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Dedicated to-Professor A. Kufner-on.the occasion of his 65th birthday

Abstract, " The Hardy inequality f lu(z)|Pd(x) =7 du < ¢ o |Vu(e)|P dz with d(z) =
dist(z, Q) holds for v € CF>(R)-if 2 °C R™ is an ‘open set with a sufficiently smooth
houndary and if 1 < p < oo. P, Hajlasz proved the pointwise counterpart to this inequality
involving a maximal function of Hardy-Littlewood type on the right hand side and, as a
consequence, obtained the integral Hardy inequality."We extend these results for gradients
of higher order and also for'p =1,
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1. INTRODUCTION

Let 2 be.a proper subdomain of R™ and let d(z) = dist(z,dQ), = € £, be the
““corresponding distance function.
It is well known that the Hardy inequality

@ / Ju(@)|d(z) P dz < ¢ / V(@) dz,
Q Q
holds for u € C§*(Q) if 1< p < oo and.the boundary of Q satisfies the Lipschitz

condition ‘or similar regularity conditions. For these results and further references
we refer to [8],[10], {12].
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Agency-of the. Czech Republic.

113




Different authors introduced the notions of capacity and of thick sets in various
ways (see, e.g. [1], {4]-[9], etc.) - in order to find weaker sufficient ‘conditions for
inequalities of Hardy, Poincaré and other ‘types.: We shall concentrate mainly on [4]
and [6].

Let K bea compact subset of 2 and let 1 < p < co. The variational (1, p)-capacity
C1,p(4(, ) of the condenser (I, Q) is defined to be

Cip(K, Q)= inf{/ |Vu(z)|Pdz: v e C (), u(z) 2 1.forze K}.
Q

By B(z,r). 'we denote the open ball in R™ of radius 7, 0 < 7 < oo, centered at
T e R,

Definition 1, A closed set /i C R™ is locally uniformly (1, p)-thick, if there
exist numbers b > 0.and rg,'0 < 7y < oo such that

(1.2) Cy »(B(z,7) N K, B(x,2r)) 2 bC1,(B(z,r), B(z,2r))

forall z € K and 0 <7< ng. If 7o = 00, then the set K is called ‘uniformly
(1, p)-thick.

Note that a scaling argument, yields
(1.3) C1p(B(z,7), B(z,2r)) = c(n,p)r"7*.

P. Hajtasz {4] used the Hardy-Littlewood maximal operator M and showed that for
a domain ' with 2 locally uniformly (1, p)-thick complement there exists ¢ € (1,p)
such that every function u € C§°(9) satisfies the pointwise analogue of the Hardy
inequality; which in a slightly simplified formulation reads

| 1
lu(e)] < ed(a) [M(Vul)(@)] .

As a corollary he obtained the integral Hardy inequality

[ @rdr e e | Fu@ipde)r o,
Q Q

for small positive numbers a. Similar results were obtained also by J. Kinnunen and
O. Martio [6].
Our aim is to extend these results for derivatives of higher order.
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n
If o = (a1,.:+,an) is an n-tuple of non-negative integers, lo} = ¥ a;, a! =
i1

i=
ayloog and for = (2,0 en) € R? weset @® = af? 1o 2. The corresponding
partial derivative operators will be denoted by

lal
Do =D Dgn =

R

and the gradient of a real-valued function of order k, k-€ N, will be the vector
VEu = {D%} otk For k=1, Vlu = Vuis the usual gradient.

Given a measurable set E C R™, we denote its Lebesgue n-measure by |E| and
the characteristic function of E by xz. Constants ¢ in:estimates may vary ‘during
calculations but they always remain independent of all non-fixed entities.

2..THE POINTWISE HARDY INEQUALITY

The fractional maximal function M, pu, 0 < v < n, 0 < R €00, is defined for
every u € L, (R™) by

Mypule) = s (Bl [ uldy, cere.
0<r<R B(z,r)
Note that Mg oot = Mu is the classical Hardy-Littlewood maximal function.
Theorem 1. -Let 1< p < oo, let k be a positive integer.and 0.< v < k. Let
be an open subset of R™ such that R™ \ Q is locally. uniformly (1,p)-thick and let b
be:the constant from Definition 1. Then there exists a constant c = c(k,p,n,b) > 0

such that every function u € C§2(Q) satisfies the inequality

(21 fu(@)] € ed(x)ys=7/? [M‘V,Ad(x)(‘Vkuipxﬁ(i,zd(:)))(I)}l/p1

where ¢ € Q,.d(z) < ro, and T.€ 9 is such that |¢— 7| =d(z).

This is the main result of this section which extends Theorem 2 of {4].-To prove

it we shall need several auxiliary assertions.The first one is a generalization -of [3,
Lemma 7.16]

Lemma 1. Let k be a natural number. There exists a constant ¢ = ¢(k,n) > 0
such that for every ball B'C R™ and for every function uw € C¥(B) the inequality

7k
u(z)—lBh/BP(z,y)dy[ <ef !‘:'_Z?”i dy, . z€B,




holds, where.P:is the polynomial of order < k — 1. given by

Z1)lel
(2.2) Pay= Y S

el k=1

Dru(y)(y-=)*, = zy€B.

