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Abstract. A graph is called supermagic if it admits a‘labelling of the edges by pairwise
different. consecutive positive integers such that the sum of the labels of the edges incident
with a vertex is independent of the particular vertex. Some constructions of supermagic
labellings of regular graphs are described. Supermagic regular complete multipartite graphs
and supermagic cubes are characterized.
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1. INTRODUCTION

We consider finite undirected graphs without loops, multiple edges and isolated
vertices. If G is a graph, then V(@) and E(G) stand for the vertex set and edge set
of G, respectively. Cardinalities of these sets, denoted |V(G)| and [E(G)), are called
the ‘order and size of G.

Let a graph G-and a mapping f from F(G) into positive integers be given. The
index-mapping of f is a mapping f* from V(G) into positive integers defined by

@) Fy= 3 nlefle) foreverywveVI(G),
eEE(C)

where 77(v, €) is equal to1 when e is an edge incident with a vertex v, and 0 otherwise.
An injective mapping f from E(G) into positive integers is called a magic labelling
of G for the index X if its index-mapping f* satisfies

(2) Fiw)y=Xx_ forall veV(G).

A magic labelling f of G is called a supermagic labelling of G if the set {f(e): e €
E(G)} consists of consecutive positive integers. We say that a graph G'is supermagic
(magic) if and only if there exists a supermagic {magic) labelling of G.
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The concept of magic graphs was introduced by Sedlafek [6]. The regular magic
graphs are characterized in [3]. Two different characterizations of all magic graphs
are given by S. Jezny, M. Trenkler [5] and R. H. Jeurissen [4].

Supermagic graphs were introduced by M.B. Stewart [8]. It is easy to see that
the classical concept of a magic square of n? boxes corresponds to the fact that the
complete bipartite graph K, ,, is supermagic for every positive integer n # 2 (see also
[8], [2]). M. B. Stewart [9] proved that the complete graph K, is supermagic if and
only if either n 2 6 andn % 0 (mod 4), or n = 2. In [7] and {1], supermagic labellings
of the Mobius ladders and two special classes of 4-regular graphs are constructed.

In this paper we describe some constructions of supermagic labellings of regular
graphs and apply them to complete multipartite graphs and Cartesian products of
circuits.

2. CONDITIONS AND CONSTRUCTIONS

Throughout the paper let & and &(d) denote the set of all supermagic regular
graphs and the set of all supermagic d-regular graphs, respectively. Note that if f is
a supermagic labelling of G € &, then f +m, for every integer m > —min{f(e): e €
E(@)}, is a supermagic labelling of G, too. Therefore, a regular graph G is super-
magic if and only if it admits a supermagic labelling f: E(G) — {1,2,.. ., |E(G)|}.
In what follows we will consider only such supermagic labellings of regular graphs.
In this case; the conditions (1) and (2) require

vemn= £ » n@efle)
vEV(G) € E(G)
=2 ¥ fle)=(1+|E@)IEG)
<€E(G)
Since the size of a d-regular graph satisfies |E(G)| = ‘%W(G);, we get
3) A=g(1+ V(G

Now, we-can prove the following necessary: conditions for a supermagic regular
graph.

Proposition 1. Let G € &(d). Then the following statements hold:
(i) ifd=1 (mod 2), then [V(G)| = 2 (mod 4);
(it) ifd'=2 (mod 4) and |V.(G)| = 0 (mod 2), then G contains no component of
an odd order;
(i) V() S 2, thend> 2.

100



Proof. - Let us assume to the contrary that d = 1 (mod 2) and |V(G)| =0
(mod 4). Then by (3), the index A of a supermagic labelling of ¢ is not an integer;
and by (1), A is a sum of integers, a contradiction. As the order of a regular graph
of an odd degree is even, the condition (i) follows.

