Sorina Barza; Lars-Erik Persson
Weighted multidimensional inequalities for monotone functions

Persistent URL: http://dml.cz/dmlcz/126258

Terms of use:

© Institute of Mathematics AS CR, 1999

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use.*
WEIGHTED MULTIDIMENSIONAL INEQUALITIES FOR MONOTONE FUNCTIONS

SORINA BARZA, LARS-ERIK PERSSON, Luleå

(Received January 18, 1999)

Abstract. We discuss the characterization of the inequality

$$\left(\int_{\mathbb{R}^N_+} f^q u \right)^{1/q} \leq C \left(\int_{\mathbb{R}^N_+} f^p v \right)^{1/p}, \quad 0 < q, p < \infty,$$

for monotone functions $f \geq 0$ and nonnegative weights u and v and $N \geq 1$. We prove a new multidimensional integral modular inequality for monotone functions. This inequality generalizes and unifies some recent results in one and several dimensions.

Keywords: integral inequalities, monotone functions, several variables, weighted L^p spaces, modular functions, convex functions, weakly convex functions

MSC 1991: 26D15, 26B99

1. INTRODUCTION

Let $\mathbb{R}^N_+ := \{(x_1, \ldots, x_N); x_i \geq 0, i = 1, 2, \ldots, N\}$ and $\mathbb{R}_+ := \mathbb{R}^1_+$. Assume that $f: \mathbb{R}^N_+ \to \mathbb{R}_+$ is monotone which means that it is monotone with respect to each variable. We denote $f \downarrow$, when f is decreasing (= nonincreasing) and $f \uparrow$ when f is increasing (= nondecreasing). Throughout this paper ω, u, v are positive measurable functions defined on $\mathbb{R}^N_+, N \geq 1$.

A function P on $[0, \infty)$ is called a modular function if it is strictly increasing, with the values 0 at 0 and ∞ at ∞. For the definition of an N-function we refer to [7]. We say that a modular function P is weakly convex if $2P(t) \leq P(Mt)$, for all $t > 0$ and some constant $M > 1$. All convex modular functions are obviously weakly convex. The function $P_1(t) = t^p, 0 < p < 1$ and the function $P_2(t) = \exp(\sqrt{t}) - 1$ are weakly convex, but not convex. See also [6].
In order to motivate this investigation and put it into a frame we use Section 2 to present the characterization of the inequality

\begin{equation}
\left(\int_{\mathbb{R}_+^N} f^q u \right)^{1/q} \leq C \left(\int_{\mathbb{R}_+^N} f^p v \right)^{1/p}, \quad 0 < p, q < \infty,
\end{equation}

for all \(f \downarrow \) or \(f \uparrow \).

In Section 3 we will characterize the weights \(\omega, u \) and \(v \) such that

\begin{equation}
Q^{-1} \left(\int_{\mathbb{R}_+^N} Q (\omega(x)f(x)) u(x) \, dx \right) \leq P^{-1} \left(\int_{\mathbb{R}_+^N} P (C f(x)) v(x) \, dx \right)
\end{equation}

holds for modular functions \(P \) and \(Q \), where \(P \) is weakly convex and \(0 \leq f \downarrow \). Here and in the sequel \(C > 0 \) denotes a constant independent of \(f \).

Conventions and notation. Products and quotients of the form \(0 \cdot \infty, \frac{\infty}{0}, 0 \) are taken to be \(0 \). \(\mathbb{Z} \) stands for the set of all integers and \(\chi_E \) denotes the characteristic function of a set \(E \).

2. Weighted \(L^p \) inequalities for monotone functions

In the one-dimensional case the inequality (1) was characterized in [8, Proposition 1] for both alternative cases \(0 < p \leq q < \infty \) and \(0 < q < p < \infty \) as follows:

(a) If \(N = 1, 0 < p \leq q < \infty \), then (1) is valid for all \(f \downarrow \) if and only if

\[A_0 := \sup_{t > 0} \left(\int_0^t u \right)^{1/q} \left(\int_0^t v \right)^{-1/p} < \infty \]

and the constant \(C = A_0 \) is sharp.

