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ON THE EQUATION (™ —y™)) =27
FLORIAN ‘Luca, Bielefeld

(Received November 2, 1998)

Abstract: :In this paper we:investigate the solutions of the equation in the title, where
@i the Euler function. "We first show ‘that it suffices to find the solutions of the above
equation when m = 4 .and = and y are coprime positive integers.: For this last equation, we
show-that aside from a few small solutions, all the others are in'a one-to-one correspondence
with the Fermat primes.
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1. INTRODUCTION

For any positive integer k let (k) be the Euler function of k. In this note; we find
all solutions of the equation

1) pfla” -y =2,

where z-and y are integers and.m and n are positive integers such that m = 2.

Let k > 3 be a positive integer. It is well-known that the regular polygon with
k sides can be constructed with the ruler-and the compass if and only if o(k) isa
power-of 2,/ In particular, knowing all solutions of equation (1) enables one to find all
regular polygons which can be constructed with the ruler and the compass for which
the number of sides is the difference of equal powers of integers. Some equations
of a similar flavour as (1) were treated in [2] and [3]. In [2], we found all regular
polygons which can be constructed with the ruler and the compass whose number
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of sides is either a Fibonacci or a Lucas number, while in'[3] we found all regular
polygons whose number of sides is a binomial coefficient.
Concerning equation (1), we first prove

Proposition. - In order to find all solutions of equation (1); it suffices to find
only those for which .z >y > 1, ged(z;y) =1 and m = 4.

Then we prove

Theorem. =~ Assume that (2,y,m,n) is a solution of equation (1) satisfying the
conditions from: Proposition. Then;
(2) =1 i1 s
) (227 41,227 —1) where [ > 1 and 2% +1 is a prime pumber or
Ty =
WPy for [=0,1,2:3.

2. REDUCTION OF THE PROBLEM

In this section, we supply a proof of Proposition.

Proof.  Let C = {k; ¢(k) is a power of 2}. It is well-known that a positive
integer k belongs'to C if and only if k= 2%p; ... p, for some ¢ 2 0 and t >0, where
p: = 227 + 1 are distinct Fermat primes. In particular, it follows that the elements
belonging to the set O satisfy the following two properties:

1) If a '€ C and bla; then b€ C.
2) Assume that a,b € C. Then, ab € C if and only if ged(a, ) is a power of 2,

‘Assume that (z,y,m) are such that |27 — y™| € C. We may assume that z >
lyl'> 0. We first show that it suffices to assume that ged(z,y) = 1. Indeed, let
d = ged(z,y). Write 2 = dzy and y = dy;. Then,

|27 =y" | =d" 27 —y7| e C
Since m = 2, we conclude by 1) and 2) above that 27" — yi*| € C and that d is a
power of 2. Conversely, if (21,1, m) are such that |7* —yi*| € C and if d is a power
of 2,1t follows by 2) that

"~y = d7ay ~op € C

as well: Hence, it suffices to find all solutions of equation (1) for which ged(z,y) = 1.
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Assume first that zy = 0. It follows that y = 0. Since ged(z,y) = 1 and z > 0,
we conclude that z = 1.

Assume now that z = |y}. Since ged(z,y) =1 and @ is not defined at 0, it follows
that z =1,y =1 and m is odd.

From now on, we assume that z > |y| > 0.. We first show that we may assume
m > 2. Indeed, suppose that m = 2. Since m = 2 is even, we may assume that
y > 0. Since

-y’ =(-y)z+y eC,

it follows by 1) above that e —y € Candx+y € C. Lletci =z —yand ey = a4y,
Since 'z > y > 0, it follows that ¢z > ¢ > 0. Moreover, since ged(z,y) = 1; we
conclude that either both ¢; ‘and ¢; are odd and ged(ey, ¢2) = 1, or both ¢; and ¢;
are even in which case ged(ey, ¢2) = 2 and one of the numbers ¢y or ¢z is a multiple
of 4. Conversely, let ¢; > ¢; be any two numbers in C' satisfying one of the above
two conditions. Then one can easily see that if we denote

CrtCa C1:miCy
T e =)

and y= 5

then z and y are positive integers, z.> vy, ged(z,y) .= 1 and 2? — y? = ¢iep € C.
These arguments. show: that ‘equation (1), has an infinity of solutions when m = 2
and that all such solutions can be parametrized in terms of two parameters c¢; and
¢ belonging to C and satisfying certain restrictions.

