Maria Nasyrova; Vladimir D. Stepanov
On maximal overdetermined Hardy's inequality of second order on a finite interval

Persistent URL: http://dml.cz/dmlcz/126245

Terms of use:

© Institute of Mathematics AS CR, 1999

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use.*
ON MAXIMAL OVERDETERMINED HARDY'S INEQUALITY OF SECOND ORDER ON A FINITE INTERVAL

MARIA NASYKOVA, VLADIMIR STEPANOV, Khabarovsk

(Received December 1, 1998)

Dedicated to Professor Alois Kufner on the occasion of his 65th birthday

Abstract. A characterization of the weighted Hardy inequality

$$\| F u \|_2 \leq C \| F'' v \|_2, \quad F(0) = F'(0) = F(1) = F'(1) = 0$$

is given.

Keywords: weighted Hardy's inequality

MSC 1991: 26D10, 34B05, 46N20

INTRODUCTION

Let $I = [0, 1]$, $1 < p < \infty$, let $k \geq 1$ be an integer and let AC_p^k denote the space of all functions on I with absolutely continuous $(k - 1)$-th derivative $F^{(k-1)}(x)$ and such that

$$\| F \|_{AC_p^k} := \| F^{(k)} v \|_p < \infty, \quad F(0) = F'(0) = \ldots = F^{(k-1)}(0) = F(1) = \ldots = F^{(k-1)}(1) = 0,$$

where $v(x)$ is a locally integrable weight function and $\| g \|_p := (\int_0^1 |g(x)|^p \, dx)^{1/p}$.

1 The research work of the authors was partially supported by the Russian Fund of Basic Researches (Grant 97-01-00604) and the Ministry of Education of Russia (Grants 10.98GR and K-0560). The work of the second author was supported in part by INTAS Project 94-881.
We consider the characterization problem for the inequality

\[\|Fv\|_q \leq C\|F^{(k)}v\|_p, \quad F \in AC_p^k. \]

The case \(k = 1 \) has been solved by P. Gurka [2] (see also [13]) and many works have been performed in this area by A. Kufner [6] and by A. Kufner with co-authors [1], [5], [7–10]. In particular, following Kufner’s terminology we call the inequality (1) “maximal overdetermined Hardy’s inequality”, that is when a function \(F \) and its derivatives vanish at both ends of the interval up to \((k - 1)\)-th order. A part of analysis related to the weighted Hardy inequality for functions vanishing at both ends of an interval was also given by G. Sinnamon [15] and the authors [11], [12]. In particular, the maximal inequality (1) on semiaxis was characterized in [11], [12].

The aim of the present paper is twofold. At first we prove an alternative version of (1) (see Theorem 1) and it allows, using the results of [4], to characterize the inequality (1), when \(p = q = 2, \ k = 2 \) (Theorem 3).

Without loss of generality we assume throughout the paper that the undeterminates of the form \(0 \cdot \infty, 0/0, \infty/\infty \) are equal to zero.

AN ALTERNATE VERSION

Denote \(I_k f(x) \) and \(J_k f(x) \) the Riemann-Liouville operators of the form

\[I_k f(x) = \frac{1}{\Gamma(k)} \int_0^x (x - y)^{k-1} f(y) \, dy, \quad x \in I, \]

\[J_k f(x) = \frac{1}{\Gamma(k)} \int_x^1 (y - x)^{k-1} f(y) \, dy, \quad x \in I. \]

Then the maximal inequality (1) is equivalent either to

\[\|(I_k f)u\|_q \leq C\|fv\|_p, \quad f \in P_{k-1}^\bot \]

or to

\[\|(J_k f)u\|_q \leq C\|fv\|_p, \quad f \in P_{k-1}^\bot, \]

where \(P_{k-1} \) is the \(k \)-dimensional space of all polynomials \(q(t) = c_0 + c_1t + \ldots + c_{k-1}t^{k-1}, \ t \in I, \) and \(P_{k-1}^\bot \subset L_{p,v} := \{f: \|fv\|_p < \infty\} \) denotes the closed subspace of \(L_{p,v} \) of functions “orthogonal” to \(P_{k-1} \) in the sense that

\[\int_0^1 f(x)g(x) \, dx = 0 \text{ for all } g \in P_{k-1}, \ f \in P_{k-1}^\bot. \]
In particular, \(f \in P_{k-1}^\perp \) if, and only if,
\[
\int_0^1 f(x) \, dx = \int_0^1 x f(x) \, dx = \ldots = \int_0^1 x^{k-1} f(x) \, dx = 0
\]
and, obviously,
\[
I_k f(x) = J_k f(x), \quad f \in P_{k-1}^\perp.
\]

