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n-INNER PRODUCT SPACES AND PROJECTIONS
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Abstract. This paper is a continuation: of investigations of n-inner product spaces given
in[5, 6,.7) and an extension of results given in [3] to arbitrary natural n. Tt concerns families
of projections of a given linear space I onto.its n-dimensional subspaces and shows that
between these [amilies and n-inner products there exist interesting close relations.
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1. n-INNER PRODUCTS AND 72-NORMS

1.1. Let n be a natural number-(n # 0), L a linear space with dim L > n and let
(5+}+e oy 2) be areal function-on L = L x. x L.
et

2 a1 times
In the case n'=1, we also write (-, ) instead of (-, | +,...,:) and (a,b| as, ..., a,)

is to be understood as the expression (a,b). Let ns assume the following conditions:
1 (a,blag,. . an) 20,
(ayalas;. . .ian) = 0if and only if a, a0, .., @, are linearly dependent,
2. (a,b]az, . van) = (balag, .0 an)s
3 (a:blag,ian) = (0, bl a0 e, for every permutation (4o, ., 4p) of
(2,:0.,n),
4. ifn > 1, then (a,a ] 02,05, 500) = (ag, a2 [ a, 03,0 ),
5 (aablas, ... an) =ala blas; . o a,) forevery real o,
6. (a+bclas.a,) = (aclas,. . 0.) + (bclas, . an)
Then (-, |+ :0.,) is called an n-inner product on L (see [5]) and (L, (4. 2.1)
is called an n-inner product. space.. The concept of an n-inner product space is a
generalization of the concepts of an inner product space (n = 1) and of a 2-inner
product space (see [1]).
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1.2. Let n > 1. An n-inner product space L and its n-inner product (-, | +:.+;+)
are called simple if there exists an inner product (,*) on L such that the relation

(@,0) (a,02) .. {a,00)
(a,blas, ... a.) = (0'2:’ b (az,:ag) . (%ian)
(an,b): (an,02) ... (an,0,)

holds. The inner product (-, ) is said to generate the n-inner product (-,-]+,...,:).

An element ¢ € L is said to be orthogonal to a non-empty subset S of L if
(a,er| ez, ... en) =0 for arbitrary ey, ..., en € S. A subset S of L is said to'be
orthogonal if it is linearly independent, contains at least n elements and if every
e € 5 is orthogonal to $'\ {e}.

1.3. Ann-norm on Lisareal function s, ..., || on L™ which satisfies the following
conditions:

1. Jlar,.. sanll = 0 if and only if a1, . ., a, are linearly dependent,

2. lors s anll = llas o5 ai, || for every permutation (i1, 1. 4n) of (1,4, n),

3. lleay g, 4 aqll = o flays az; ., 2. for every real number a,

4. llat+bas,... 2@l £ llayas, .. aafl + [Ibsaz, ... anll:

L equipped with an n-norm ||;,.. ., || is'called an n-normed space. The concept

of an n-normed space is a generalization of the concepts of a normed (n =1).and a
2-normed space (see [2]):

Theorem 1. (Theorem 7 of [5]) For every n-inner product (:;+]%...,+) on L,
o ~ lavso,- - an]l = Viat,arTaa, - an)
defines an n-norm on L for which
@) (a,blas,ioyan) = 2la+b,as, s anll? = fla—b a2, an)?)
and
() latbias, el Fla=bias. . sanl? = 2(lla,a2,. ol b0z, anll?)
are-true,

Conversely, for every n-=norm ||-,...,-|| on 'L with the property (3); (2) defines an
n-inner product on L for which (1) is true.

For every n-inner product (-, |,. ..;+) on L the n-norm given by (1) is said to-be
associated to (- |+, ..+ If in connection with an n-inner product on L an n-norm
is used, then ||, .., || always will be the n-norm associated to (.« |+, 7).

88



2. PROJECTIONS IN n-INNER PRODUCT SPACES

2.1. Let (L,(5-]+-.+,")) be an n-inner product space. For arbitrary linearly
independent points ay, ..., an €L, let pr. - - be the mapping of L into L given by

s (earas. ., 00)
lles, -, aall?

(c,anla1;.:-18n1)

el o P

arto an

(see [3], where n = 2). We often use the notion

(crar @1, s 8y, 0n) = {C 0k |01, o 0kt Gt 1s o1 8n)

and

(coapfay, i, Gy, 0 an)
T )T e
Play, . ananl€) ool

Then we have

" (car | a @ an)
T )= Z & 3 R 1""1 n x
P ah-..,an( ) o ”al)yuyannl bk

n
= 3 Plasian el gk

k=1

Theorem 2. pr,, . isa projection of L onto L({ai,.. -yan}), the linear space
generated by the set {a1;..:,a,}.

