Ján Jakubík; Mária Csontóová
Cancellation rule for internal direct product decompositions of a connected partially ordered set

Persistent URL: http://dml.cz/dmlcz/126261

Terms of use:

© Institute of Mathematics AS CR, 2000

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
CANCELLATION RULE FOR INTERNAL DIRECT PRODUCT
DECOMPOSITIONS OF A CONNECTED PARTIALLY
ORDERED SET

JÁN JAKUBÍK¹, MÁRIA ČSONTOOVÁ², Košice

(Received December 12, 1997)

Abstract. In this note we deal with two-factor internal direct product decompositions of
a connected partially ordered set.

Keywords: internal direct product decomposition, connected partially ordered set, can­
cellation

MSC 1991: 06A06

Direct product decompositions of a connected partially ordered set have been
investigated by Hashimoto [1].

We apply the notion of internal direct product decomposition of a partially ordered
set in the same sense as in [2]; the definition is recalled in Section 1 below.

The following cancellation rule has been proved in [2]:

(A) Let \(L \) be a directed partially ordered set and \(x_0 \in L \). Let
\[
\phi^0 : L \to A^0 \times B^0,
\psi^0 : L \to A^1 \times B^1
\]
be internal direct product decompositions of \(L \) with the same central element
\(x^0 \). Suppose that \(A^0 = A^1 \). Then \(B^0 = B^1 \) and \(\phi^0(x) = \psi^0(x) \) for each
\(x \in L \).

The aim of the present paper is to generalize (A) to the case when \(L \) is a connected
partially ordered set.

¹ Supported by Grant GA SAV 2/5125/98.
² Supported by Grant 1/4879/97.
1. Preliminaries

We recall that a partially ordered set is called connected if for any \(x, y \in L \) there are elements \(x_0, x_1, x_2, \ldots, x_n \) in \(L \) such that

(i) \(x = x_0, y = x_n \);
(ii) if \(i \in \{1, 2, \ldots, n\} \), then the elements \(x_{i-1} \) and \(x_i \) are comparable.

Let \(L \) be a connected partially ordered set. Suppose that we have a direct product decomposition

\[
\phi: L \rightarrow \prod_{i \in I} L_i
\]

(i.e., \(\phi \) is an isomorphism of the partially ordered set \(L \) onto the direct product \(\prod L_i \)). For \(x \in L \) let \(\phi(x) = (\ldots, x_i, \ldots)_{i \in I} \). We denote \(x_i = x(L_i) \). Next we put

\[
L_i(x) = \{ z \in L : z(L_j) = x(L_j) \text{ for each } j \in I \setminus \{i\} \}.
\]

Let \(x^0 \) be a fixed element of \(L \). For each \(i \in I \) we denote \(L_i(x^0) = L_i^0 \).

For each \(x \in L \) and each \(i \in I \) there is a unique element \(y_i \) in \(L_i^0 \) such that

\[
\pi(L_i) = y_i(L_i).
\]

Then the relation

\[
\phi^0: L \rightarrow \prod_{i \in I} L_i^0
\]

is said to be an internal direct product decomposition of \(L \) with the central element \(x^0 \).

For each \(i \in I \), \(L_i^0 \) is isomorphic to \(L_i \).

2. Auxiliary results

In this section we suppose that \(L \) is a connected partially ordered set. Assume that we are given a direct product decomposition

\[
\psi: L \rightarrow A \times B.
\]

For \(x \in L \) we put \(\psi(x) = (x_A, x_B) \). Sometimes we write \(x(A) \) instead of \(x_A \), and similarly for \(x_B \).
Further, for each $x_0 \in L$ we put

\[A(x_0) = \{ x \in L : x(B) = x_0(B) \}, \]
\[B(x_0) = \{ x \in L : x(A) = x_0(A) \}. \]

Let $x_1 \in L$, $x_1 \notin A(x_0)$. We put $A(x_0) < A(x_1)$ if there are $x_0' \in A(x_0)$ and $x_1' \in A(x_1)$ such that $x_0' < x_1'$.

If $x, y, z \in L$ and $z = \sup \{ x, y \}$ in L, then we express this fact by writing $z = x \lor y$.

The meaning of $v = x \land y$ is analogous.

2.1. Lemma. Let $x_0, x_1 \in L, A(x_0) < A(x_1), x_2 \in A(x_1)$. Then there exists x_3^0 in $A(x_0)$ such that

(i) $x_3^0 < x_2$;

(ii) if $z \in A(x_0)$ and $z < x_2$, then $z \leq x_3^0$.