Suppose that d = 2 (mod 4), |[V(G)] = 0 (mod 2) and G contains a component C
of an odd order. Then by (3), A is odd. Hence A|V(C)| is odd, too. On the other
hand, by (1) and (2),

V= > ¥ avefle)=2 5 fle),
e€B(C)

veV(C) € E(G)

a contradiction.
Tt is obvious that a regular graph of degree one is magic if and only if it is connected
(i:e. [V(G)] = 2), and a 2-regular graph is never magic. o

Given graphs H and G, a homomorphism of H onto G is defined to be a surjective
mapping ¥: V(H) — V(G) such that whenever u, v are adjacent in H, v(u), %(v)
are adjacent in G. So % induces a mapping ¢: E(H) — E(G) satisfying: if e is an
edge of H with end vertices u and v, then #(e) is an edge of G with end vertices
¥(u)-and ¥(v). We say that a homomorphism 4 is harmonious if 9 is a bijection,
and balanced if {71 (w)| = |41 (v)] for all u,v € V(G). A bijective harmonious
homomorphism of H onto G is called an isomorphism of H onto G. If there is an
isomorphism of H onto G, then we say that H is a copy of G. A triplet [H,1),1]
is called a supermagic frame of a graph G if 7 is a harmonious homomorphism
of H onto G and ¢: E(H) — {1,2,...,|E(H)|} is an injective mapping such that

t*(w) is independent of the vertex v € V(@).
weP=(v)

Proposition 2. If there is a supermagic frame of a graph G, then G is super-
magic. .

Proof. Letus assume that [H,v,1] is a supermagic frame of G. It can be easily
seen that a mapping f given by f(e) = t(fi=1(e)) for every e € E(G), is 2 supermagic
labelling of the graph G. : (]

Corollary 1. Let H € & and G be graphs. If there is a balanced harmonious
homomorphism of H onto G, then G € &,

Proof. Suppose that ¢ is a balanced harmonious homomorphism of H onto G.
Since H is regular and v is balanced, G is regular. As H € &, there is a supermagic
labelling f of H. Clearly, [H,%; f] is a supermagic frame of . By Proposition 2,
the assertion follows: a
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Recall that a d-factor of a graph is defined to be its é-regular spanning subgraph.
In what follows, let §(k), for a positive integer k > 2, denote the set of all regular
graphs which can be decomposed into % pairwise edge-disjoint ¢-factors.

The union of two digjoint graphs G and H is denoted by G U H and the union of
m 2 1 disjoint copies of a graph G is denoted by mG.

Corollary 2. Let G € S0 §(k). Then the following statements hold:

(i) if k is even, then mG € & for every positive integer m;
(i1) if k is odd, then mG € & for every odd positive integer m.

Proof. Since G € &, there is a supermagic labelling f of G for the index A.
We have G € §(k) and so there exist edge-disjoint é-factors F*, F2,. .. F¥ which
form a decomposition of G. Note that F' is a factor of G, ie. V(FY) = V(G) and
E(F) C B(@G). Fori=1,kandj=1...,m let G;, Ff, & and o} be a
copy of G, a copy of F, an isomorphism of G; onto ¢ and an isomorphism of F}
onto F**, respectively. Suppose that the graph H is a disjoint union of graphs F7,

k
ie H = G} 'Uil;}i’ and assume that the graph mG is a digjoint union of graphs
j=li=

Gy, ie.m@G = ) G; Clearly, a mapping v: V(H) — V(mG) given by #(v) =
=1

&M (¢i(v)) when v € V(F}), is a balanced harmonious homomorphism of H onto
mG. Now we distinguish the following cases:

Case 1. Let k beeven. Consider a mapping to from E(H) into positive integers
given by to(e) = f(#%(e)) +r()|E(G)| whenever e € E(Fj), where

i j=1 if i=1(mod2),
o) = S
m—j if 2=0 (mod 2).