We need the following

Lemma 1. ([14], Chapter 4, Exercise 19). Let \(X \) be a Banach space and \(Y \subseteq X \) the closed subspace. Let \(X^* \) be the dual space and
\[
Y^\perp = \{ \varphi \in X^* : \varphi(y) = 0 \text{ for all } y \in Y \}.
\]

Then
\[
\text{dist}(e, Y) := \inf_{y \in Y} \|e - y\|_X = \sup_{\varphi \in Y^\perp} \frac{|\varphi(e)|}{\|\varphi\|_{X^*}}
\]
for all \(e \notin Y \).

Proof. Let \(y \in Y, \varphi \in Y^\perp \). Then
\[
\varphi(e) = \varphi(e) - \varphi(y) = \varphi(e - y)
\]
and
\[
|\varphi(e)| = |\varphi(e - y)| \leq \|\varphi\|_{X^*} \|e - y\|.
\]
Consequently,
\[
\sup_{\varphi \in Y^\perp} \frac{|\varphi(e)|}{\|\varphi\|_{X^*}} \leq \|e - y\|
\]
and
\[
\sup_{\varphi \in Y^\perp} \frac{|\varphi(e)|}{\|\varphi\|_{X^*}} \leq \text{dist}(e, Y).
\]

Now suppose \(e \notin Y, y \in Y \). Then \(e - y \notin Y \) and by the Hahn-Banach theorem there exists \(\varphi \in X^* \) such that \(\varphi(y) = 0 \) for all \(y \in Y \), \(\|\varphi\|_{X^*} = 1 \) and \(\varphi(e - y) = \|e - y\| \). This implies that \(\varphi \in Y^\perp \) and
\[
|\varphi(e)| = |\varphi(e - y)| = \|e - y\| \geq \text{dist}(e, Y).
\]
Therefore,

\[
\sup_{\varphi \in Y} \frac{|\varphi(e)|}{\|\varphi\|_X} \geq \text{dist}(e,Y).
\]

Combining the estimates (5) and (6) we obtain (4). \qed

Put

\[
M_k(p,q) := \sup_{A \in C^b_{p,q} \setminus F \neq 0} \frac{\|F u\|_q}{\|F^{(k)} v\|_p}.
\]

Because of (2) and (3) we have

\[
M_k(p,q) = \sup_{f \in P_{k-1}^L} \frac{\|(J_k f) u\|_q}{\|f\|_p} = \sup_{f \in P_{k-1}^L} \frac{\|(I_k f) u\|_q}{\|f\|_p}.
\]

Denote \(p' = p/(p-1) \) and \(q' = q/(q-1) \) for \(1 < p,q < \infty \) and observe that \((L,p,v)^* = L_{p',1/v} \) if and only if \(v \in L_{p,1/\text{loc}} \) and \(1/v \in L_{p',1/\text{loc}} \).

The following result gives an alternative version of the problems to characterize (1), (2), (3) and helps us to realise the desired solution for \(p = q = k = 2 \).