Proof. There exists $x_3^0 \in L(x_0)$ such that

\[\phi(x_3^0) = (x_2(A), x_0(B)). \]

Then $x_3^0 \in A(x_0)$. We have

\[x_0(B) = x_3^0(B) \leq x_1^0(B) = x_2(B), \]

where x_3^0 and x_1^0 are as in the definition of the relation $A(x_0) < A(x_1)$. Thus $x_3^0 \leq x_2$. Since $x_2 \notin A(x_0)$, we must have $x_3^0 < x_2$. Therefore (i) is valid.

Let $z \in A(x_0)$ and $z < x_2$. Then $z(B) = x_0(B) = x_3^0(B)$ and $z(A) \leq x_2(A)$; hence $z < x_2$. Thus (ii) holds.

It is obvious that the element x_3^0 is uniquely determined if x_2 and $A(x_0)$ are given and if $A(x_2) > A(x_0)$.

2.2. Lemma. Let x_0 and x_1 be as in 2.1. Further, let $x_3 \in L, x_3 \geq x_1$. Then the following conditions are equivalent:

(i) $x_3 \in A(x_1)$;

(ii) $x_3 \lor x_1 = x_3$.

Proof. First we remark that from $x_3 \geq x_1$ we infer that $A(x_3) > A(x_0)$, whence in view of 2.1, the element x_3^0 does exist; moreover, we have

\[\phi(x_3^0) = (x_3(A), x_0(B)). \]
Further, from the relation $A(x_0) < A(x_1)$ we conclude that whenever $t_1 \in A(x_0)$ and $t_2 \in A(x_1)$, then $t_1(B) < t_2(B)$. In particular, $x_0(B) < x_1(B)$. Thus $x_0(B) < x_3(B)$ and $x_0^3(B) < x_3(B)$.

Let (i) be valid. Hence $x_3(B) = x_1(B)$. From $x_3 \geq x_1$ we get $x_3(A) \geq x_1(A)$. Thus

$$(x_3(A), x_0(B)) \lor (x_1(A), x_1(B)) = (x_3(A), x_3(B)).$$

Therefore (ii) holds.

Conversely, let (ii) be valid. Then

$$x_0^3(B) \lor x_1(B) = x_3(B).$$

We already know that $x_0^3(B) \lor x_1(B) = x_1(B)$. Thus $x_1(B) = x_3(B)$. Hence (i) holds.

2.3. Corollary. Let x_0 and x_1 be as in 2.1. Then the set $\{x \in A(x_1) : x \geq x_1\}$ is uniquely determined by $A(x_0)$ and x_1.

2.4. Lemma. Let x_0 and x_1 be as in 2.1. Further, let $x_4 \in L$, $x_4 \leq x_1$. Then x_4 belongs to $A(x_1)$ if and only if the following conditions are satisfied:

(i) $x_4 \lor x_1 = x_1$;
(ii) $x_4 \notin A(x_0)$;
(iii) there exists $t \in A(x_0)$ with $t < x_4$.

Proof. Suppose that x_4 belongs to $A(x_1)$. Then (ii) is obviously valid. In view of 2.1, the condition (iii) is satisfied.

For proving that (i) is valid we have to verify the validity of the relation

$$(x_4(A), x_4(B)) \lor (x_1^2(A), x_1^2(B)) = (x_1(A), x_1(B)).$$

We have

$$(x_1^2(A), x_1^2(B)) = (x_1(A), x_0(B)),$$

whence

$$(x_4(A), x_4(B)) = x_4(A) \lor x_1(A) = x_1(A).$$

Further, in view of (iii), $x_4(B) \geq t(B)$. Since $t \in A(x_0)$, we get $t(B) = x_0(B)$. Thus

$$(x_4(B), x_0(B)) = x_4(B) \lor x_0(B) = x_4(B) = x_1(B).$$

From (i) and (ii) we conclude that (i) is valid.
Conversely, suppose that the conditions (i), (ii) and (iii) are satisfied. From (i) we obtain
\[x_4(B) \lor v_4(B) = x_3(B). \]
Further we have \(x_4(B) = t(B) \leq x_4(B) \), whence
\[x_4(B) \lor x_4(B) = x_4(B) \lor t(B) = x_4(B). \]
Then \(x_4(B) = x_3(B) \), therefore \(x_4 \in A(x_3) \).

2.5. Corollary. Let \(x_0 \) and \(x_1 \) be as in 2.1. Then the set \(\{ x \in A(x_1) : x \leq x_1 \} \) is uniquely determined by \(A(x_0) \) and \(x_1 \).

