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SYSTEM OF TWO ORDINARY DIFFERENTIAL EQUATIONS 
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Summary. In the paper the singular Cauchy-Nicoletti problem for the system of two 
ordinary differential equations is considered. New sufficient conditions for solvability of this 
problem are proved. In the proofs the topological method is applied. Some comparisons 
with known results are also given in the paper. 
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1. INTRODUCTION 

Consider the following singular Cauchy-Nicoletti problem for the system of two 
ordinary differential equations 

(1) s/i =/ i (* ,y i , ! fe) , 

s/2 = /2(*,yi,!fe) 

and 

, !fc(«+) = A, 
V } 1/2(6") = B, 

where a, 6, .A, B are constants and a < 6. Concerning the functions /*(-*, yi-lfe), 
i = 1, 2 we assume that they are continuous and satisfy a local Lipschitz condition 
in the variables yi,j/2 in an open bounded region G such that the set {(^yi-ifc) € 
G; x = x*} / 0 for each x* 6 (a,b). Under these conditions the solutions of the 
system (1) are in G uniquely determined by their initial data but for x = a or x = 6 
this need not be the case. 
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We define the solution of the problem (1), (2) as a vector-function y(x) = (yi(x), 
Ife(s)) G Cl(ayb) which on (a,b) satisfies the system (1), (x}y\(x)iy2(x)) C G on 
(a,6) and yi(a+) = Ayy2(b~) = B. 

The Cauchy-Nicoletti problems, the generalized Cauchy problems or the boundary 
value problems for systems of ordinary differential equations have been considered 
by many authors (e.g. [6-8], [10-11], [13-15]). Singular problems of such types have 
been studied e.g. in works [1], [3-4], [7-9], [12] and [16-17]. 

In the present paper we obtain new sufficient conditions for solvability of the 
problem (1), (2) in the above mentioned sense. Moreover, some estimates for the 
components of solutions will be given. Certain results are formulated for more con­
crete right-hand sides of the system (1). Some comparisons with known results will 
be given in the paper. 

2. MAIN RESULTS 

We will consider real functions <Pi(x)y *l>i(x)> i = 1, 2 which satisfy the following 
conditions (I): 

<Pi(x), ^i(x)GC[a,6], Cl(a,b), t = l ,2; 

<px(x) < <p2(x) if x G (a, 6], ^i(x) < t/>2(x) if x G [a, 6); 

lim <pi(x) = A, lim t/>i(x) = B, i = 1,2. 

The functions <Pi(x)y rf>i(x)y i = 1, 2 are said to satisfy the conditions (II) if the 
conditions (I) hold and, moreover, <pi(x)y il>i(x) G C2(a,6). 

Further we need the following auxiliary functions: 
i) Wi == Wi(xyyx) = (yi - <P\(x))(yi - <p2(x)), 

W2 = W2(xy y2) = (y2 - fa(x))(y2 - ^2(x))y 

which are defined for (x, yi) G [a, 6] x R or (x, y2) G [a, 6] x R, respectively; 
ii) »,(*, &) = - ^ ( x ) + / i (x , <pi(x), y2), 

* i ( x , y i ) = - $ ( * ) + / 2 ( * , y i , ^ ( * ) ) , 
which are defined for (x, y2) G G or (x, yi) G G, respectively, and where i = 1, 
2 and y?i(x), t̂'OO satisfy the conditions (I); if, moreover, <Pi(x)y i>i(x) satisfy 
(II) and / i (x ,yi ,y 2 ) G CX(G) for i = 1, 2, we write 

iii) D9i(x,y2) = -y>"(x) + /ix(x,y?i(x),y2) + / i y i (x ,^(x) ,y 2 ) / i (x ,^i (x) ,y 2 ) - f 
+/iy3(*> ^(x)> J/2)/2(x, <Pi(x)y y2), 
D*i(x, yi) = -V"(s) + /£,(*, yi, ^ W ) + f2yi(x> yw<l>i(x))h(xy yu Vi(*))+ 
+/2y3(a?»3/i>V'.W)/2(a:,yi,^i(x)), 
which are defined for (x, y2) G G or (x, yi) G G, respectively. 