(b) If \(N = 1, 0 < q < p < \infty \), then (1) is true for all \(f \downarrow \) if and only if

\[B_0 := \left(\int_0^\infty \left(\int_0^t u \right)^{\tau/p} \left(\int_0^t v \right)^{-\tau/p} u(t) \, dt \right)^{1/r} < \infty. \]

Moreover,

\[\left(\frac{q^2}{pr} \right)^{1/p} B_0 \leq C \leq \left(\frac{r}{q} \right)^{1/r} B_0 \]

and

\[B_0^* = q \left(\int_0^\infty u \right)^{r/q} + q \left(\int_0^\infty v \right)^{-r/q} \int_0^\infty \left(\int_0^t u \right)^{\tau/p} \left(\int_0^t v \right)^{-\tau/p} v(t) \, dt. \]
Similar characterizations are valid when $f \uparrow$, with the only change that the integrals over $[0, t]$ are replaced by integrals over $[t, \infty]$.

Since the one-dimensional inequality (1) expresses the embedding of classical Lorentz spaces, further generalizations and references in this directions can be found in [3].

The multidimensional case was recently treated in [1, Theorem 2.2], for the case $0 < p \leq q < \infty$ and in [2, Theorem 4.1], for the case $0 < q < p < \infty$ as follows:

(a) If $0 < p \leq q < \infty$, then (1) is valid for all $f \downarrow$ if and only if

$$A_N := \sup_{D \in \mathcal{D}_d} \frac{\left(\int_D u \right)^{1/q}}{\left(\int_D v \right)^{1/p}} < \infty$$

and the constant $C = A_N$ is sharp. Here the supremum is taken over the set \mathcal{D}_d of all "decreasing" domains, i.e., for which the characteristic function is a decreasing function in each variable.

(b) If $0 < q < p < \infty$, then (1) is valid for all $f \downarrow$ if and only if

$$B_N^r := \sup_{0 \leq t \leq \epsilon} \int_0^\infty \left(\int_{D_{h,t}} u \right)^{-r/p} d \left(\left(\int_{D_{h,t}} u \right)^{r/q} \right) < \infty,$$

where

$$D_{h,t} = \{ x \in \mathbb{R}^N_+ ; h(x) > t \}.$$

Moreover,

$$\frac{1}{2^{1/q}(2r/q + 2r/p)^1/r} B_N \leq C \leq 4^{1/q} B_N.$$

If $N = 1$, P and Q are N-functions and $Q \circ P^{-1}$ is convex, then some weight characterizations of the inequality (2) have been obtained in [4] and [5].

For $N > 1$, P and Q N-functions and $Q \circ P^{-1}$ convex, (2) holds for all $0 \leq f \downarrow$ if and only if there exists a constant $A = A(\Phi_1, \Phi_2, u, v, \omega)$ such that, for all $\epsilon > 0$ and $D \in \mathcal{D}_d$,

$$Q^{-1} \left(\int_D Q(\epsilon \omega(x)) u(x) \, dx \right) \leq P^{-1} \left(P(A\epsilon) \int_D v(x) \, dx \right).$$

This characterization can be found in [2, Theorem 2.1].

However, if Q and P are not N-functions (hence not convex) and $Q \circ P^{-1}$ is not convex, then the problem of characterizing weights for which (2) holds seems to be to a large extent open. For $N = 1$ the first characterization of this type was given in [6].

In the next section we characterize the weights for which (2) holds when P is weakly convex. This result generalizes both the corresponding one-dimensional result.
obtained in [6] and the multidimensional case obtained in [2]. Some particular cases of (2) will also be pointed out.