Obviously, for any e € E(H), we have 1 < t5(e) < m|B(G)| = |E(H)]. Sup-
pose that ei; ey are edges of H satisfying to(e1) = to(ea), fe. f(@5(er)) +
r5(MIE(G)] = F(@4le2)) + r3()|E(G)|: Since f is an injective mapping. onto
the set {1,2,...,[E(G)[}, then @%(e1) = @Y(ez) and r§(p) = r5(0). As F (¢¥) is
an isomorphism-onto F* (FY), then z = y. For a fixed integer z, % is an injective
mapping and so.p = ¢. Therefore, we have @Z(e1) = @5 (ez). Hence 1 = e;. This
means that fo is an injective mapping from E{H) onto {1,2, ... |E(H)|}. Moreover,
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for a given vertex v of G, the index‘mapping of o satisfies

3z 0 g 5 ((e) (&)

ugy=1(v)

= 3 GE@H( + T a0, 0fe)
=1 ccir(Fy) ,

—SE@ISAD+ T )05
i=1 c€E(G)

— @G 1)+ Em = i) + £ ()

=6BE@)|E(m—1) + A

Thus [H,¥,10] is a supermagic frame of the graph mG and by Proposition 2 (i)
follows.

Case 2. Let k and'm be odd. Consider a mapping iy from E(H) into positive
integers given by t1(e) = f(@i(e)) + ri(j)|E(G)| whenever e € E(FY), where

i1 ifi=1 (mod 2) and i <k,

m—j ifi=0 (mod2)andi<k~1,
: jo st ifi=k~-1andjg =L,
ppodtt f o

e ifi=k—1andj> =5,

m-2+1 ifi=kandj<2H,
2m=2j+1 ifi=kandj> 2t

Similarly as in the casé 1, it can be seen that #) is an injective mapping from
E(H) onto {1,2,...;|E(H)|} and its index-mapping satisfies Yot =
uEY=(v)
5{E(G)I%(m = 1) + X for any vertex v of mG. So'[H, v, 1] is a supermagic frame of
m( and by Proposition 2, (ii) follows. ]

Corollary 3. Let H € 6(d) and G € &(d) N §(2). Then H U 2G € 6(d).

Proof. Since H € 6(d) (G € 6(d)), there is a supermagic labelling 7 (g)
of H (G) for the index Ay (Ag). We have G € F(2) and so there exist edge-
disjoint &-factors F*, F2 which form a decomposition of G. Evidently, 6 = ¢. For
d=1,2and j = 1,2 let Gy, F}, & and ¢! be a copy of G, a copy of F*; an
isomorphism of G; onto G and an isomorphism of Fj onto F*, respectively. Suppose
that Q = HUFf UF2UF} UF} and C = H UGy UG,. Clearly, a mapping
2 V(Q) — V(C) given'by

S (gHei)  ifve VIE),
b)) = . .
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is a harmonious homomorphism of @ onto C. Now, consider a mapping t from E(Q)
into positive integers given by

9(@ie)) ife € E(F)),
t(e) = { hle) +|E(G)] ife € E(H),
9@ i(e) +BG)| +|EH)|  Hee B(F )

It is easy to see that ? is an injective mapping from E(Q) onto {1,2,...,|E(Q)}}.
Moreover, we have

> )t* () = () (G )) + £ ((#)1E0)

wEPTI(vy,
= 8(E(G)] + |EHE)]) + ¢*(& )
=6(1E(@)| + |E(H)]) + Ac

for any vertex v of G, and

STt (w) = dEG) |+ k() = dE(G)] + An
ugPTH(v)

for any vertex v of H. According to (3),

dIE(G)] + A = 281 B(G)| + 6(1 + 8|V(H))
= 28|E(G)| + 81 + |E(H)])
= 8(E(G)| + |E(H)]) + (1 +BG)]
=B@)| 4+ |EH)) + 001 + V(G
= E@)| + B + Ao

Thus [@,4,] is a supermagic frame of C and by Proposition 2, the assertion follows.
8]

Proposition 3. Let 1, F, ..., F; € 6 be pairwise edge-disjoint factors which
form a decomposition of a graph G. Then G € &.