Finally, by Q we denote the domain 

12 = {(«,yi,y2): a < x < 6, Wi(x,yi) < 0 , ^ x ^ 2 ) < 0} 
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and we wil suppose that flcG-
The following three theorems represent the main results of the paper. 

Theorem 1. Let functions <Pi(x), *l>i(x), t = 1, 2 satisfy the conditions (I), let 
*i(x,y2)*2(x,y2) < 0 for each x € (a, 6) and y* € [i/>i(x),t/>2(x)] and * i (x ,y i ) x 
*2(x, yi) < 0 for each x G (a, 6) and yi G [<Pi(x), <p2(x)]. Then there is at least one 
solution y(x) = (yi(x),y2(x)) of the problem (1), (2) such that (x,yi(x),y2(x)) C ft 
ifx G (a, 6). 

Theorem 2. Let functions <pi(x), ^i(x), f = 1, 2 satisfy the conditions (II), 
fi(x,yi,y2) e Cl(G), i = 1, 2; for each fixed x € (a,6) let the functions ^ ( x , ^ ) , 
*t (x, yi), i = l , 2 be strong monotone with respect to yj on the interval [*/>i(x), 1>2(x)] 
and with respect to yi on the interval [<pi(x), <p2(x)]. Further, on (a, 6) let 

(3) *i(x,M*))*i(*,1>2(*))<0, 

(4) * t (x ,^ i (x ) )* t (x , y ? 2 (a r ) )<0 . 

If, moreover, 

(5) I>*i(x, m) < 0, -D*2(x, yj) > 0 

on (a, 6) x (^i(x) ,^2(x)) and 

(6) D*i (x ,y i ) < 0, D* 2 (x ,y i ) > 0 

on(a,b)x((pl(x),(p2(x)) 
then there is at least one solution y(x) = (yi(x),y2(x)) of the problem (1), (2) such 
that (x, yi(x), y^x)) C ft ifx € (a, 6). 

Existence of a solution of the problem (1), (2) can be established even if some 
of the assumptions of Theorem 1 are combined with some of the assumptions of 
Theorem 2. One of the possible cases is presented in the following theorem. 

Theorem 3. Let functions <pi(x),iz=. 1,2 satisfy the conditions (I), let functions 
V>,(x), t = l , 2 satisfy the conditions (II), f2(x, yu y2) € Cl(G), *i(x, y2)<h(x, y2) < 
0 on (a, 6) x [il>i(x),il>2(x)]; for each .fixed x € (a, 6) let the functions *<(x,yi), 
i = 1, 2 be strong monotone with respect to yi on [<Pi(x),<p2(x)] and *t(x,¥>i(x)) x 
*t(x,y?2(x)) < 0 on (a, 6). If, moreover, 

(7) tf*i(x,yi)<0, £>*2(x ,y i )>0 

on (a, 6) x (<pi(x), <p2(x)) then there is at least one solution y(x) = (yi(x),y2(x)) of 
the problem (1), (2) such that (x,y\(x),y2(x)) C ft ifx £ (a, 6). 
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Proof of Theorem 1. As follows from (3), (4) the following cases are possible 
for the signs of __i, _>2 and _._, _f2 on the corresponding domains: 
(i) * i < 0, 4__ > 0, * i < 0 and * 2 > 0; 
(ii) * i > 0, * 2 < 0, * i > 0 and « 2 < 0; 

(iii) * i < 0, * 2 > 0, * i > 0 and * 2 < 0; 
(iv) *i > 0, * 2 < 0, * i < 0 and ¥_ > 0. 

I. consider the case (i). It is easy to verify that each point M* = (x*,yi,y2) of 
the set 

fii = {(*,yi,y2) € dn,x e (a, 6)} 
is a point of strict egres of 0, that is f_i = fije with respect to the corresponding 
solution of (1), because the derivatives of the functions W_(x,y,), t = 1, 2 along 
solutions of the system (1) are positive. (The definitions of points of strict egress 
and of the other notions which we will use can be found e.g. in [5].) Indeed, if 
M* € fii and 
<*) Wi(x*,yf) = 0then 

dWldxVl)\^ = [Ui(x,yuy2)-<p'i(x))(yi -**<«))+ 

+ (yi - <pi(x))(h(x> yi, y2) - <p2(*))] \M. • 

dWl(''Уl)l -Фi(**, _ - ) ( . ! ( _ . - _ _ ( _ . ) >Ь 

oг 

Aayl = >pi(x*) or yj = . 2(x*), we have 

t ( x , _ i ) , 

__ ' " 

dWldx'
Vl)\M- = ( M O - . i ( 0 ) * - ( 0 1 _ ) > 0; 