Proof. Obviously pr,, ., is linear. Since pr,, - (ar) = ax for arbitrary k €
{1,...,n}, pro,; ., maps Lonto L({a1,..+,a,}). Moreover,

. .
T, ChyOp 1Ay iy Ay iy
b, 0=y Dol Bt
k=l

llos.-. anl?
from which by virtue of

(Pray, o)yl 1y s @y n)
“alw'-vanlp
= i (coar|ar, Gy an) (aan L@y, oo @, ooy )
Tz Tor,--ranll
Clgaglag @ an)
o “a17‘“7aﬂ1|2
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we_get
P2, a0 = 0r,, ().
0
Theorem 3. pr, ., Is independent of the special choice of ‘a1, .., an in

L{{ai,...;a.}); thi for arbit; linearly independent points a} = 3= a1 Gk,
\ =1
i=1,..7, n, we have

ety T P ag e

n
Proof. Let linearly independent points a; = Y i ax, 4 =1, ..., n.be given.
B v k=1

Then
long oiioaam

For arbitrary c€ L,

- o =
G 20k etran iy B Ok ak)

-
P 0= e

i l=1

L0k Oy
i=1

a.

QYR Qi
1

£

i 2
£ i ak”
.

Using the notion 7, which means that summation is taken only with respect to
different indices, formula (8) in Theorem 6 of [6] implies that

: n n AT n
Zai,l (& > g ax k 3 0k Qs Yok Y Ok ak>
k=1 k=1 k=1 k=1

=1

1 Q R o 1) g ik
Oy py ey Doy, @ XLk 1 ke,

n. B i i :

i H : : ] :

“S e T e om G e
=1 Gikprks [0 @itk b G R ik Bk
L e R Y o D Qi e O ke

x (e, a; | ks s ap,)
QU O kp v Lk PEQ 5 O ey Ok,
= s oo Meai gy, ak,)
dlasoshel o ) i e, g ke o |
Qi Oy 2
=0 o g an )

Qn1- - Qnn
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and

n
Zm,kak,.-

k=1

This yields that

Z (e
P, (9 =3
I=1

which proves the theorem,

" 2 Qi 25 0) 2
i N 2
o anar) = 2ol e el
k=1
g Qn,1 Qnin
a0, a,)

las;. .. an]l?

o= Pra,,...,a“(‘f)

O

Theorem 4. For arbitrary c€ L, c—pr,, - . (c) is orthogonalto L({a1,.. ., a,}).

3
Proof. Forarbitrary a; :kz1m'k ag, t= 1, .., 1, by means of (8) in Theorem 6

(see [6]) we get

.
(e= ph e e
k=1

-
Dapkar,.
k=1 i

-
Saa
k=1

S
~,Zan,kak)

k=1

. g n
(cyar fay, .ok, an) :
— E ”a p ”2 Ay Ok O
k=1 5 k=1
10 O Moy orp,
o0 gk | 02 Gk,
Jike <ok
0 o oo Ok 1O Qs
{c,a1laz,.han) (e:enian,sen-1) 1] Q1
Q2,1 Q2 Q21
Qn1 Qinin Qni1

This was to be proved.

w0k,

n n
ZO‘&k Ay iy z On ke ak)
k=1 k=1

n
}:az,k Qs

k=1

o
<5 2: Ok Gk
k=1 /

ks

(eas | ek, ax,)

-k,

X n

Qo

Q|

o

2.2. Fyom Theorem 2 of [7] we know the following: if (;-]+,...,") is a simple
n-inner ‘product on Land (3,-) generates (-] .. ,:), then for arbitrary a € L and
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arbitrary S ¢ L which generates a linear subspace of L of dimension 2> 71, a is

orthogonal to § relative to (-~ | +,..., ) if and only if a is orthogonal to § relative to
(-;+). From this and Theorem 4 it follows that if (-,- | -, .., -) is simple and (-, ) is an
inner product on L generating (-,-|+,...,-), then for arbitrary c€ L, ¢ —pr,,. . (c)

is orthogonal to L ({a1,. ., a,}) relative to (-,1).

2.3. From Theorem 3 of [6] we know that if S is an orthogonal set in I, for every
e € S, distinct ey, :.., e, €8\ {e}, distinct e}, ..., ¢/, € S\ {e} and every ¢ from
the linear space generated by :S; we have

(crefer,..ven)  (cefen. . ep)
llesess .. enlf? llesehsi o enl? !

which implies pr, ... . (¢) = Prg,e'z,n.,z;(c)' This means that under the above.-con-

ditions the coordinate pr, ., . (c) of pr, .. . (c) is independent of e3;. .., €n.
For every n-dimensional linear subspace L' of L let Sz, be the set of all subsets
{a1,...,a,} of L' such that |lar,...,a,|| = 1. Then for arbitrary {a;,...,an},
n
{a},...;al} € Sy wehave al = 3 a;pap,i=1,..., nwith
k=1
Q1 e Qan
=]
[0 70 R e XY

S is maximal in the sense that if {a1,...,;a,} € S+, then for arbitrary points a} =
n

Saipak,i=1, .., n with
k=1

Q1 Din
)
Qn1 Qn,n
we have {a},...,a,} € Sp1.
From the proof of Theorem 4 we know that
T 50 .
(& Z XLk Ok Z A2k Oky-v iy Z Unk ak)
k=1 k=1 k=1
Prloy (e e (e bbong
Qa1 B i Qo1 e O
Qn1 Con Dan Qni i Qnin
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whenever ¢ € L and {ay,...,0,} € Spr.