Proof. Since F; € 6, there is a supermagic labelling f; of F; for every i =
1,...;k. Evidently, a mapping [: E(G) — {1,... |[E(G)|} given by f(e) = fi(e) +
5. |B(F;)| whenever e € E(F;), is a supermagic labelling of G. 0
0<j<i
The Cartesian product Gi0G, of graphs Gy, G is a graph whose vertices are
all ordered pairs vy, v2], where vy € V(Gy), vy € V(G5), and two vertices [v1,vs];
[u1, us] are joined by an edge in G10GY if and only if either (a) v1 = u; and v2, up
are adjacent in G, or (b) vy, v; are adjacent in Gy and vy = uy. It is easy £0 see
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that, the edges of type (a) ((b)) induce a spanning subgraph F* (F?) of G;0G5 which
is.isomorphic to |v(G:)|Gs (1¥(G2)IGh, respectively). F2, F? form a decomposition of
G10G, and s0, by Proposition 3, we immediately have

Corollary 4. Let Gi, G be regular graphs satisfying |v(G)|Gs € & and
1V(G@2)IG1 € 6. Then G10G, € 6.

The lezicographic product G1[G5) of graphs Gy, G is a graph whose vertices are
all ordered. pairs [vy;v2], where v1 € V/(Gy), v2 € V{(Gs), and two vertices [vr, v2],
[u1,u2] are joined by:an edge in G1{G,) if and only if either vy, uy are adjacent in
Gy, or vy = uyand vo; ¥y are adjacent in Ga: Let us remark that isolated vertices
of G5 are allowed in this special case.

Corollary 5. Let Gy, Gy be regular graphs satisfying
() V(G2 2 3;
(i) [v(c1)IG2 € 6 or G» is totally disconnected;
(1) [V(G3)| =0 (mod 2) or [V(G)|E(G1)[ = 1 (mod 2).
Then Gy {Gz} €6.

Proof, Let n denote the order of Go,iein = [V(Gy)|. Asn23, K,, €6
(see Introduction). ‘It is well-known that K, can be decomposed into n pairwise
edge-disjoint 1-factors, i.e. Ky, € §(n). Since (ili), we have |E(G) K, € & by
Corollary 2

Let D, be a totally disconnected graph of order n. According to the definition of
the lexicographic product, G1[G2] can be decomposed into factors Fi, Fy, where F} is
isomorphic to G1[Dy] and F is isomorphic to (v(¢,)|Ga. Moreover, each edge of Gi
corresponds to a subgraph of G1[D,] which is isomorphic to K, . Therefore, G1[{D5]
can be decomposed into |E(G;)| pairwise edge-disjoint subgraphs isomorphic t0 Kn,n
and so there is a balanced harmonious homomorphism of {E(Gi)1Kn » onto G1[Dhn).
By Corollary 1, G1{D,] € &. Thus Fy € & and by (i), F» € 6. Proposition 3
implies G1[G2] € 6. ; : ’ O

3. REGULAR COMPLETE MULTIPARTITE GRAPHS

A complete k-partite graph is a graph whose vertices can be partitioned into k 2 2
disjoint classes Vi,..., Vi such that two vertices are adjacent if and only if they
belong to distinct classes. If [Vl =n for all 4 = 1,. .. k, then the complete k-partite
graph is regular of degree (k — 1)n and is denoted by Ky, Kypy (or only Ky)
is called a complete graph. A complete bipartite graph Kopn is also denoted by
K n: Note that Kypn) can be also defined by Ki[D,], where Dy, denotes the totally
disconnected graph of order n.
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The characterizations of supermagic complete and complete bipartite graphs (see
Introduction) are extended in the following assertion.

Theorem 1. MKy, € 6 if and only if one of the following conditions is satisfied:
Hn=1Lk=2m=1; : g
i) n=1,k=5m>2;
() n=1,5<k=1 (modd),m21;
(iv) n=1,6<k=2 (mod4), m=1 (mod 2);
V) n=1,7<k=3 (mod 4), m =1 (mod 2);
W) n=2,k23,m21;
(vil) 3<n=1 (mod 2),2< k=1 (modd),m>1;
(viii) 3<n=1(mod 2),2 < k=2 (mod4), m=1 (mod 2);
(ix) 3<n=1 (mod 2), 2< k=3 (mod 4), m=1 (mod 2);
x)4<n=0(mod2), k=22, m21

Proof. mKjyn is a (k — 1)n-regular graph which consists of m components of
order kn. Moreover, in [9] Stewart proved that K5 ¢ &. Thus, by Proposition 1, it
is easy to see that one of the conditions (i)-(x) is necessary for mKjn) € 6.