2.6. Definition. The interval \([u, v]\) of \(L \) is said to have the property (a) if
(i) there exist \(u^0, v^0 \in A(x_0) \) such that the relations
\[u^0 = \max\{ x \in A(x_0) : x \leq u \}, \quad v^0 = \max\{ x \in A(x_0) : x \geq v \} \]
are valid;
(ii) \(u^0 \lor v = u \).

2.7. Lemma. Let \(x_0 \) and \(x_1 \) be as in 2.1. Let \(z \in L \). The following conditions (a) and (b) are equivalent:
(a) There are elements \(z_0, z_1, \ldots, z_n \) in \(L \) such that \(z_0 = x_1, z_n = z \) and for each \(i \in \{1, 2, \ldots, n\} \) we have
(i) the elements \(z_{i-1}, z_i \) are comparable;
(ii) if \(z_{i-1} \leq z_i \), then the interval \([z_{i-1}, z_i]\) satisfies the condition (a);
(iii) if \(z_{i-1} \geq z_i \), then the interval \([z_i, z_{i-1}]\) satisfies the condition (a).
(b) \(z \in A(x_1) \).

Proof. Assume that (a) is valid. Then in view of 2.2 and 2.4 we obtain \(z_1 \in A(x_1) \). Now it suffices to apply induction with respect to \(n \).

Conversely, assume that (b) is valid. Since \(L \) is connected, the partially ordered set \(A \) is connected as well. It is obvious that the partially ordered sets \(A \) and \(A(x_1) \) are isomorphic; hence \(A(x_1) \) is connected as well. Thus there are elements \(z_0, z_1, \ldots, z_n \) in \(A(x_1) \) such that \(z_0 = x_1, z_n = z \) and for each \(i \in \{1, 2, \ldots, n\} \) the elements \(z_{i-1}, z_i \) are comparable. Then by using 2.1, 2.2 and 2.4 we conclude that (a) is valid.

2.8. Corollary. Let \(x_0 \) and \(x_1 \) be as in 2.1. Then the set \(A(x_1) \) is uniquely determined by \(A(x_0) \) and \(x_1 \).
By a dual argument we obtain

2.9. Corollary. Let \(x_0, x_1 \in L \) be such that \(A(x_0) > A(x_1) \). Then the set \(A(x_1) \) is uniquely determined by \(A(x_0) \) and \(x_1 \).

From 2.8, 2.9 and from the fact that \(L \) is connected we conclude

2.10. Lemma. Let \(x_0, x_1 \in L \). Then the set \(A(x_1) \) is uniquely determined by \(A(x_0) \) and \(x_1 \).

Let \(x_0, x_1 \in L, x_0 \leq x_1 \). In view of 2.1 there exists \(a(x_0, x_1) \in L \) such that

\[a(x_0, x_1) = \max\{x \in A(x_0) : x \leq x_1\}. \]

Dually, if \(x_0, x_1 \in L, x_0 \geq x_1 \), then there is \(b(x_0, x_1) \in L \) with

\[b(x_0, x_1) = \min\{x \in A(x_0) : x \geq x_1\}. \]

2.11. Lemma. Let \(x_0, x_1 \in L \), \(x_0 \leq x_1 \). Then

\[x_1 \in B(x_0) \iff a(x_0, x_1) = x_0. \]

Proof. Suppose that \(a(x_0, x_1) = x_0 \). Hence \(x_0(A) = x_1(A) \) and therefore \(x_1 \in B(x_0) \).
Conversely, suppose that \(x_1 \in B(x_0) \). Then \(x_1(A) = x_0(A) \). From \(x_0 \leq x_1 \) we conclude that \(x_0(B) \leq x_1(B) \).
Let \(x \in A(x_0) \), \(x \leq x_1 \). We get \(x(A) \leq x_1(A) \), whence \(x(A) \leq x_0(A) \). Further, \(x(B) = x_0(B) \). Therefore \(x \leq x_0 \). This yields that \(a(x_0, x_1) = x_0 \). \qed
By a dual argument we obtain

2.12. Lemma. Let \(x_0, x_1 \in L \), \(x_0 \geq x_1 \). Then

\[x_1 \in B(x_0) \iff b(x_0, x_1) = x_0. \]

2.13. Lemma. Let \(x_0, x \in L \). The following conditions are equivalent:

(a) There exist elements \(z_0, z_1, z_2, \ldots, z_n \) in \(L \) such that \(z_0 = z_n = x \), for each \(i \in \{1, 2, \ldots, n\} \) the elements \(z_{i-1}, z_i \) are comparable and \(z_i \in B(z_{i-1}) \);
(b) \(x \in B(x_0) \).