/?) WiO-̂ l/S) = 0 then, as above, we obtain 

dW2(xiy2)l 

dx «• 

Obviously, the set of the egress points fie of fi coincides with the set __,_. Let {_*,} 
be a decreasing sequence of numbers such that x,* € (a, 6) and lim x,- = a. Let the 

_ »—. CO 

index i be fixed. Denote 5,- = {(x,yi,y2) € ft,x = x,}. Then the set 5» fl __e is a 
retract of the set Qe because the mapping 

*i: (*> yi, y2) € fie '-> (*.-, y°, y2) € .s_ n fie 

where 

y? = ^i(«i) + (yi-^i(«)) o /_.._^/ /_ . \xya( g0-yi( g0 
__í*)- . l ( - ' ) ' 

У°2 = Фl(Xi) + (У2 - Vi(x))' 0 __ _/._/__._ i /__ _/. . / - . . ^ í . * * ) - _/_(*•) 
ţí>2(x) - ţŕi(») 
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is continuous, identical on Si nfte; however, it is not a retract of Si since the bound­
ary of a sphere is not its retract ([2]). As follows from the topological method 
of T. Wazewski (e.g. [5], [18]), there is a nonempty set Mu C Si C\ Q such that 
-f (xi> yu> y%i) € Mu t n e n *or t n e corresponding solution of the system (1) y<(*) = 
(yii(z), V2i(x)) starting from the point (xi} y?,., y^) the relation (*, yii(x), !&<(*)) C ft 
holds on its right-hand maximal interval of existence. This interval is equal to [a?j, 6) 
because the set ft is bounded. The set Mu is closed (including the case when Mu 
consists of one point only) since in the opposite case we get a contradiction with the 
continuous dependence of solutions of the system (1) upon their initial data. Let 
x{Mu> [ar,-, 6)} be the set of all solutions of (1) with the initial data from the set Mu 
on the interval [a?j,6). Obviously M[j C MXj where 

Mii = {(*,yi,y2): x = xi,yi = yi(a?i),ya = y2(a?2), 
(yi(x),y2(*))£x{Mu,[xub)}} 

and, if i > 2 then M[j C M[_t j . Since the sets Af/j, s = 1, 2 , . . . are compact there is 
oo 

a nonempty set Moo/ = f] M[j. If (xXi yioo, y2oo) € M^j then for the corresponding 
t .=l 

solution yoo(x) = (yioo(x),yioo(x)) we have (s,yioo(-0,2fcoo(*)) C ft if a: € (a, 6) and 
this yields the conclusion of Theorem 1 as lim yioo (a?) = A and lim y2oo(x) = B. 

In the case (ii) we have 

<Wi(*,yi). ^ n mi*,*)* ^ n 
dx •"• ' dx '"• < 

and the proof can proceed by analogy if, applying the topological method, we reverse 
the orientation of the axis x. 

II. Let the conditions (iii) hold. Then the set fte of all points of agress of ft with 
respect to the system (1) is equal to the set ft* e of all points of strict egress, that is 

fte = ft,e = {(a?,yi,y2): o < x < bfWx(x}yx) = 0,y2 € [V>i(*)>iM*)]} C fti-

Indeed, if M * = (a,*, y£, y$) € fte, then as above we obtain d t V |^ , y^lM . > 0 and in 
the case when M* € Hi and W2(x*,y3) = 0 we have 

dW7(x>yi). 