Theorem 1. Let \(1 < p,q < \infty \) and the weight functions \(u \) and \(v \) be such that \((L_{p,v})^* = L_{p',1/u} \), \((L_{q,u})^* = L_{q',1/u} \). Then

\[
M_k(p,q) = \sup_{f \in L_{q',1/u}} \|f/u\|_{q'}^{-1} \text{dist} \left(I_k f, P_{k-1} \right).
\]

Proof. Applying Lemma 1 and the duality of \(L_{p,u} \) and \(L_{p',1/u} \), \(L_{q,u} \) and \(L_{q',1/u} \), \(J_k \) and \(I_k \), we write

\[
M_k(p,q) = \sup_{g \in P_{k-1}^L} \frac{\|(J_k g) u\|_q}{\|g v\|_p} = \sup_{g \in P_{k-1}^L} \sup_{f \in L_{q',1/u}} \|f/u\|_{q'} \frac{\left| \int_{0}^{1} (J_k g) f \right|}{\|f/u\|_{q'} \|g v\|_p} = \sup_{f \in L_{q',1/u}} \|f/u\|_{q'}^{-1} \sup_{g \in P_{k-1}^L} \|g v\|_p \left| \int_{0}^{1} (I_k f) g \right| = \sup_{f \in L_{q',1/u}} \|f/u\|_{q'}^{-1} \text{dist} \left(I_k f, P_{k-1} \right).
\]

\[\square\]

Remark. The equality (8) holds for \(J_k f \) instead of \(I_k f \).
The case $p = 2$

The implicit formulae (8) becomes clearer when $p = 2$. Let $d\mu(x) = |v(x)|^{-2} \, dx$ and

$$F_k(x) = I_k(fu)(x) = \frac{1}{\Gamma(k)} \int_0^x (x - y)^{k-1} f(y)u(y) \, dy.$$

Then

$$\text{dist}_{L_{2,\mu}}(F_k, P_{k-1}) = \left(\int_{\mathbb{R}} \left| \int_{\mathbb{R}} |F_k(x) - F_{k,0} - \sum_{i=1}^{k-1} F_{k,i}\omega_i(x)|^2 \, d\mu(x) \right|^{1/2} \right)^{1/2},$$

where $L_{2,\mu} = \{ f : \| f \|_{2,\mu} := (\int_{\mathbb{R}} |f|^2 \, d\mu)^{1/2} < \infty \}$ and

$$F_{k,0} = \frac{1}{\mu(I)} \int_{I} F_k \, d\mu,$$

$$F_{k,i} = \frac{1}{\mu_i(I)} \int_{I} F_k \omega_i \, d\mu, \quad i = 1, \ldots, k - 1$$

and polynomials $\{\omega_i(x)\}$, $i = 1, \ldots, k - 1$, appear from the Gram-Schmidt orthogonalization process of $\{1, t, \ldots, t^{k-1}\}$ in $L_{2,\mu}$ (see [4], Lemma 2).

Observe, that if $p \neq 2$, $p \in (1, \infty)$ and $k = 1$, then

$$\left(\int_{I} |F_1 - F_{1,0}|^p \, d\mu_p \right)^{1/p} \leq \text{dist}_{L_{p,\mu}}(F_1, P_0) \leq 2 \left(\int_{I} |F_1 - F_{1,0}|^p \, d\mu_p \right)^{1/p},$$

(see [3]), where $d\mu_p(x) = |v(x)|^{-p} \, dx$.

Thus, for $p = 2$ the characterization problems of (1), (2) and (3) are equivalent to the following Poincaré-type inequality

$$\left\| F_k - F_{k,0} - \sum_{i=1}^{k-1} F_{k,i}\omega_i \right\|_{2,\mu} \leq C \| f \|_{q'}.$$
THE CASE \(k = 2 \)

We need the following notation. Let \(k > 1 \), \(1 < p, q < \infty \), \(1/r = 1/q - 1/p \) if \(1 < q < p < \infty \). Put

\[
A_{k,0} = A_{k,0;(a,b),u,v} = \left\{ \right. \\
= \sup_{a < t < b} \left(\int_{a}^{b} (x-t)^{q(k-1)} |u(x)|^{q} \, dx \right)^{1/q} \left(\int_{a}^{b} |v|^{-p'} \right)^{1/p'}, \quad p \leq q \\
= \left(\int_{a}^{b} (x-t)^{q(k-1)} |u(x)|^{q} \, dx \right)^{r/q} \left(\int_{a}^{b} |v(t)|^{-p'} \, dt \right)^{1/r}, \quad p > q,
\]