From now on, we assume that - m > 2, We first show that m is a power of 2.
Assume that this is not the case and let p be an odd prime such that p|m. Replacing
2™/P and y™/? respectively by = and y, we may assume that |22 —y?| € C. From
1), it follows that

|22 — v
= €
Uy [m ] €

Since p.is odd and ged(x,y): =1, it follows that w, is odd. In particular, uj is
square-free. Let P be a prime dividing 1,. On the one hand, we have 22 — y? =
O(mod P).  On the other hand, since P fzy, it follows, by Fermat’s little theorem,
that 2771 —yP~1 = 1 — 1 = 0(mod P). Hence,

(3) p|(xp = yP’a;P“l T yP“l) — plpP=1) y(PsP“l)v

Since P. € C, it follows that P — 1is a power of 2. Since p is odd, this implies that
(p,P—=1) = 1. From formula (3), we conclude that Plz —y. Hence, z = y{mod P).
It now follows that

oz yh

=y =T kP Yy P = e (mod P).

P
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Since Plup; it follows that p = P. Since u, is square-free, it follows that u, = 1 or p.
On the other hand, the sequence

Bk
u}c:u fork=0
B

is a Lucas sequence of the first kind. From [1] we know that. u, is divisible by a prime
Q> g for any prime ‘g > 3. From the above result it follows that p = 3 and that
ug =1 or 3. Thisleads to the equations

Atay+yi=1or3

The only solution (z, y) of the above equations such'that 'z > |y| > 01s (2, —1) which
does not lead to a solution of equation (1). Hence, m is a power of 2. Since m >2;
it follows that'm is.a multiple of 4. We may now replace z and y by z™/4 and ym/4
respectively and study equation (1) only for m = 4. Clearly, since m = 4 is even, we
may assume that y > 0:

Proposition is therefore proved. |

3. THE PROOF OF THEOREM

Sincez? ¢yt = (z—y)(z+y)(@? + 9P € O, it follows that v~y € ¢,z +ye
and 22 +y? € C. We distinguish two cases:

Case 1. 7=y =1(mod?2):

In this case, one of the-numbers 2 — y.or @ +y is divisible by 4 and the other one
is 2 modulo 4. Moreover, since both z and y are odd, it follows that ¢* + g% is 2
modulo.8. It now follows that there exists e € {1} such that

2~ ey = 2(mod 4),
2+ ey = 0(mod 4);

‘Write

1
T ey = 2]:[(22“‘ +1);
=1
J Y n
(4) x+5y=25H(22’ +1),
J=1
K
Pa=2]l0" 4.

k=1
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where s > 2, ], J and K are three non-negative integers (some of them may be zero),
0<a <. <an0<h < <Bh0< v <. <7k and 2% +1is a Fermat
prime whenever 6. € o}, U431 U {n s

Notice first that the three sets {ai}oy, {8; 170, {m L, are pairwise disjoint.
Tndeed; assume for example that & € {a:} oy N {8}, It follows that 22° +1|(z —
v, +y), which contradicts the fact that z and y are coprime. -

Notice also that K > 0 and that 71 > 0. Indeed: it K = 0 then ¢® + 1% = 2,
which is impossible because z > y 2 1. i v = 0, 1t follows that 3 = 2%’ 4 1fa? 442,
which is impossible because z and y are coprime and —1 is not a quadratic residue
modulo 3.

‘We now use formulae (4) and the identity.

© 2e® +1) = (@ + ()’

to.conclude that

K 18 J
a1 + )= aT]E + 12+ 2 [T 41
k=1

=1 j=1
or
K I i o 5
(6) JTe +y=]e% +12+220 JTeY v 12
k=1 i=1 J=1

Our main goal is'to show that L = J = 0.

Suppose: that this is not so. In order to achieve a contradiction, we proceed in
three steps:

Step 1L 0€ {as} U {8}y

Assume that this is not the case.
Suppose first that I.> 0. Hence, oy #0. Notice first that

I N
) e +n= 3 o2&’

i=1 HCLL,5 1}

e
i

and the sum appearing on the right hand side of identity (7) is precisely the binary

expansion of the product appearing on the left-hand side (this is because of the fact

that all exponents appearing on the right hand side of identity (7) have distinct

binary representations, therefore they are all distinct): Since > 0. it follows that
1

(8) e v =12 n®

=1

+ higher powers of 2,
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where the higher powers of 2 are missing when I = 1, From formula (6), it follows
that
(9)
K
1+2%" 4 higher powers of 2 = TT (27 +1)
k=1
=(1+ gLy higher powers of 2) + 22("‘1)(1 + higher powers of 2).