In the next part of the proof we will proceed by analogy with part I. Let {*,} be 
a decreasing sequence of numbers with the above mentioned properties. We denote 

Si(C2) = {(x.yi.jfe): x = a:.,yi € [?.(*),.*-(*)],lb = c*h 

i = \,2, ... where C2 = const and C2 € [i>i(*i),^i(*i)]- The set Si(C2) n fie is a 
retract of the set Qe as the mapping 

«•//: (*, yi, 1ft) € «« -> (*.. »i > o2) € 5,(o2) n n e 
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is continuous, identical on Si(C2) C\ Qe; however it is not a retract of the set Si(C2). 
Then there is a nonempty set Mi(C2) C Si(C2) such that if (x,,yii, y2i) € Mi(C2) 
then, for the corresponding solution yi(x) = (yii(ar), j/2,*(-c)) of the system (1), the 
relation (*,yii(«),y2i(*)) € ft holds if ar € [*,-,&). Varying G2 on the interval 
[^i(a?,),^2(a?i)], we construct the closed set Af,t// = \jMi(C2). Now we consider 
the set x{Mitn>[xi,b)}. We have M[n C Mi,// where Af/7/ = {(-t,yi,y2): x = 
*i , yi = yi(*i)» V2 = !ft(*i), (yi(*),y2(*)) € x{Mi,//,[a,i,6)}}, and if t > 2 then 
M/ / / C Af/.x / / and M'immlIJ is compact. Consequently, the set Moo,// = f| A-f/f// 

i = l 

contains at least one point and as above the conclusion of the theorem holds. 
In the case (iv) the proof is analogous. D 

P r o o f of Theorem 2. We consider only one case as the remaining cases may 
be proved analogously. Let e.g. the functions $i(ar,y2), t = 1, 2 be decreasing with 
respect to j/2 on the interval [i>i(x)} tp2(x)]t and let the functions ¥ , ( s ,y i ) , t = 1, 2 
be increasing with respect to yi on the interval [pi(x)}<p2(x)]. Then (3), (4) imply 

(s) •<(*, * ( * ) ) > 0. •<(*, ^2(x)) < 0, 

*i(*, <Pi(*)) < 0, * , (* , <p2(x)) > 0 

on (a, 6) for t = 1, 2. Prom the conditions of the theorem and from (8) we conclude 
that the equations 

(9) *i(*,y2 i) = 0, *i(*,y l t .) = 0, 1 = 1,2 

have unique solutions 

Y2i = Y2i(x) € Cl(a, 6), Yu = Yu(x) € Cl(a, 6), t = 1,2 

such that on (a, b) 

1>i(x) < Y2i(x) < i>2(x), <px(x) < Yu(x) < <p2(x). 

For (x,yi,ite) € G we define functions 

W3(x,yi,y2) s (yi - v?2(x))(y2 - yai(*))+ 

+ (yi - <Pi(*))(v2 - y22(*)), 

W4{ztyi,y2) = (V2 - ^2(x))(yi - yn(*))+ 

+ (»-*i(*))(w-> r»(«)) 
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and introduce sets 

W* = {(x.yi.yj) € ð : a < x < b, Wx(z,Уl) = 0, W3(x,Уl,щ) < 0}, 

Wï = {(x, yi, yj) € ð : a < x < b, Wti(x,Уl) = 0, Wз(x, yi, Уз) > 0}, 

W? = {(x,yi,yг) Є П: o < * < b, WІ(X,Уl) = 0, W3(x,Уl,yj) = 0} 

and 

W} = {(x.yi.yj) € Q: a < x < b, Wa(x,ya) = 0, W.i(x,yi,ya) > 0}, 

WT = {(*,yi, V2) € ft: o < x < 6, W7(z, ya) = 0, W4(z,yi,ya) < 0}, 

W? = {(x,y1(ya) € ft: a < x < 6, Wa(x,ya) = 0,W4(x,yi,ya) = 0}. 

As above we may verify that, along a solution of (1), 

sign 
dW1(x,yi)l 

dx \M* 

and 

sign 
rfWMx.yą), 

dx \M\ 

ґ+1 aщ ewf, 
-1 ÜMІЄWГ, 

l o ifЛífЄ W? 

ř+1 if м; ewf, 
-1 if Л/JЄWj-, 

l o if ЛÍJЄ wj. 