On the other hand; we consider the following cases.

Case 1. Letn =1, Obviously, K2 € &. Supermagic labellings of 2K5, 3K
and 5K are described below by giving the labels of edges v;0; in the upper triangles
of matrices. A matrix corresponds to a component of the graph.

2Ks:
w5 100018009 wg 160 11030 12
v 70UAT 8 7 4a 8
v 619 vy 1502
Vg 1 vy 20
vy g e g V7 gt g a0
3K:
34260029 816023 7017 207721712 09
25 T2 117715730 14018710
28005 22718 819
1 2 24
5Ks:
Bii4746 49 6. 59 0 BT 50 10:7147:367 42 16727733526 2528 81 18
4570 AT 38719289 3517040 21722748 B0 24023
4805 44711 41712 345020 15:5729
1 2 8 13 32
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The graph K5 can be decomposed into two pairwise edge-disjoint Hamiltonian cir-
cuits ‘and so 2K5 € F(2). Then, by Corollary 2, mKs € & for every even positive
integer m. Finally, if 7 < m =1 (mod 2), then eitherm =4p+3orm=4p+35
for some positive integer p. Thus mKjs is isomorphic to either 3K U 2(2p) K5 or
5K5 U 2(2p) K. Since 3K, 5K belong to 6(4) and 2pKs € S(4) 1 §(2); we have
mKs € G by Corollary 3.

Now assume that one of (iii)-(v) is satisfied. Then 6 < k#0 (mod 4). Stewart
[9) proved that. Ky € &' in this case. Since for k even (odd) K can be decomposed
into k~—1 (1"—5—’&) pairwise edge-disjoint: 1-factors (Hamiltonian circuits), K belongs
to§(k —1) (%(k—gl), respectively), According to-Corollary 2, mK; € &.

Case 2. Let n.=2. Assume to the contrary that k > '3-is the minimum integer
such that mHyp ¢ 6 for some positive integer m. Denote the vertices of Ky
by 1,09, 5 -, Y2k insuch a way that voi_1 and vs; are non-adjacent vertices for all
i=1,...,k Then the set of edges {viv;: j —i=p (mod 2)}, p € {0,1}, induces a
(k—1)-factor F? of Ky, FO, F'! form a decomposition of Kyy and so Kjps € 3(2).
Since mKypz) ¢ 6, according to Corollary 2, we have Ky ¢ 6. Moreover, £ >4,
hecause K. 3j2) and Kyp0) admit supermagic labellings which are described below by
giving the labels of edges v;v; (and -, if v;, v; are non-adjacent) in the upper triangles
of matrices. :

o240 g g a8

D
130120 1411 15 10

2 a0 28
—isliea a1

3 —is

Kapg) i . Kapy 2 2017916
-0

vg o
19 18

Suppose that k is odd, ie. b =20+ 1. Asd g 29 <k Koy € 6. Let H
be a subgraph of Kijz) induced by {v1,...,va,}. H is isomorphic to Ky and
s0- there is a supermagic labelling ¢ of H for the index A, Condider a mapping
f+ E(Kga) — {1,2,...,4kg} given by

t(e) +4q ifee E(H), ;

i iffe =iy where 1 i< gordg<i<dg,
fe)=<14 if ¢ = vivg; where'q < i < 3¢,

4kg+1—1 if e = vk where ¢ < i< 8¢,

dkg+1~1  ife=vwy where 1< i gordg<i <4y,
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Obviously; f is an injective mapping from E(Kapz) onto {1,2,. ., |E(Kx2)}. More-
over, we have

. q £ 5 4q
Fon)=3i+ 3 @kg+l-D+ 3
=1 =gl 1=3g-+1

=1q(g+1) +20(4kg+ 1) —aldg+1) + Lo(7g+ 1)
=2g(4kg +1) = 20420 + g + 1) = 16> + 8¢° + 20,

similarly,
F*(var) = 160° +8¢% +2¢
and

Filvy) =t (v;) + 4929 — D2+ j + (4kg + 1 ~ 5)
=A+1607 +4q(k—2) +1

forall j =1,...,4¢. According to (3);

A+160% +4q(k ~2) +1 = (2g = DA+ (20 — 1)4g) + 16¢% + 49(2¢ = 1) + 1
=16¢° + 8¢% + 2.