3. A MULTIDIMENSIONAL MODULAR INEQUALITY

Let $0 \leq h(x) \downarrow$ and $t > 0$. Denote

$$D_{h,t} := \{x \in \mathbb{R}^N_+; h(x) > t\},$$

and

$$D_{d} := \bigcup_{0 \leq h \downarrow} \bigcup_{t > 0} D_{h,t}.$$

The set D_{d} consists of all “decreasing” domains $D_{h,t}$. In particular, $\chi_{D_{h,t}}$ is decreasing in each variable. For a strictly decreasing, positive sequence $\{t_k\}$, such that $t_k \to 0$ as $k \to \infty$ we put

$$D_k = D_{h,t_k} := \{x \in \mathbb{R}^N_+; h(x) > t_k\}, k \in \mathbb{Z}.$$

Obviously, $D_{k+1} \supset D_k$ and we define

$$\Delta_k = \Delta_{h,t_k} := D_{k+1} \setminus D_k.$$

Hence, $\Delta_k \cap \Delta_n = \emptyset$, $k \neq n$ and $\mathbb{R}^N_+ = \bigcup_k \Delta_k$. For simplicity we also assume in the sequel that

$$\int_{\mathbb{R}^N_+} v(x) \, dx = \infty.$$

Theorem 3.1. Let Q and P be modular functions and P weakly convex. Then (2) holds for all $0 \leq f \downarrow$ if and only if there exists a constant $B > 0$ such that

$$Q^{-1}\left(\sum_{k \in \mathbb{Z}} \int_{\Delta_k} Q\left(\frac{\varepsilon_k}{B} \omega(x)\right) u(x) \, dx\right) \leq P^{-1}\left(\sum_{k \in \mathbb{Z}} P(\varepsilon_k) \int_{\Delta_k} v(x) \, dx\right)$$

is satisfied for all positive decreasing sequences $\{\varepsilon_k\}_{k \in \mathbb{Z}}$ and all increasing sequences of decreasing sets $\{D_k\}_{k \in \mathbb{Z}}$ such that $\int_{D_k} v(x) \, dx = 2^k$.

Proof. The necessity follows, if we replace f in (2) by the decreasing function

$$f = \sum_{k \in \mathbb{Z}} \varepsilon_k \chi_{\Delta_k}, \{\varepsilon_k\}_k \text{ being a decreasing sequence.}$$
Next we consider the sufficiency. Fix \(f \downarrow \) and set \(\epsilon_k = Bt_k, D_k = D_{f,t_k} \) and \(\Delta_k = \Delta_{f,t_k} \). Because \(\mathbb{R}^N_+ = \bigcup_k \Delta_k \) we obtain, using also (4) and the facts that \(Q, P, Q^{-1}, P^{-1} \) are increasing and \(f \) is decreasing,

\[
Q^{-1} \left(\int_{\mathbb{R}^N_+} Q(\omega(x)f(x))u(x)\,dx \right) = Q^{-1} \left(\sum_{k \in \mathbb{Z}} \int_{\Delta_k} Q(\omega(x)f(x))u(x)\,dx \right) \\
\leq Q^{-1} \left(\sum_{k \in \mathbb{Z}} \int_{\Delta_k} Q(\omega(x)t_k)u(x)\,dx \right) \\
\leq P^{-1} \left(\sum_{k \in \mathbb{Z}} P(Bt_k) \int_{\Delta_k} v(x)\,dx \right) \\
= P^{-1} \left(\sum_{k \in \mathbb{Z}} 2P(Bt_k) \int_{\Delta_{k-1}} v(x)\,dx \right) \\
\leq P^{-1} \left(\sum_{k \in \mathbb{Z}} \int_{\Delta_{k-1}} 2P(Bf(x))v(x)\,dx \right).
\]

Therefore, by using the assumption that \(P \) is weakly convex, we find that

\[
Q^{-1} \left(\int_{\mathbb{R}^N_+} Q(\omega(x)f(x))u(x)\,dx \right) \leq P^{-1} \left(\sum_{k \in \mathbb{Z}} \int_{\Delta_{k-1}} P(MBf(x))v(x)\,dx \right) \\
= P^{-1} \left(\int_{\mathbb{R}^N_+} P(MBf(x))v(x)\,dx \right),
\]

i.e., (2) holds with \(C = MB \). The proof is complete. \(\square \)

We will give now two important corollaries of Theorem 3.1.