The points of the sets W?, i = 1, 2 are the points of exterior tangency of the 
corresponding integral curves. Indeed, we verify that d Wjjj$1*^ \Mf > 0> where Af|* € 
W? and t = 1, 2. Direct computations yield 

d2Ivì(x,ÿi) 
dx2 = 2[/i(x,yi,ya) - <p'1(z)][f1(x,yi,y2)-(fi!i(z)]+ 

+ [/í«(x, yi, ya) + / í „ (x, yi, ya)/i(x, yi, ya)+ 

+ fíy3(*>Ví*Vt)h(*,V\,V*)- V>i'(x)](yi -<&(*))+ 

+ [fí,(*> yi. V2) + f'lyi (z, yi, ya)/i(x, yi, ya)+ 

+ /íy3(*>yi>y2)/2(x,yi,ya) - Vi(*)](yi - ¥>i(*)) 

and in view of the conditions (5) we have 

d^ i íx .y i ) , 
dx2 **! 

{ D*,(z, Y,3(z))(M*) ~ M*)) 
ifyi =¥>2(x),ya = ya3(x) 

^.(x .yai íxJX^ÍxJ-vaíx)) 

ifyi =V>i(x),ya = >ai(x) 
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and, consequently, d Wfc*#1' \M. > 0. By analogy with the previous computations 

(in view of the conditions (6)) we obtain 

*w,(*,v*), >0 
dx^ ^2 

Then the set Qe is equal to the set ttte and Qe = Q,e = Wf U W}. Let {x,} be the 
sequence as above. Let an index i be fixed. Denote Si = {(x, yi, y2) G QUQe, x = x,} . 
Then the set Si fl Qe is a retract of the set ile because the mapping 

* m : (*,yi,1/2) € fie -• (*., y°, y2) e sf- n Qe 

where 

y? = vi(»t), v°2=y.i(*<)+fa - ^ - ( ^ ^ j l y ^ i y if * = •?-(*); 

y? = **(««), y$ = *(«<) + (y» - V » i ( « ) ) y ^ I ^ y if yi = w(«); 

,9 _ ,„. / ,A _ /„. _ ,„. /,^__0_L___(__ „o _ y? = v>i(*.) + (yi - <pi(*)) v , ——r~r. y° = V-i(*.) if y2 = ^i(-r) 

and 

y? = *,(«,) + ( y i - Y » ( x ^ % Z Y ^ y *- = ̂ x<) if »- = *<«> 
is continuous and identical on S,- fl Qe. On the other hand, the set S»- fl Qe is not a 
retract of the set S» because, by the above mentioned argument, it is not a retract 
of a connected set Si C S» which consists of two points a G W*, /? € KV2

+ and 
a continuous curve without self-intersection / C int S,- such that I fl W* = a, 
f fl Ŵ *" = /?. Topological method yields that there is a nonempty set Mi C S» such 
that if (x,-, yii, y2<) G Mi then as in the proof of Theorem 1 the corresponding solution 
yi(x) = (yii(x),y2t(x)) of the system (1) satisfies the relation (x,yi,(x),y2 t(x)) G fl 
on [x ,-,£). The remaining part of the proof is analogous to the proof of Theorem 1. 

D 

P r o o f of Theorem 3. The proof is an analogue of the proofs of Theorems 1, 2 
and therefore is omitted. D 

R e m a r k 1. I. Let all conditions of Theorem 2 be fulfilled except the conditions 
(5), (6) which are replaced by 

J D $ I ( * , Y21(X)) < 0 ,D*2(*,y2 2(x)) > 0, x G (a, 6) 

and 

(6') D9x(xtYn(x)) < 0 ,D* 2 (x ,y 1 2 (x)) > 0, x G (a,6), 

respectively, and let Y2i(x)y yii(x), i = 1, 2 be solutions of the equations (9). Then 
the conclusion of Theorem 2 remains valid. 
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The proof of this remark follow immediately from the proof of Theorem 2. 
II. The conclusion of Theorem 3 also remains valid if in its formulation the condi­

tion (7) is replaced by (6;). 

3. SOME APPLICATIONS AND COMPARISONS 

I. Let the system (1) have the form 

, 1 0 ) yi = y2u>i(*,yi), 

y2 = y i w 2(* ,y2) . 