\[
A_{k,1} = A_{k,1;(a,b),u,v} = \left\{ \right. \\
= \sup_{a < t < b} \left(\int_{a}^{b} |u|^{q} \right)^{1/q} \left(\int_{a}^{b} (t-x)^{p'(k-1)} |v(x)|^{-p'} \, dx \right)^{1/p'}, \quad p \leq q \\
= \left(\int_{a}^{b} (x-t)^{q(k-1)} |u(x)|^{q} \, dx \right)^{r/q} \left(\int_{a}^{b} |v(t)|^{-p'} \, dt \right)^{1/r}, \quad p > q,
\]

\[
B_{k,0} = B_{k,0;(a,b),u,v} = \left\{ \right. \\
= \sup_{a < t < b} \left(\int_{a}^{b} (x-t)^{q(k-1)} |u(x)|^{q} \, dx \right)^{1/q} \left(\int_{a}^{b} |v|^{-p'} \right)^{1/p'}, \quad p \leq q \\
= \left(\int_{a}^{b} (x-t)^{q(k-1)} |u(x)|^{q} \, dx \right)^{r/q} \left(\int_{a}^{b} |v(t)|^{-p'} \, dt \right)^{1/r}, \quad p > q,
\]

\[
B_{k,1} = B_{k,1;(a,b),u,v} = \left\{ \right. \\
= \sup_{a < t < b} \left(\int_{a}^{b} |u|^{q} \right)^{1/q} \left(\int_{a}^{b} (t-x)^{p'(k-1)} |v(x)|^{-p'} \, dx \right)^{1/p'}, \quad p \leq q \\
= \left(\int_{a}^{b} (x-t)^{q(k-1)} |u(x)|^{q} \, dx \right)^{r/q} \left(\int_{a}^{b} |v(t)|^{-p'} \, dt \right)^{1/r}, \quad p > q,
\]

\[
A_{k} = A_{k;(a,b),u,v} = \max(A_{k,0}, A_{k,1}) , \\
B_{k} = B_{k;(a,b),u,v} = \max(B_{k,0}, B_{k,1}).
\]

The constants \(A_{k} \) and \(B_{k} \) are equivalent to the norms of the Riemann-Liouville operators \(I_{k} \) and \(J_{k} \), respectively, from \(L_{p,v}(a,b) \) into \(L_{q,u}(a,b) \) [16–17].

Theorem 2. Let \(1 < p, q < \infty \), \(k = 2 \) and let the hypothesis of Theorem 1 be fulfilled. Then

\[
M_{2}(p, q) \leq \inf_{0 < \tau < \lambda < \sigma < 1} \left(A_{2; (0, \tau), u,v} + A_{1; (\tau, \lambda), u,(x-\tau)^{-1} v(x)} + B_{1; (\tau, \lambda), (x-\tau) u(x), v} + \right. \\
+ D_{\tau, \lambda}^{*} + D_{\tau, \lambda} + D_{2; (\tau, \sigma), u,v} + A_{1; (\lambda, \sigma), (\sigma-x) u(x), v} + \\
+ B_{1; (\lambda, \sigma), u,(\sigma-x)^{-1} v(x)} + D_{\lambda, \sigma} + D_{\lambda, \sigma}^{*}) ,
\]

298
where

\[D_{\tau,\lambda} = \left(\int_{\tau}^{\lambda} |u|^q \right)^{1/q} \left(\int_{\tau}^{\lambda} (\tau - x)^{p'} |v(x)|^{-p'} \, dx \right)^{1/p'}, \]

\[D_{\lambda,\sigma} = \left(\int_{\lambda}^{\sigma} (\sigma - x)^q |u(x)|^q \, dx \right)^{1/q} \left(\int_{\lambda}^{\sigma} |v|^{-p'} \right)^{1/p'}, \]

\[D_{\tau,\lambda}^* = \left(\int_{\tau}^{\lambda} (x - \tau)^q |u(x)|^q \, dx \right)^{1/q} \left(\int_{\tau}^{1} (x - \tau)^{p'} |v(x)|^{-p'} \, dx \right)^{1/p'}, \]

\[D_{\lambda,\sigma}^* = \left(\int_{\lambda}^{\sigma} |u|^q \right)^{1/q} \left(\int_{\sigma}^{1} (x - \sigma)^{p'} |v(x)|^{-p'} \, dx \right)^{1/p'}. \]