Corollary 3.2. If \(P \) and \(Q \) are as in Theorem 3.1 and \(Q \circ P^{-1} \) is convex, then (2) holds if and only if, for all \(\epsilon > 0 \) and decreasing sets \(D \), there exists \(C > 0 \) such that

(5) \[
Q^{-1} \left(\int_D Q(\frac{\omega(x)}{C}P^{-1}(\frac{\epsilon}{\int_D v}))u(x)\,dx \right) \leq P^{-1}(\epsilon).
\]

Proof. For the necessity we just have to substitute \(f \) in (2) with the function

\[
f_0(x) = \frac{P^{-1}(\frac{\epsilon}{\int_D v})}{C} \chi_D(x).
\]

Next we prove the sufficiency, i.e., that (5) implies (2). According to Theorem 3.1 it is sufficient to prove that (5) implies (4). By applying (5) with \(\epsilon = P(C\epsilon_k) \int_{D_{k+1}} v \) for
each decreasing set D_{k+1} and using the convexity of $Q \circ P^{-1}$ and the weak convexity of P we find that

$$
\left(\sum_{k \in \mathbb{Z}} \int_{\Delta_k} Q(\epsilon_k \omega(x)) u(x) \, dx \right) \leq \left(\sum_{k \in \mathbb{Z}} \int_{D_{k+1}} Q(\epsilon_k \omega(x)) u(x) \, dx \right) \\
\leq \sum_{k \in \mathbb{Z}} Q \circ P^{-1} \left(P(C \epsilon_k) \int_{D_{k+1}} v \right) \\
\leq Q \circ P^{-1} \left(\sum_{k \in \mathbb{Z}} 2P(C \epsilon_k) \int_{D_k} v \right) \\
\leq Q \circ P^{-1} \left(\sum_{k \in \mathbb{Z}} P(MC \epsilon_k) 2^k \right) \\
= Q \circ P^{-1} \left(\sum_{k \in \mathbb{Z}} P(MC \epsilon_k) \int_{\Delta_k} v \right)
$$

Hence (4) follows with $B = MC$ and the corollary is proved. \hfill \Box

Remark. If $Q(x) = x^q$ and $P(x) = x^p$, $0 < p \leq q < \infty$, then $Q \circ P^{-1}$ is convex and the condition (5) coincides with condition (3). Hence, Corollary 3.2 generalizes Theorem 2.2(d) in [1].

Remark. For $N = 1$ the condition (5) reads

$$
Q^{-1} \left(\int_0^r Q \left(\frac{\omega(x)}{B} P^{-1} \left(\frac{x}{\int_0^r v} \right) \right) u(x) \, dx \right) \leq P^{-1} (\epsilon), \quad \forall r > 0.
$$

Thus, if $N = 1$, then Corollary 3.2 coincides with Corollary 1 in [6].

Finally we apply Theorem 3.1 with $P(x) = x^p$ and $Q(x) = x^q$, $0 < p, q < \infty$, and obtain the following result:

Corollary 3.3. The inequality (1) holds for all $0 < f \downarrow$ if and only if there exists a constant $K = K(p, q)$ such that

$$
\left(\sum_{k \in \mathbb{Z}} \epsilon_k^q \int_{\Delta_k} u(x) \, dx \right)^{1/q} \leq K \left(\sum_{k \in \mathbb{Z}} \epsilon_k^p \int_{\Delta_k} v(x) \, dx \right)^{1/p}
$$

for all positive decreasing sequences $\{\epsilon_k\}_{k \in \mathbb{Z}}$ and such that $\int_{D_k} v(x) \, dx = 2^k$.

Remark. For $N = 1$ a similar characterization is given in [6]. For other multidimensional characterizations of (1) in the case $0 < p \leq q < \infty$ see [1] and in the case $0 < q < p < \infty$ see [2] (cf. Section 2).
Final remarks. (i) The results in this paper can also be formulated when we remove the technical assumption (3) (cf. [2], [8]).

(ii) Similar results to all results in this paper can be formulated also for increasing functions of several variables.

References

Authors’ addresses: Sorina Barza, Lars-Erik Persson, Department of Mathematics, Luleå University of Technology, S-97187 Luleå, Sweden, e-mails: sorina@sm.luth.se, larserik@sm.luth.se.