Lemma.1 can be proved in a way similar to the proof of Lemma 7.16 in [3] using the
Taylor expansion of the function v(r) = u(z +16), where r = |z — y|, 6 = (y - 2)/r,
z,y°€ Q. Note that assertions of this type can be found for instance in [1,'§8.1] and
(8,'§1.1.10).

The next assertion is a variation of a well-known result of L, I. Hedberg.

Lemma 2. Let 0'< v.< & and.let B .C R™ be aball of radius R.  Then there
exists a constant ¢ = ¢(n, v, k) > 0 such that every function g € Ll _(B) satisfies the
inequality

1
loc

q
B p[ig%l?y? S eR*TTM, 2r(9)(2), @€ B:

Proof. Fixz € Bandforie Nsetd; = (B(z,2!7*R)\ B(z,27R)) N B. Then

lo(w)l Y lg®)|
/B (E] dy g;./ Je=ylror 4

< max(1,2°7M S (27 R)T /
{

gyl dy
= B(z,2'~'R)

<1B(0,1)] max(1, 2572 T YRETT S 2K M, op(g) ().
=0
(]
We shall ‘also need the following inequality of Poincaré type which follows from

the. considerations in [8, Sections 9.3 and 10.1.2].

Lemma 3. Let1<'p < oo Let B = B(z, R) be aball inR™ and let. K be a
closed subset of B. Then every function v € C°%°(B) such that dist(suppu, K) > 0
satisfies the inequality

R
/F|u(m)épdx$cm‘éwu(@[”dx,

where ¢ is a positive constant independent of B, K and u.
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Proof of Theorem 1. Let'z €  be such that d(z) <ro, where 7g is the
number from Definition 1. Let T € 9Q satisfy |z ~&| = d(z) = R and let- v € C§°(1).
Set B = B(%,2R). Then z € B and

(2:3) [u(@)] € lu(z) - Pa{z)| +|Pp(z)l,

where Pp(z) = |B|7! [ P(z,y)dy and P is the polynomial from Lemma 1. Using
Lemma 1, Lemma 2 and the Holder inequality we obtain

IVFu(y)]
Blz—ylrk
<RV M ar(IVRulxs)(@)] 7.

(2.4) " Julz) = Pr(n) < c dy < eRY M, 4r(1VRulxp)(2)

From (2.2) we have

k-1

|Pa(2)| < 1B /B Py <X RIB [ [vut)lay
i=0

kel i 1/p
<y r (15 [ vawra)
=0 B

Repeated application of Lemma 3 and of (1.2) and (1.3).yields

R
Cyp((R2\ Q)N B, B(T,4R)

/ Vi) P de <. / [V () de
B )
geRP/ | Vit u(z)|P de

JB

< cR(k‘i)”/ IVEu(@)Pdz, . im0 k-1,
B

Hence,
@3) Pae) < B (1817 [ [hutopr o) =
<RSP M, ar (VR x8) ()]0
The inequality (2.1) follows from (2.3)-(2.5). (]
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3. INTEGRAL INEQUALITIES

In this section we shall use Theorem 1 to obtain higher-order analogues of the
classical Hardy inequality. As in [4] and (6], in further considerations we shall essen-
tially use the openness of the (1, p)-thickness with respect to p. This deep property
was originally proved by J.L.Lewis {7, Theorem 1] and later on in‘another way by
P. Mikkonen {9, Theorem 8.2]. The following lemma can be obtained as a particular
case of Lewis’ and Mikkonen’s results. It is not important for our purpose that Lewis
dealt with another type of capacity.

Lemma 4.  Let 1 < p < coand let K C R be a closed locally uniformly (k,p)-
thick set.: Then there exists q, 1 <'q < p, depending only onn, k, p and b, such that
K is locally uniformly. (k, q)-thick with the same value of o as for p.

For > 0 we set

Q. ={ze:d(x) <r}.

Theorem 2, Let 1 <p < oo and let k be a positive integer. Let.§) be an open
subset of R™ such-that R™\ Q is locally. uniformly-(1, p)-thick. ‘Then there exists a
positive constant ¢ = ¢(k,p,n, b) such that the inequality

(2.6)

" P
- ) dz < c/ IVEu(z)|P da
.

holds for-every function u € C§>() and for every 1. €:(0,10), where 7o ‘is the
parameter given in Definition 1.

Proof.  Let p > 1 and let ¢ € (1,p) be from Lemma 4, and suppose that
7°€(0,70). Tt follows from.(2.1) that for all u € C§2(),

@ Ju@)ld@) " < e [M(Vrulrxa ) @), cen,.

We use the boundedness of M LP/? — LP/9 and the Holder inequality to obtain

N

28 /ﬂ ,. (%’3}“)’7 dr<e /Z (94 ultxa, ) @] de < c L [VEu(a)fP ds.