Then Theorem 2 may be formulated more precisely as 

Theorem 4. Let functions <Pi(x),tl)i(x)f t = 1, 2 satisfy the conditions (II), 
"i(x,yi) e Cl(G), t = 1, 2 and u>i(xy<pi(x)) £ 0, w2(-c,^(x)) # 0, t = 1, 2 on 
(a, 6). Let 

and 

^<z£^)<^ i=1'2 

on (a, 6). Iff moreover, 

(-DV-fa)"^*'^) + (y>t(x))2fa,V(*'y<(x)) 
I ^ W W ^ ^ + W M «.(.,*>.(«)) 

+w(«Vi(-vw(«)V-(«, / ' ( > ) »J > (--)V.'(*) 
W l ( * , ^ i ( i 5 ) ) ) 

and 

(-( _ 1 ) l V ' » ( a : )
W 2 ( x ) V . ( x ) ) + ( V ' ť ( x ) ) « , ( . , * ( . ) ) 

+V»<(x)u,a(x, ^<(x))u;1(x, ^ f f ^ l > ( - - W ( « ) 

for t = 1, 2 on (a, 6) then there is at ieast one solution y(x) = (yi(*),y2(*)) of the 
problem (10)f (2) such that (x,yi(x),y2(x)) C ft ifx € (a, 6). 

Proof. It is enough to put /i(x, yi, y2) = !fcu>i(3, yx), /2(ar, yi, y*) =s yia;2(x, y*) 
and verify all assumptions of the first part of Remark 1. In this case 

y - W«) , _ . o 

and 
y,. = PK*) .• - I o 

wi(x,¥>,(x)) 

D 
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II. Linear case. Let the system (1) have the form 

(n) \fi = an(*)yi + a12(x)y2 + Ul(x), 
t/3 = a31(x)yi + a32(x)yi + w3(x). 

Then Theorems 1, 2 may be formulated as follows: 

Theorem 5. let functions <p%(x), $i(x), »' = 1, 2 satisfy the conditions (I), 
Oij(x) € C(a, b), i,j =1,2 and w.(x) € C(a, b), i = 1 , 2 . If 

(an(x)v?!(x) + ai3(x)yn+w1(x) - ^[(x)) x 

(an(x)y>2(x) + a13(x)y^ + Ul(x) - <p'3(x)) < 0 

for each x € (a, 6), y3 € [i>i(x),ih(*)]t &nd 

(aJ1(*)y1 + a22(x)^(x) + w2(x) - Vi(x)) x 
(a21(*)y. + a22(j;)./,2(i) + W2(x) - V'2(x)) < 0 

for each x € (a,6), y. € [<Pi(x),<P2(x)] then there is at least one solution y(x) = 
(y. (*),%(*)) of the problem (11), (2) such that (c,yi («)•».<(*)) C Q on (a,b). 

Theorem 6. let functions <Pi(x), i/>i(x), » = 1, 2 satisfy the conditions (II), 
Oij(x) € Cl(a, b), i,j = 1, 2 and w,(x) 6 Cl(a% 6),» = 1, 2. let a12(x)a21(x) -1 0, 

1M*) < I*i4*)]-l(<ft(*) ~ an(*)v.(*) - ui(x) < V2(x), »• = 1,2, 
*>.(*) < [a-i(*)l-l(tf(*) - a23(x)V,(x) -u/2(x)) < *>2(x), » = 1,2 

on (a, b). If, moreover, 

(-1)' [ ( j j jg + au(*) + «»(*)) 4(x)+ 

+ (a'n(*) - a"( a j) a^) + ai-(x)°3i(*) - an(*)a22(x)) <p((x)+ 

+"' .(*)- ( ^ | ^ + a33(*))w1(*) + a i 2 ( x ) w 2 ( x ) l > (-l)V|.'(x) 

аnd 

l ) ť [ ( ^ i M + aн(*) + M*))v>;(x) 

(a'22(*) - a з з ( * ) ^ + a i-( x)«S 1(*) - a u (x)a 2 2 (x)) ф((x) 

+ W2(X)" ( a ^ + < , n ( x ) ) W 2 ( * ) + a «( x Ь( x )] ^í-1)*^'^) 

(-

+ 
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for i = l , 2 on (a, ft), then there is at least one solution y(x = (yi(x))> y2(x)) of the 
problem (11), (2) such that (ar,yi(x),y2(x)) C ^ ifx € (a, 6). 