Clearly, the numbers 2% + 1 and 2(s—1) are distinct because the first is'odd-and the

second is even. On the one hand, from formula (9) and the fact that 27 is'even we

conclude that 27 = 2(s —1). On the other hand, since the binary representation of

the number given by formula (9) has at least three digits of 1, it follows that K > 2.
1fJ = 0, then formulae (6) and (9) imply

K
(10) 1+ 22" 4 2% 4 higher powers of 2.= H(Zw‘ +1)
Ty

=1 422671 4 92041 4 higher powers of 2.
Formula (10) leads to 272 = 221 + 1, which is impossible because a; > 0.
Suppose now that J > 0. In this case, 3, > 0. Arguments similar to the preceeding
ones yield that

K
14227 2% 1 higher powers of 2 = H(Zm +1)
h=1

11 o
: = (1+2%7"" 4 higher powers of 2)
4%l o g2y higher powers of 2).

From equation (11) and the fact that 27 = 2(s —1), it follows that at least one of
the following three situations must occur:
1) 272 = 2% 4 1. This is impossible because a1 > 0.
2) 272 = 2(s~ 1)+ 2% +1 =27 4+ 28 1 1 This is impossible because both f3;
and 7, are positive.
3) 2% + 1 =92(s—1)+2% 4 Lor 20 = 2(s 1) +2% =27 4+ 2% which is
impossible because By # 1.
This completes the argument in the case I.> 0.
Assume now that I = 0. Hence, J > 0 and 4 > 0. Arguments similar to the
previous ones imply that formula (6) reads
K
1+ 2% +higher powers of 2 = 1—1(2'm +1)
(12) k=1
=14 221 (1 4 927+ 4 higher powers of 2).
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From equation (12), it again follows that 27 =2(s — 1) and K > 2. Formula (12)
can now be written as

K
) 1+2%7 + 277 & higher powers of 2 = [T(2*" +1)
k=1

=1+2%6=0(1 4 92”41 | pigher powers of 2).

From equation (13), it follows that 272 = 2(s — 1) + 28 +1 =2m 4 2% + 1, which
is impossible because both 8 and v, are positive.

Step 1.1 is therefore proved.

Step LIL T >0, then a; #0.

Suppose that this is not the case. Assume that 7 > 0 but oy = 0. Let ¢ > 1 be
such that @y =4 —1fori=1;...,¢t and either I'= ¢ or a4+1 2 t +1. Then

I 2 1 1
a9 [l +n=1" +1 [T @ +p=0"-1) J[ " +1.

i=1 i=1 izt iztd
Hence,

I
1-[(22“i 4+ 1)% = (1 422+ 1 higher powers of 2)(1 + higher powers of 2)

ga=l,

(15)
=142ty higher powers of 2.

From formulae (6) and (15), it follows that
(16)
K
1+2%" + higher powers of 2 = ][22 + 1)
k=l
= (14 2% 1 4 higher powers of 2) + 22¢=1(1 4 higher powers of 2).

Clearly, 2t 41 and 2(s—1) are distinct because the first number is odd and the other
is ‘even. From formula (16), it follows that 27 = 2(s — 1) and ‘that K > 2. Formula
(6) now becomes

K
1422 4 22" 4 higher powers of 2 = H(?Qﬁ”" +1)

an k=l
: =(14 2%t 4 higher powers of 2)

+226=D (14 higher powers of 2);
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Suppose first that J = 0. Then 272 = 2! + 1, which is false because t is positive.
Suppose now that J > 0. Since o; = i—1fori=1,... ¢, it followsthat By 2t > L.

From thé arguments employed in Step 1.1, it follows that formula (17) can be written
as

27)

142 2% 4 higher powers of 2 = H(22u +1)
(18) . =
= (1422 4 higher powers of 2)

226101 £ 92”41 | hisher powers of 2).