Note that the norm of the maximal operator M and, consequently, also the constant,
¢ depend on the value of p/q. o]
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If p =1, we cannot use Lemma 4. Instead we use the fact that for Q with {Q] < o0
the maximal operator. M is'a bounded mapping of Llog L(Q) in L}() (see [2],
p. 74). Recall that Llog L(Q) is the Zygmund space which consists of all measurable
functions u with jsz |u(z)|log, Ju(2)]dz < oo, endowed with the norm

el ]
el 10g L(0) = / u*(t) log T dt,
o {

where u* is the non-increasing rearrangement of w.
Theorem 3. Let p =1 and let k be a positive integer. Let 2 be a bounded open

subset of R™ such that R™\ § is locally uniformly-(1,1)-thick, . Then there exists a
positive constant ¢ = ¢(k,n, b):such that the inequality

@9 [ 58 <elvbuliingrion

holds for every:function u € C§(Q) and for every v €:(0,70), where 1o is the
-parameter given in Definition 1.

Proof. From the estimate (2.1) we have
lu(@)ld()™ < M (IVoulxa,) @),z € 0.

Integrating both sides of ‘the inequality over 2, and using the boundedness of
M: Llog L(2) — L*(Q) we arrive at the inequality (2.9). o

Corollary 1. Let 1 <p < oo.and let k be a positive integer. Let.Q be an open
subset of R™ such that R™\ Q is locally uniformly (1, p)-thick. Then there exists a
number €9 > 0-such that the inequality

(2.10) /Q (%2) d(z)?P dz < C-[L‘ |VEu(@)|Pd(x)°? da

holds for all u € C3°(2), 7€ (0,79) and 0.< ¢ <gg. The constant ¢ > 0 depends on
n, p, k,"b and on the number ¢ from Lemma 4.

Proof.  Fix e > 0-and let u € C§2(Q) be such that:the integral on the right
hand side of (2.10) is finite.

If k=1, we set v(z) = |u({z)|d(z)*. Then
(2.11) |Vu(2)] < |Vu(@)|d(@)® + elu(z)|d(z) 7 for ae.z€Q,
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and (2:10) implies that v belongs to the Sobolev space Wy (€).' Applying Theorem 2
to functions from C§°(Q) which approximate v in Wob(§) and Ppassing to the limit
we obtain

(o) aorrse= [ (55) o< 1rres

for 0 € e <'gg. By (2.11), we have

/n, (13((3‘) d(z)7 de
c ( / VU@ dle)? da+e7 /“h ( 1%(%_1 )Pd(m dm) '

Thus, the inequality (2.10) holds for 0 € &< gy = ¢7H/?,

Let k > 1 and suppose that the inequality (2.10) holds forj-=1,2,7..,k'= 1 and
0 € e <gp. Let g be the regularized distance function equivalent to d and satisfying
the estimate

[Vig(e)| € (@)™, z€® j=1,20,
(see, e.g., {11, p.171]). Set v(z) = Ju(z)|o(z)¢. Then

[V¥0(@)] < [V u(@)lo(x)* + eZ Qi(e)| V¥ u(a)|e(z)*,
i=1
where Q; are polynomials of degree j. Thus, we have
)N fo()\?
[, () awraeee (g(r)k)

gc/ IVEu(@)Po(z) de +cspz[Q () P/

(LY oy

o, \e(®)kI
P
c/O [V u(2)|Po(2) dae + cc” (I:((j)) ) o(z)* Pde
/ [VEu(2)|Pd(2)? da + cs? (Iu(m ) d(z)*7Pdz,
and the inequality. (2.10) holds for 0.< € < c‘I/P, ]

Corollary 2. Let Q be such that R*\Q ‘is locally uniformly (1, p)-thick with
o> +diam(Q). Then the inequality (2.1) holds for every z € Q and the assertions
of Theorem 2, Theorem 3 and Corollary 1 hold with Q in place of Q, and for-all
functions u from the corresponding Sobolev spaces Wok P on 2,

Proof. It suffices to observe that Q. = € for 7 > % diam(f) and that the
constant ¢-does not depend on the parameter rq. ]
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Note that the assumption of Corollary 2 holds, in particular, if R™\ € is uniformly
(1,p)-thick (i.e.; 7o = 00).

An open problem:. Additional weights could be introduced into the inequal-
ity (2.6) by applying a weighted inequality for the maximal function.” Following the
proof of Theorem 2 we can multiply both sides of inequality (2.7) (or, more precisely,
of inequality (2:1)) by d(z)¢ and integrate over §2,. However, to make the final step
in (2.8) we have to know that the maximal function satisfies the weighted inequality

/(; M (V50 ) (@) (@) dz < o / |V () (@) da.

Note that we are dealing with the global maximal function (the balls in the construc-
tion of M, 44(z) from inequality-(2.1) cross the complement of {2) and'so to use the
known weighted inequalities for M we would have to consider d(z) extended properly
outside .- The question is, if the sufficient conditions for such weighted estimate
would not override the condition of (1, p)-thickness of R™\ Q.
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