Proof. If \(f \in P_1^A \), then for all \(x \in [0, 1] \) we have

\[(11) \quad I_2f(x) = J_2f(x). \]

Let \(\lambda \in (0, 1) \) and for any \(\tau \in (0, \lambda) \) and \(x \in (\tau, \lambda) \) we find

\[I_2f(x) = \int_0^x \left(\int_0^y f \right) \, ds = \int_0^\tau \left(\int_0^y f \right) \, ds + \int_\tau^x \left(\int_0^y f \right) \, ds \]

\[= \int_0^\tau (\tau - y) f(y) \, dy \quad \int_\tau^x \left(\int_0^y f \right) \, ds \]

\[= \int_0^\tau (\tau - y) f(y) \, dy \quad \int_\tau^x f(y) \left(\int_y^\lambda ds \right) \, dy \]

\[\quad - \int_x^\lambda f(y) \left(\int_y^\tau ds \right) \, dy \quad \int_\tau^\lambda f(y) \left(\int_\tau^y ds \right) \, dy \]

\[= \int_0^\tau (\tau - y) f(y) \, dy \quad \int_\tau^\lambda (y - \tau) f(y) \, dy \]

\[\quad - (x - \tau) \int_x^\lambda f \quad (x - \tau) \int_\lambda^1 f. \]

Analogously, with \(\sigma \in (\lambda, 1) \) for \(x \in (\lambda, \sigma) \) we write

\[I_2f(x) = J_2f(x) = \int_x^1 \left(\int_0^1 f \right) \, ds \]

\[= \int_x^\lambda \left(\int_0^1 f \right) \, ds + \int_\lambda^1 \left(\int_0^1 f \right) \, ds \]

\[= \int_x^\lambda (y - \sigma) f(y) \, dy - \int_0^\lambda (\sigma - y) f(y) \, dy \]

\[\quad - (\sigma - x) \int_x^\lambda f \quad (\sigma - x) \int_0^\lambda f. \]
Now we estimate the norm of each term on the right hand side. Using \([16-17]\) we obtain
\[
\| \chi_{[0,T]} (I_2 f) u \|_q \leq A_{2;0,T},u,v \| \chi_{[0,T]} f v \|_p \leq A_{2;0,T},u,v \| f v \|_p.
\]
Plainly
\[
\| \chi_{[\tau,\lambda]} (I_2 f) u \|_q \leq \| \chi_{[\tau,\lambda]}(x)u(x) \int_0^\tau (\tau - y)f(y) \, dy \|_q
\]
\[
+ \| \chi_{[\tau,\lambda]}(x)u(x) \int_0^\lambda (y - \tau)f(y) \, dy \|_q + \| \chi_{[\tau,\lambda]}(x)(x - \tau) \int_\tau^\lambda f \|_q
\]
\[
+ \| \chi_{[\tau,\lambda]}(x)(x - \tau) \int_\tau^\lambda f \|_q
\]
(we use the Hölder inequality for the first and the fourth term and the upper estimates which follow from the weighted Hardy inequalities \([13]\) for the second and the third term)
\[
\leq (D_{\tau,\lambda} + A_1(\tau,\lambda),u,(x-\tau)^{-1}v(x) + B_1(\tau,\lambda),(x-\tau)u(x),v + D^*_\tau,\lambda) \| f v \|_p.
\]
Similarly, applying \((11)\),
\[
\| \chi_{[\sigma,\tau]} (I_2 f) u \|_q \leq (D_{\sigma,\tau} + B_1(\sigma,\tau),u,(\sigma-x)^{-1}v(x) + A_1(\sigma,\tau),(\sigma-x)u(x),v + D_{\sigma,\tau}) \| f v \|_p.
\]
Finally we obtain
\[
\| (I_2 f) u \|_q \leq \| \chi_{[0,T]} (I_2 f) u \|_q + \| \chi_{[\tau,\lambda]} (I_2 f) u \|_q
\]
\[
+ \| \chi_{[\sigma,\tau]} (I_2 f) u \|_q + \| \chi_{[\sigma,\lambda]} (I_2 f) u \|_q
\]
\[
\leq (A_{2;0,T},u,v + D_{\tau,\lambda} + A_1(\tau,\lambda),u,(x-\tau)^{-1}v(x) + B_1(\tau,\lambda),(x-\tau)u(x),v
\]
\[
+ D^*_\tau,\lambda + D^*_\sigma,\tau + B_1(\sigma,\lambda),(\sigma-x)^{-1}v(x)
\]
\[
+ A_1(\sigma,\lambda),(\sigma-x)u(x),v + D_{\lambda,\sigma} + B_2(\sigma,\lambda),u,v) \| f v \|_p.
\]
Since \(\tau, \lambda\) and \(\sigma\) were arbitrary the upper bound \((10)\) of \(M_2(p,q)\) follows.