Theorem 5 follows from Theorem 1 if we put / ,(x, yi, y2) = an(x)yi + ai2(x)y2 + 
a>,(x), i = 1, 2. Theorem 6 follows from the first part of Remark 1 if we put /,-, t = 1, 
2 as above and note that in this case 

Yu(x) = [a2i(x)]-lM{z) - a 3 3 (x)*(x) - «,(*)) , 

Y2i(x) = [ai-C-Ol'Hp.C-O - an(i-)v?.(it) - wi(*)). 

E x a m p l e 1. Let the system (11) have the form 

(12) i4 = io(«-ir2»+i, 

Let a = 0, 6 = 1 and A = J3 = 0. Then all assumptions of Theorem 6 are fulfilled if 
we put <pi(x) = —x, y?2(x) = x, ^h(x) = x — 1 and ^2(x) = —x + 1. Consequently, 
there is at least one solution y(x) = (yi(x), y2(x)) of the problem (12), (2) such that* 
|yi(*)l < *, Mx)\ < 1 - x if x € (0,1). 

R e m a r k 2. The book [7] contains some theorems on existence and uniqueness 
of solutions of singular Cauchy-Nicoletti problems for systems of ordinary differen­
tial equations. We note that our results are independent of the above mentioned 
theorems. For example, if we apply Theorem 4.1 from [7, Chapter II, §4, pp. 37-38] 
to the problem (12), (2), then, moreover, the inequality 

(10(x - l)~2y2 + 1) sign yx ^ -a(x) |y! | + y(x, |yx|, |y2|) 

must be valid on the set 

{ ( ^ , y 1 , y 2 ) : 0 < x < l , yeR2} 

where a(x) £ L(0+, 1"), a(x) ^ 0 and 

(13) sup{|y(x, Itfcl, |y2 |)|: | y i | + | M | < p) € L(0,1) 

for each p G (0, +oo). In our case these conditions are not fulfilled, because if we put 
e.g. a(x) = 0 and y(x, \yi\y |y2|) = 10(x - l)"2 |y2 | + 1, then the condition (13) is not 
valid. 

R e m a r k 3. Some classes of special singular problems were recently studied in 
([16-17]). For example, in [17] the problem 

nA. !/i = -(n - l )*- 1 ^ + F(y2,x), 
2/2 = 2/1* 
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( 1 5 ) yi(o) = o, 

y2(R) = -<* ^ 0 

is considered where n is an integer, n *£ 2, 0 < r < .R, F: (—00,0) x (0,00) —* (0,00) , 
F € C1. The work contains e.g. the following result: Let 0 ^ d ^ I ^ nR~l, 
0 < Jb < si?""1 and 0 < -F(y2>*) < (n — /x)Jbexp(—Ix) hold for some constants d, /, IZ, 
ik, a if ^ i ( x ) = - a - *(iJ - x ) e x p ( - d x ) < y2 < ^ 0 0 = - a and 0 < x < R. Then 
the problem (14), (15) has a one-parametric family of solutions y(x) = (y i (x) , 1/2(2)), 
which satisfy the inequalities <pi(x) 1= 0 < 3/1(2?) < ^ ( s ) = * x e x p ( - / x ) , t/>i(x) < 

y2(x) < il>2(x)on(0,R). 

We note that our problem (1), (2) is more general than the one given above. 
Theorem 1 (if we put /1 = - ( n - l ) x _ 1 y i + F(y2,x)y f2 = y2 , <* = 0, b = i i , 
A = 0, -B = —a and y?t(s), V,t(x)> i = 1, 2 as above) yields that there is at least 
one solution of the problem (14), (15) with the properties mentioned above. We 
remark that the above conclusion about the existence of a one-parametric family of 
such solutions is not correct in the case of IR = 2, n > 2, F(y2,x) = e =const and 
0 < e < (n — 2)Jfcexp(—2). Then the general solution of the system (14) has the 
form yi (x) = M x 1 " " + e n ^ x , y 2(x) = M ( 2 - n)"1x2"n -f e ( 2 n ) - 1 x 2 4- N where 
M , N are arbitrary constants, but only one solution, corresponding to M = 0 and 
N = — eR2(2n)"1 — a, satisfies the conditions (15). 