Therefore, f is a supermagic labelling of Ky}, a contradiction to Kip) ¢ 6.
Suppose that k is even, i.e. k = 2¢. It is easy to see that Ky = Ka[Kypl As
35 g<k, 2K ;5 € 6. By Corollary 5, Ky € &; which is again a contradiction.

Case 3. Let n > 3. It is easy to see that mKy, = (mKy)[Da), where D,
is the totally disconnected graph of order n. Corollary 5 implies m&xin) € & for
each of the conditions (viii)~(x). Therefore, suppose that (vii) is satisfied. Then
k=1 (mod 4),ie k=4g¢+1. K canbe decomposed into 2¢ Hamiltonian circuits.
Hence K;[D,] can be decomposed into 2g pairwise edge-disjoint factors isomorphic to
Cy]D.,), where Cj denotes a circuit of length k. According to Corollary 5, Cp[D,] € &
and by Proposition 3, Kix[Dn] € &. Moreover, K[D,] € §(2¢) and so Corollary 2
implies mK[D,] € 6. : 0
Combining Theorem 1 and Corollary 4 we obtain sufficient conditions for the
Cartesian product Ky, 0K to be supermagic. For illustration we present only:
the following

Corollary 6.
(i) Let k > 5 and p > 5 be odd integers. Then K30K, € 6.
(i) Let n >4 and'q > 4 be even integers. Then Ky, € 6.
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The line graph L(G) of a graph G is a graph with the vertex set V(L(@)) =
E(G), where e, ¢ € E(G) are adjacent in L(G) whenever they have a common end
vertex in G. Note that all edges of a graph G incident with a vertex v induce a
subgraph K (v) of L(G); which is isomorphic to a complete graph of order deg(v).
Subgraphs K(v), for all v € V{G), form a decomposition of L(G), where any edge
of G belongs to precisely two distinct subgraphs. Therefore, there is a balanced

harmonious homomorphism of  |J K(v) onto L(G). Combining Corollary 1 and
vEV(G)
Theorem 1 we immediately obtain

G

Corollary 7. Let G be a d-regular graph, where d > 5. If either d = 2 (mod 4)
and |[V(G)| =1 (mod 2), or d = 1 (mod 4), then L(G) € &.

4. CARTESIAN. PRODUCTS OF CIRCUITS

In this section we deal with supermagic labellings of the Cartesian products of
circuits.. The circuit of order n is denoted by C.,.

Theorem 2.  C,0C, € & for any integer n.> 3.

Proof. ' Denote the vertices of Cn by v1,vs,...,vn in such a way that its
edges are v;viqy for i = 1,...n, the subscripts being taken modulo n. Let G; be
the subgraph of C,0C, induced by {[vi,v;l:j=1,...;n} for i =1,...,n and by
{lvi,v2n41-il:d =1,...,n} for i =n+1,...,2n. Obviously, Gy,...,G,, form a
decomposition of C,0C, into pairwise edge-disjoint circuits.

For every 4 € {1,...,2n} let H; be a circuit with the vertex set {u; j=
0,...,m — 1} and let v; be an isomorphism of H; onto G; such that

[vi, Vi 5] ifign,
[Vant1mit 5> Vong1—i) ifi>n,

’I,[),(u;) = {

2n
the subscripts being taken modulo n. Put H = ] H;. Then the mapping t from

=1
V(H) into V(C,0C,) given by ¥(u}) = #:(u}), is a harmonious homomorphism of
H onto-C,0C,. Moreover,

P (v vl)= {ufiud™ 1)
Y [vr, venn]) = {u{-:ufﬁiliT >
O o veaid) = (U w1
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Consider the mapping t: E(H) — {1,2,...,2n?} given by