Theorem 5. Let L' and LT be n-dimensional linear subspaces of L such that
dim(L'nL*Y) = n—1 and let {d)as,...,0,} € Spo and {a%,02,..,0,} € Sp+.
Then

prei,az,m,an(a’> = Plarosan (a+)‘

Proof. Evident. 0

3. GENERATION OF n-INNER PRODUCTS BY MEANS OF FAMILIES OF PROJECTIONS

3.1, Let L be an arbitrary linear space of dimension > n, For every n-dimensional
linear subspace L' of L let Sy be a maximal set of subsets {a1,...,a,} of linearly
independent points of L' such that for arbitrary {a1;...,an}, {al,. ., 0L} € Sp we

. kL3 ‘
havea, =5 airar, i=1,...,n with
) ,
=1

Qi i Qin
: pob=EL
Qpy oii O
Moreover, let us assume the following:

1. For every n-dimensional linear subspace L' of L there is a projection pry, of L
onto L' for:which for every {a1,.:.,a,} € Sy, we also will use the notation

n
DPay o = D Play o, a0k
k=1
2. T I, L*are n-dimensional linear subspaces of L such that dim (L' L) = n~—1
and if {a’;a;,...,0,} € 51 and {a*,as,...,a,} € Sp+ then
(4) pfg,az,...,a"(a') = prg’,,azw-,nu(fr)'
Every n points af, . .., al, of L can be written in the form a} =Y o xax, i=1,...,n,

k=
by means of {a;,...,a,} € S+ with a suitable I', Let us define

prﬂwﬂ“(c) s pr Msl(c) Qi

Qo1 e Q2in Qo1 vl O
) ed . )= : _ . : -
Qn1 e Un.n Qni it i Onn

Theorem 6. (c,a} | ab,...,a,) given by (5) is independent of the special choice
of {ay,...,an}.
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Proof. Let {ai,.. ;anh {61, , 8, €Sy and ap =
Then:

ks i~
Saman k=100
=1

Gy ..o G
T =
o dn

n a
andaj = ¥ aspar= 3 aixGrrani=1, ..., n From
k=1 =

" n
Do s 0E = Y ma(O@
i=1 k=1

n
= 3 G
k=Y

0
we get prﬁhnr@“mﬁ“(c) = k}: prah“”%‘_._}u”(c) @rp,t =1, ..., n, and consequently

n n
Pra (o) YoaipGry o Y i pGkn
T =1 =.
n o n 5 n B nl
B Dy DR R e N e
k=1 k=1 F=1 E=1
n . 7. g n : &
E Qo Q1 e z Qn k Qg Z Qo Qe 1 E Qn kQkm
k=1 k=1 A=l k=1
Prﬂ,,,.,a,‘(c) e Pfal,...,&(c) [ORE
Q21 Qo Qg1 0oy
Unit S Qnn:- Q1 Oy
By virtue of (5) the last equation proves the theorem. 0

Theorem 7. (+,-]+,...,-) given by (5) is an n-inner product on:L where for
every n-dimensional linear subspace L' of L and arbitrary {ai;..:,a,} € Sp we
have flay,. .., a5] = 1.

Proof. Let ay, ..., a, be arbitraryin L, let L' be an n-dimensional linear:sub-
n

space of L containing ay,.:., a, and let {al,.. . ,al} € Sy Thena; = 3 aupal,
k=1
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i =1, ..., m. Hence we get

. . n n il
08
(6) (al,al lag,.. an) = ( g 30 08 E o1 ay E Lo E Qnk a,ﬂ>
k=1 k=1 k=1 k=1

pror 5 ciynal) h e u( a,.a‘) a1l 2
bl..maz,(gl 1k A) oo T enkel 1, 1 it o

- Q91 Qon Qo1 g m E
= . : : L= 5
Qi i O
Qn 1 sl Qnn Qn,)l 5o Oin
which implies that (a1, a1 | a2, ..+, an) 2 0 and moreover that (ay, 1] 62, .- 556,) =0
if and only if a1, ..., a, are linearly dependent.