References 

[1] M.S. Baouendi and C. Goulaouic: Singular nonlinear Cauchy problems, J. Differen­
tial equations 22 (1976), 268-291. 

[2] K. Borsuk: Theory of retracts, PWN, Warszawa, 1967. 
[3] V.A. Chechyk: Investigation of systems of ordinary differential equations with sin­

gularity, Proc. Moscow math. soc. 8 (1959), 155-198. (In Russian.) 
[4] J. Dibltk: On existence of ^-bounded solutions of a nonhomogeneous linear system 

of differential equations, Funkcialaj Ekvacioj 34 no. 1 (1991), 1-18. 
[5] P. Hartman: Ordinary differential equations, Wiley, 1964. 
[6] L. Jackson and G. Klaassen: A variation of the topological method of Wazewski, 

SIAM J. Appl. Math. 20 (1971), 124-130. 
[7] I.T. Kiguradze: Some singular boundary value problems for ordinary differential 

equations, Tbilisi Univ. Press, Tbilisi, 1975. (In Russian.) 
[8] Jti.A. Klokov and N.I. Vasiljev: The foundations of the theory of boundary value 

problems for ordinary differential equations, Zinatne, Riga, 1978. (In Russian.) 
[9] N.B. Konyukhova: Singular Cauchy problems for systems of ordinary differential 

equations, U.S.S.R. Comput. Math, and Math. Phys. 23 (1983), 72-82. 
[10] A. Lasota and C. Olech: An optimal solution of Nicoletti's boundary value problem, 

Ann. Polon. Math. 18 no. 2 (1966), 131-139. 
[11] A. Lasota: Sur Y existence et Punicite des solutions du probleme aux limites de 

Nicoletti pour un systeme d'equations differentielles ordinaires, Zeszyty Nauk, UJ, 
Prace Mat. 11 (1966), 41-48. 

[12] S.K. Norkin: Asymptotic behavior of solutions of a multidimensional system, Dif­
ferential equations 21 (1985), 654-657. 

66 



[13] P.K. Palamides: A topological method and its application on a general boundary 
value problem, Nonlinear Analysis, Theory and Applications 7(1983), 1101-1114. 

[14] B. Puza: On one class of solvable boundary value problems for a system of ordi­
nary differential equations,, 7th Czechoslovak Conference on Differential Equations 
and Their Applications, Enlarged abstracts, Ordinary differential equations, Praha, 
1989, pp. 76-78. 

[15] A.N. Vityuk: The generalized Cauchy problem for the system of differential equa­
tions not solved with respect to derivatives, Differencialnyje uravnenija 7 (1971), 
1575-1580. (In Russian.) 

[16] B. Vrdoljak: On solutions of the Lagerstrom equation, Archivum Mathematicum 24 
(1988), 111-122, Brno. 

[17] B. Vrdoljak: The increasing negative radial solutions of semilinear elliptic equations,, 
7th Czechoslovak Conference on Differential Equations and Their Applications, En­
larged abstracts, Partial differential equations, Numerical methods and applications, 
Praha, 1989, pp. 107-109. 

[18] T. Wazewski: Sur un principe topologique de Pexamen de Pallure asymptotique des 
integrates des equations differentielles, Ann. Soc. Polon. Math. 20 (1947), 279-313. 

S o u h r n 

SINGULÁRNÍ CAUCHY-NICOLETTIHO ÚLOHA PRO SYSTÉM DVOU 

OBYČEJNÝCH DIFERENCIÁLNÍCH ROVNIC 

JOSEF DIBLÍK 

V práci je studována singulární Cauchy-Nicolettiho úloha pro systém dvou obyčejných 
diferenciálních rovnic. Jsou dokázány nové postačující podmínky řešitelnosti této úlohy. 
V důkazech je aplikována topologická metoda. V práci je také provedeno porovnání se 
známými výsledky. 

Authorfs address: Katedra matematiky FE VUT, Kraví hora 21 (XV), 602 00 Brno. 
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