- 2jn41 if 1 =0 (mod 2),
Hujus,) = . 5
1+2(+n—4 ifj=1 (mod2).
Clearly, ¢ is a bijective mapping and its index-mapping satisfies
t*(uf) = djn+1for j#0,
£ (ub) =2n% + 1 for n =0 (mod 2),
t(uh) = 2(n—Dn+2iforn =1 (mod 2).
Hence
) =4kn+1+4dn—kn+1=4n%+2,
€= ([vr,vetr])
t*(u) =220 +1) = 4n® + 2
€Y~ {{veyvn])

for n'= 0 (mod 2) and

) =2n-n+2r+2n-1n+22n+1-1) =4n® +2

v ([vvn]) it .
for n = 1 (mod 2). Therefore, [H,1,1] is a supermagic frame of C,0C, and by
Propesition 2, C,,0C, € &, &}

The following two assertions exploit the structure of the labellings of C30C3 and
€400, described above.

Proposition 4. Let G be a 3-regular graph containing a 1-factor. Then L(G) €
&.

Proof. Let Fy be a lfactor of G. Put p = |E(F1)]. Denote the vertices
of G by v1;v2,...;v2, in such a way that B(F) = {viveps1y:i=1,...,p}. The
set E(G) ~ E(Fy) induces a 2-factor F of G. Clearly, there is a permutation « of
{1,2,...,2p} such that E(F>) = {vivam s i= 1,.:,2p}

Let T be the complete graph with the vertex set {x,yi, 2:}, foré = 1,2,...,2p. Let

2p.
H be the disjoint union of T3, i.e. H = |J Ty Then the mapping ¢: V(H) — E(G)

i=1
given by ¥(z:) = vivspr1-4, Y(¥i) = Viva(), Y(2i) = Uila-i(y, is a harmonious
homomorphism of H onto L(G).
Consider the mapping t: E(H) -~ {1,2,...,6p} given by

i if e = T,
tley=<Ap+1—i fe=uz,
4p i ife= z2
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Obviously, ¢ is an injective mapping and its index-mapping satisfies

t*(a;) = 4p + 24,
() =4p+1,
t(z) =8p+1

for-all i="1,2,.:.,2p. Hence,

) = = t(u)
2wEYi(e) w2 (vjvap 1)
=) + P (Lopy1j)
=4p+2) +4p+202p+1~4) =12p+2
for e € E(Fy), and
t*(u) = oot
wEYTi(e) 2EPY1(viu0(5))
=17 (ys) 1 (2am1 ()
=dp+1+8p+1=12p+2

for e € E(F;). Therefore, [H,1,1] is a supermagic frame of L(G) and by Prop051-
tion 2, L(G) € &. 0

Proposition 5. Let G be a bipartite 4-regular graph which can be decomposed
into pairwise edge-disjoint subgraphs isomorphic to Cys. Then G € 6.

Proof. Suppose that Vi, V» are parts of G and Gy,..., G are pairwise edge-
disjoint subgraphs of @ isomorphic to 4. Let F be a graph with the vertex set
V(F) = Va, where u,v € V, are joined by an edge in F wheneyer {u,v} C V(G;)
for some i € {1,...,k} (multiple edges are allowed in this special case). Clearly,
Fis a 2-regular graph and so there is a permutation o of Vs such that E(F) =
{va(v): vE Va}.

For every i =1,...,k let H; be the circuit with the vertex set {w;, z;, v, 2} and
the edge set {wlzz,z,y1)y1z1,,,iw,} Then there is an isomorphism %; of H; onto G;

such that a(¥i(z:)) = ¥;(z:). Put H = U H;: The mapping ¢: V(H) — V(G)

given by 1(v) = ;(v) when v € V(H;), zs a harmomous homomorphlsm of H onto
@G. Note that foralli=1;.. .,k w(w;) € Vi, ¥lz;) € Vo, ¥(y:) € Vi v(z) € Vo for
€ Vi, W) = 2 and for v € Vo, ¥71(0) = {1,,2.}, where z/)(xT)oe(w(wT)) and
a”l(w(zs))w(zs are edges of F incident with v.
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Consider the mapping t: E(H) — {1,2,...,4k} given by

i if e = wiz;,

2k+1-i  He=uauy
tle) = : : =

2k +1 if e = yizi,

4k4+1—1 if e = zw;.
Obviously, tis a bijection'and its index-mapping satisfies
tw) =0y =4k + 1,
t(x:) =2k + 1,
t7(z) =6k + 1.
Hence
>t =204k+1)
ugph=(v)
forv € Vi and