Now we shall show that for arbitrary a’,a™;as,. .., e, we have (a,at]as,...,an)=
(at,alas, . a0): I ' ap, . 5oy an or atas, ..., an are linearly dependent, then
(a,at]as,...,ax) and (a*,a'|as, .. a,) both are 0. Hence we may restrict our
considerations to the case that a/,as,...;an and a™, as,...,a, are linearly indepen-
dent. Let L/, LT denote the linear subspaces of L generated by a), as,...,a, or
at, @s,...;a,; respectively. There exist reals of, o different from 0 such that

{o’a’,as,.. 0.} € Sy and {oFat,as,...,a,} € Sp+. This together with (4)
and (5) vields

1 1
(a’, atlas,. .., an) & (a’, atat|as,..a,) = e pra»mh@w_‘ﬂ”(a'a')
1 b
= e 13ra‘a',a2).,,)au(a+a’ )= (a+’al [ag,... 7‘%) :

Using (5) we see that (a,blas,...,a,) = (g, . a;;) for every permutation
(i, 5in) of (2,.:.,m). And (6) shows that if n > 1, then (a,a]as,a3,.:.,a,) =
(2,05 a,as;:..,a,). Also the linearity of (a;b]as,. .., a,) with respect to a is
evident. From (5) we immediately see that, moreover, for every {a1;...;a,} € Spr
we have [ja1, .. an|l = 1. 0

3.2. If dim L = n, then in Assumption 2 of 3.1 we necessarily have L' = L¥,

hence a* = +a! + 37 o ax, and prox,, . =Dr. .. - is the identical mapping.

From this we see that in this case; equation (4) becomes trivial. We can choose 51/
arbitrarily and the corresponding n-inner products differ only by a factor.

Let now dim I > n. Then obviously (4) contains restrictions to the projections
prp if the sets Sps are fixed, and conversely for fixed projections pry: it contains
restrictions to the sets Sy

©
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4. n-NORM OF PROJECTIONS

4.1. Concerning the problem of the relations between norms ||by,. .. ,bn|| and
"pr“1 By P e (be) H we have the following results.

Theorem 8. Let (L, (;,-]+:..,:)) be an n-inner product space which in the case
n > 1 is simple. Then

(7) o1 esball 2 v, o) o pra,aa (B

Proof. In the case n = 1 the assertion of the theorem is well known. For fur-
ther considerations let n > 1. Let (-,+) be an inner product generating (-, |+, ...,2).
Because of Theorem 3 we may restrict our considerations to the case that (ar,a;) =
Sy for 'k, Le {1,...in}. Hpr,  o.(b)s ..., Pr,, . 4. (ba) ave linearly depen-
dent, then obviously (7) is true. Therefore, in what follows we may assume that
Pro,,.a,(01)s- DI, o.(bs) are linearly independent. Since for arbitrary points
€1y, cn € L and arbitrary reals v, I, k € {1,...,n}, we have
5 M1 oen Yin 2

. . 2
= 3 2 e Hclq"‘jc‘ﬂii )

n n
oG Y Tk G
k=1

k=1

Yol i Ynn
we can see that, moreover, the restriction to the casepr,. . (by) =ax, k=1,....n

is possible. Then we have (by,a | a1, .G, ya,) = 0 for k, L€ {1,...,n} and
because of

(beyar| oy, @, . a0)

(brser) (brpe) s (bmn) D (baga) e (Bsaa)
(at,a) 7 (aner) i (aase-1) T ensanen) L (arhan) }
= lleimne) (a-1e1) o (e iea ) (er-1,ai41) o (a1maiea)
(arprsa) {agae) o (adsanaa)s (e teriey) i (@rgdsen)
(awsar) i (@msan) s (Gnra1) 0 {awsmia) b (anan)
= (b;v..,at)
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we get (bgyar) = 8k for k, 1€ {1,...,n}. In view of this we see that for arbitrary
kef{l,...,n},

(ary b —ag | a1, 0k 1, ber1yi 05 bn)

(arsbe—ar)  (ar,e1) ane (@rsan-1) 7 (er,biar) vy (aryba)
(o1bp—ar) i {an,e1) ey (enean) s (ebega) L D (eba)
= Iarmpbe—er) (arotior) e (8ke1500m1)0 (Bhmtibpga) e s (Bl y,0m)
(rgrsbr=ar) (bri1,81) o (Brp1i0rm1) - (Okprsbrgn) Do {brgasba)
(bn;br—ar) (bnsor) it (bnsaen) 0 (babidn) s (b b))
=0.

’Ihis yields

(815 eee Bl = flan, oy b s = a0, B, )+ 200, 0y = 0 [ 2y )
=z ”al,b2,,.4,b,,”2
>
>oi-

= lora, ()P )]

hence the theorem is proved. ]
In the case n > 1, (7) need not always be true as is shown by an example (with

n= 2) given'in [3].
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