 
c = ci V c2 V . . . V cn , 6n+i = 6 n + 1 - c. 

We have 0 ^ c ^ 6 n + 1 , hence 0 ^ 6n+i. Clearly c £ C. Thus 6n+i € d n+i. If 
6n+i = 0, then 6 n + 1 £ 0, which is impossible; therefore 6n+i > 0. 

Now from the relation 6,- ^ 6(- for • = 1, 2, . . . , n we infer that {61,62 , . . . , 6n} is a 
disjoint of H. Let • £ { 1 , 2 , . . . , n} . Then 

0 ^ 6t- A 6n+i = 6, A (6 n + 1 - c) ^ 6t- A (6 n + 1 - ct) = 

= (6(. - a) A (6 n + 1 - c.) = (6(. A 6n + 1) - ci = 0. 

Thus 6, A 6n + i = 0. Therefore {61,62,.. . ,6 n+i} is a disjoint subset of H. This 
completes the proof of the lemma. D 

Lemma 2.3. Let a ^ 2 and n £ N. Then there exists a disjoint set with n 
elements in G(a). 

P r o o f . We have already proved above that there is an infinite disjoint set in 
A(a). According to 1.2, -4(a) is a homomorphic image of G(a). Hence in view of 
2.2, there is a disjoint subset with n elements in G(a). D 

Lemma 2.4. Let a ^ 2. Then there is an infinite disjoint subset in G(a). 

P r o o f . This is a consequence of 2.3 and of [6], Theorem 3.9. 
The following lemma generalizes Theorem 7.3 of [9]. D 
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Lemma 2.5. Let {bn} (n € N) be a disjoint subset of a lattice ordered group G. 
Then there exists /? € ConvG such that the sequence (bn) belongs to /?. 

P r o o f . By way of contradiction, suppose that there exists no /? with the desired 
properties. 

Thus (cf. [10], Theorem 2.2) there exist k e N, </, 0i, gi> --., 9k€G and subse­
quences (yJJ1) (m = 1, 2, . . . , k) of the sequence (6n) such that for each n e N the 
relation 

(1) 0<9^ E t e m + j t f - t fm) 
m = l 

is valid. 
Assume that k is the least positive integer with the just mentioned property. 
Since the sequence (bn) is disjoint it follows that each its subsequence is disjoint 

and therefore for each m = 1, 2, . . . , k the sequence 

(gm + yn - gm)n£N 

is disjoint as well. This implies that we cannot have Jb = 1; hence k > 1. 
Consider the relation (1) for n = 1. Hence there are elements hi, h%, . . . , hk in 

G+ such that 

(2) g = Ai + h2 + . . . + hk 

and 

(3) ^ < 0m + i f f - 0 m form = 1 , 2 , . . . , * . 

In view of (2) there exists m € {1 ,2 , . . . , *} such that hm > 0; without loss of 
generality we can suppose that m = 1. 

According to (3) we have 

(4) hx A (<7i + yn - 01) = 0 for n = 2 , 3 , . . . . 

From (1) we obtain 

k 

(5) 0 < Ai < £ (0m + y% - ym) 
m=sl 

for each n € iV; let us consider the relation (5) for n ^ 2. By applying (4) we get 

k 

0<hx^ J2 (gm + C - gm) for each n ^ 2. 
171=2 

In view of the minimality of * we have arrived at a contradiction. • 
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R e m a r k 2.5.1. The above lemma can be obtained also by applying [11], Section 
6, Lemma 6.6. (In [11], Section 6 it is assumed that lattice oredered groups under 
consideration are abelian, but Lemma 6.6 is valid in the non-abelian case, too). 

Corollary 2.6. Let {bn} (n G N) be a disjoint subset of a lattice ordered group 
G. Then card ConvG > 1. 

P r o o f of (B): This is an immediate consequence of 2.4 and 2.6. D 

Lemma 2.7. Let G be a lattice ordered group and let (xn) G (GN)* such that 
xn > 0 for each n G N. Assume that G satisfies the condition (*). Then there are 
(xn), (yn), (zn) G (GN)+ such that (x'n) is a subsequence of(xn), (zn) is disjoint and 
Zn ^ !/n ^ x'n for each n G N. 

P r o o f . We begin with the sequence (xn) = (xn) and put x[ = xx = y\. In view 
of (*) there exist ai,a2 G G such that 0 < ai, 0 < a2, ai A a2 = 0 and ai,a2 < y\. 
Put 

N(l)={l<nGN:aiAsn>0}. 

Now we distinguish two cases. 
a) Suppose that N(l) is finite. Then we put z\ = ai, and in the next step we 

work with the sequence (xn) = (xn)n^m, where m is the least positive integer such 
that ai A Xj = 0 for each j ^ m. We set x2 = xm. 

b) Suppose that N(l) is infinite. Then we put z\ = ai and in the next step we 
work with the sequence (xn) = (ai A.rn)i<n€7v(i). We set x2 = x2. 

By an obvious induction procedure we can verify that by repeating this process 
we obtain sequences (x'n), (yn) and (zn) with the desired properties. D 

Lemma 2.8. Let G be a lattice ordered group and let /3 G ConvG, /? £ fa. 
Assume that G satisfies the condition (*). Then there exists a disjoint sequence in 
(GN)+ which belongs to /?. 

P r o o f . Since /? / /?o, there exists (xn) G P such that xn > 0 for each n G N. 
Let (xn) and (zn) be as in 2.7. Then (zn) is disjoint and (x'n) belongs to /?. Since 
zn ^ xn for each n G N, the sequence (zn) belongs to /? as well. D 

Lemma 2.9. Let G be an abelian lattice ordered group and let ft G ConvG. 
Suppose that (un) and (vn) are disjoint sequences belonging to 0 such that unAvm = 
0 for each n,m€ N. Then there exist /3\}02e Conv G such that (un) G /?i, (vn) G 02, 
/3\?/32 and(3ly/32</3. 

P r o o f . This follows from [9], Theorem 7.3 and Corollary 7.6. D 
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P r o o f of (D): Let a ^ 2 . Put A(a) = G. By way of contradiction, assume that 
there exists an atom ft of ConvG. Thus there is (xn) G P such that xn > 0 for each 
n € N. According to 1.1, G satisfies the condition (*). In view of 2.8 there exists a 
disjoint sequence (zn) belonging to p. For each n € N we put u n = *2n-i , vn = Z2n-
Then (ti„), (v n ) € /?. Let ft and ft be as in 2.9. We have /?n < Pi < P for t = 1,2; 
this contradicts the assumption that P is an atom in Conv G. D 
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