>t w=2k+ 1)+ 6k +1)=2(4k+1)
= )

for v € V4. Therefore, [H,1,t] is a supermagic frame of G and by Proposition 2;
Ge6. 0

As the Cartesian product of even circuits is a bipartite 4-regular graph which can

be decomposed into pairwise edge-disjoint subgraphs isomorphic to Cy, by Proposi-
tion 5, we immediately have

Theorem 3. Letn > 2,k > 2 be integers. Then Cy,0Cy; € 6.

This result suggests a conjecture:
Conjecture. C,0C, € Giforalnk>3.

The graph @, of the n-dimensional cube can be defined by induction as follows:
Qi1 =K, and | Q= Qr0K; for any positive integer k.

We conclude this paper with a characterization of supermagic cubes @, but first we
prove the following auxiliary result.

Lemma 1. C,0C0C: € 6.
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Proof. Put G = Cy0Cs. According to Theorem 2, there is a supermagic la-
belling g of G for the index A = 66. Evidently, there exist edge-disjoint 1-factors F*,
F?, F?, F* which form a decomposition of G. Now, consider the graph G0Cjy.
Denote the’ vertices of Cy by 21, ©2, 3, %4 in such a way that its edge set is
{z122; 2223, Tama, mazy } Forj =1,...,4 let G; be the subgraph of G0Cy induced
by {[v,z;]: v € V(G)}. Define a mapping £: B(Gy U .. .UGy) = {1,2,...,128} by

tu, zi)lv, 25]) = g(w) +a;;

if uv € E(F?), where
6432960

3296 0 64
64 32 960
32 64 0 96

Tt is not difficult to check that t is a bijection. The index-mapping of ¢ satisfies

(ai;) =

4 4
(v, z]) = " (w) + Z_Il Gij = A+ 5;1 @i
for every v € V(@). Thus,

*([v, 31]) = ¢*([v, 23]) = 258
& ([v, 2]) = 290
t*([vz4]) = 226
Denote the vertices of G by v1,v, ..., g, Fori = 1,..7,16 let C* be the subgraph
of GOCy induced by {[vi,z;]: 7 = 1,...,4}. Define the mapping h: E(C* U ... U
C19) - {129,130;..,192} by
12844 ife= (v, m]{vi, 72],
161 —1 ife=
hle) = : :
160+ i e = [us, ws){vs, 2],
198 =i ife= [u, zalfor, o1,

It is easy.to check that h is a bijection and its index-mapping satisfies

B (i, m]) = h' ([vi, 23]) = 321,
B (Jvis 22]) = 289,
h* (v, 24]) = 353
foralli=1,...,16:
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The mapping f: B(GOC)) — {1,2,...,192} given by

) t(e) ifee E(GyU...UGy),
e)=
hie) ifee E(C*U...UCY)
is a bijection satisfying f*([vr,2;]) = t*([vi,&5]) + R ([vis25]) = 579 for all i =
100,16, = 1,:..,4, ie. f is a supermagic labelling of GOCy. 0

Theorem 4. @, € & ifand only if either n = 1or4 <n =0 (mod 2).

Proof. @ is a connected n-regular graph of order 27. Thus, Proposition 1
implies the necessary condition for @, € &.

On the other hand, obviously @; € &. It is easy to see that Q4 (Qg) is isomor-
phic to C40C, (C40C,0C,) and so, by Theorem 2 (Lemma 1), Q4 € 6 (Qq € &,
respectively).

Suppose that Qax € & for an integer k > 2. Since Qux € F(2k), we have 16Qs; € &
by Corollary 2. Similarly, 225Q € 6. According to Corollary 4, Q2:0Q4 € &. As
Qak44 is isomorphic to Qsx0Qs, Qa2ris € 6. By induction, @, € & for any even
integer n > 4. ]
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