Remark. Theorem 2 gives the upper bound for \(M_k(p,q)\), when \(k = 2\). Obviously the similar upper estimates can be proved by the same method for \(k > 2\). We omit the details.

Denote \(\mathcal{E}\) the right hand side of \((10)\) when \(p = q = 2\). The following result brings the characterization of \((1)\) for \(p = q = k = 2\).
Theorem 3. Let the hypothesis of Theorem 1 be fulfilled for \(p = q = 2 \). Then

\[
\frac{1}{40} \kappa \mathcal{E} \leq M_2(2, 2) \leq \mathcal{E},
\]

where \(\kappa = \kappa(v) \).

Proof. The upper bound is an immediate corollary of Theorem 2. To prove the lower bound we use Theorem 1 and the arguments from Lemma 7 [4]. Let

\[
d\mu(x) = |v(x)|^{-2} \, dx; \quad \mu(I) = \int_I d\mu(y);
\]

\[
\omega(x) = \int_I (x - y) \, d\mu(y); \quad d\mu_1(x) = |\omega(x)|^2 \, d\mu(x); \quad \mu_1(1) = \int_I d\mu_1(y).
\]

If we take the point \(\lambda \in I \) such that \(\omega(\lambda) = 0 \) and choose \(\tau, \sigma \) so that

\[
0 < \tau < \lambda < \sigma < 1, \quad \mu(0, \tau) = \mu(\tau, \lambda) \text{ and } \mu(\lambda, \sigma) = \mu(\sigma, b),
\]

then there exist positive numbers \(\delta_i = \delta_i(v) \in (0, 1), \ i = 1, \ldots, 5 \) for which

\[
\mu(0, \lambda) = \delta_1 \mu(I), \quad \mu_1(\tau, \lambda) = \delta_2 \mu_1(I), \quad \mu_1(\lambda, \sigma) = \delta_3 \mu_1(I),
\]

\[
\int_0^\tau (\tau - s)^2 \, d\mu(s) = \delta_4 \frac{\mu_1(I)}{\mu(I)^2},
\]

\[
\int_\sigma^1 (s - \sigma)^2 \, d\mu(s) = \delta_5 \frac{\mu_1(I)}{\mu(I)^2}.
\]

Set \(\delta = \min_i \delta_i \) and \(\kappa = (\delta)^{3/2} \). Then Lemma 7 [4] gives us the required lower bound \(M_2(2, 2) \geq \frac{1}{40} \kappa \mathcal{E} \).

References

301

Authors' addresses: M. Nasyrova, Khabarovsk State University of Technology, Department of Applied Mathematics, Tichookeanskaya 136, Khabarovsk, 680035, Russia, e-mail: nasyrov@fizika.khstu.ru; V. Stepanov, Computer Center of the Far-Eastern Branch of the Russian Academy of Sciences, Shelest 118-205, Khabarovsk, 680042, Russia, e-mail: stepanov@dv.khv.ru.