Proof. The implication (a) \(\Rightarrow \) (b) is obvious. Suppose that (b) is valid. The partially ordered set \(B \) is connected, hence so is \(B(x_0) \). Thus there exist \(z_0, z_1, \ldots, z_n \in B(x_0) \) with the properties as in (a). \qed
From 2.10-2.13 we obtain

2.14. Lemma. Let \(x_0 \in L \). Then the set \(B(x_0) \) is uniquely determined by \(A(x_0) \) and \(x_0 \).

In 2.10, \(A \) can be replaced by \(B \). Hence 2.14 yields

2.15. Corollary. Let \(x_0, x \in L \). Then the set \(B(x) \) is uniquely determined by \(A(x_0) \) and \(x \).

3. Cancellation Rule

Suppose that \(L \) is a connected partially ordered set and consider direct product decompositions

1. \(\varphi: L \to A \times B \),
2. \(\varphi_1: L \to A_1 \times B_1 \).

Let \(x_0 \in L \). Then from (1) and (2) we can construct internal direct product decompositions

1'. \(\varphi^0: L \to A^0 \times B^0 \),
2'. \(\varphi_1^0: L \to A_1^0 \times B_1^0 \),

with the central element \(x_0 \).

In view of the definition of the internal direct product decomposition we have

3. \(A^0 = A(x_0) \), \(B^0 = B(x_0) \),
4. \(A_1^0 = A_1(x_0) \), \(B_1^0 = B_1(x_0) \);

further, if \(x \in L \) and \(\varphi^0(x) = (x_1, x_2), \varphi_1^0(x) = (x'_1, x'_2) \), then

5. \(\{x_1\} = A^0 \cap B(x), \{x_2\} = B^0 \cap A(x) \),
6. \(\{x'_1\} = A_1^0 \cap B_1(x), \{x'_2\} = B_1^0 \cap A_1(x) \).

3.1. Theorem. Let (1') and (2') be an internal direct product of a connected partially ordered set \(L \) with the central element \(x_0 \). Suppose that \(A^0 = A_1^0 \). Then \(B^0 = B_1^0 \). Moreover, for each \(x \in L \) we have \(\varphi^0(x) = \varphi_1^0(x) \).

Proof. The first assertion is a consequence of 2.10, 2.15 and of the relations (3), (4). Then in view of (5) and (6) we infer that \(\varphi^0(x) = \varphi_1^0(x) \) for each \(x \in L \). \(\square \)

Let us remark that if \(\varphi: L \to A \times B \) and \(\psi: L \to A_1 \times B_1 \) are direct product decompositions of a connected partially ordered set \(L \) and if \(A \) is isomorphic to \(A_1 \), then \(B \) need not be isomorphic to \(B_1 \).
Example. Let N be the set of all positive integers and let X be a linearly ordered set having more than one element. Put

$$L = \prod_{n \in N} X_n,$$

where $X_n = X$ for each $n \in N$. We denote

$$A = \prod_{n \in N} X_n, \quad B = X_1,$$

$$A_1 = \prod_{n > 1} X_n, \quad B_1 = X_1 \times X_2.$$

Then we have direct product decompositions

$$\varphi: L \to A \times B, \quad \psi \to A_1 \times B_1,$$

A is isomorphic to A_1, but B fails to be isomorphic to B_1.

Further, the notion of the internal direct product decomposition can be used in group theory (where the central element coincides with the neutral element of the corresponding group); cf., e.g. Kurosh [3], p. 104. The result analogous to 3.1 does not hold, in general, for internal direct product decompositions of a group.

Example. Let X be the additive group of all reals, $Y = X$, $G = X \times Y$. We put

$$X^0 = \{(x, 0) : x \in X\},$$

$$Y^0 = \{(0, y) : y \in Y\},$$

$$Z^0 = \{(x, y) : y \in G : x = y\}.$$

Then $Y^0 \neq Z^0$. The group G is the internal direct product of X^0 and Y^0; at the same time, G is the internal direct product of X^0 and Z_0.

We conclude by remarking that the assumption of connectedness of L cannot be omitted in 3.1.

References

Authors' addresses: Ján Jakubík, Matematický ústav SAV, Grešákova 6, 040 01 Košice, Slovakia, e-mail: musavke@nail.sanske.sk, Mária Csontoovd, Katedra matematiky, Stavebná fakulta TU, Vysokoškolská 4, 042 00 Košice, Slovakia.