From equation (18) and the fact that 27 = 2(s — 1), it follows that one of the
following situations must occur:

1) 272 =2 4 1. This is impossible because ¢ > 0 "

2) 27 =2(s = 1)+ 2% +1 =27 + 2% + 1 This is impossible because both 7,
and 4 are positive:

3) 241 =2(s=1)+2% + 1 or 2% = 27 + 2% which is impossible because 71 # 51

This completes the proof of Step 1.1L

Step 1L If J > 0, then () # 0.

Notice first that Steps 1.1, 1.1 and LIII contradict each other.

Assume that the claim made-in Step 1.III does not hold. Let J > 0 and assume
that 3, = 0. Let t > 1 be such that §; = j —1 for j =1,....¢ and either J =t or
J>tand Bir; > t+ 1. We have

J
(19) _H @ 11 H(QQ’“‘H) H @ rn=*-1n [T @+

izt Jzt+l Jztl

Hence,

7 7 - .
(20) H(Zzﬁj +12=F -1 H (227 +1)2 =14 22 L higher powers of 2.
=1 SRl

From formula (6) it follows that

i
14 2% + higher powers of 2 = H(Zw +1)
=1

= (1 4 higher powers of 2) 4 22(6-1(1 1 92°*1 L higher powers of 2).
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Assume first that .= 0. Tt follows that

K
14 2% 4 higher powers of 2 = H(Zm‘
(21) k=1

= 14 220-1(1 4 2241 4 higher powers of 2).

+1)

From equation (21), it follows that K > 2 and that 271 = 2(s —1). Formula (21) can
now be written as
K

o 1+22% 427" 4 higher powersof 2 = [T (22 4.1
: Pt

=1+ 2206=1(1 1 92+ L higher powers of 2).

From equation (22) and the fact that 2 = 2(s — 1), it follows that 272 = 2(s ~ 1) +
204+ 1'= 27 4 2! + 1, which is impossible because both 5; and ¢ are positive.

Assume now that I > 0. In this case, o4 >t > 1. From formula (6) and the
arguments employed at Step 1.1, it follows that

K
122" 4 higher powers of 2 = H(Zﬂ +1)

(23) =
= (1+ 2% & higher powers of 2)

+226-1(1 4 92+ 1 higher powers of 2).

Notice that 2% + 1 ‘and 2(s — 1) are distinct because the first number is:odd and
the other is even. From formula (23), it follows that 27 = 2(s.—1) and that K > 2.
Formula (23) can now be written as

K

14227 +22 + higher powers of 2= H(22m +:1)
(24) . kel
= (1+2%77*1 & higher powers of 2)
4 226D (1 4 92+ 4 Tiigher powers of 2).

From equation (24) and the fact that 27 = 2(s — 1), it-follows that one of the
following situations must occur:
1) 272 =294 1. This is impossible-because ar > 0.
2)2% = 2(s=1) + 2/ 41 =27 + 2 + 1, This is impossible because both v and
t are positive.
3 2M 4 l=2s =1+ 2+ 1 =21 42041 Thisleads to v =t and oy =t + 1.
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Tn this last cases it follows that o, 2 t + 2 .and B,y >t + 2, whenever they exist.

From formulae (6) and (19) we get

(25) .
1422 4 227 4 higher powers of 2 = H(zm +1)
: ot
i L ; L A 5
=@ e e P2t~ 02 I @70 412
i22 IZt+l

=@ iy 221(2? — 1)% + higher powers of 2
= 1427 422427 L 92 4 pioher powers of 2.

Equation (25) implies 272 = 2 + 2£1, which is impossible.

Step 1.III is thus proved. -
Steps 1.1,-1.11 and 1.1IL imply that I = J.= 0. From formula (6), it follows that

K] ;
(26) TIe* +1)=142%0,

k=1
From equation (26), it follows that K =1 and 27 = 2(s —1). Solving the first two
equations of system (4) for z and y we get
(27) 2=22""" 41 and y=e(22 o),
where 22" 41 is a Fermat prime and € € {%1}. Since y > 0, it follows that € = 1.
This belongs to. the first family of solutions claimed by Theorem.

Case 2. = % y(mod 2). .
In this case all three numbers 2 — 4,z +y and 2% + y? are odd. Assume that

I
x "‘y = H(22ﬂi + 1).,

i=1
€ R
(28) sy=T[@" +1),
G=1
K
Zagt= Tl 1,
k=1

where I, J and K are three non-negative integers (some of them may be zero),
0SS <. . <an 0B <. <B,0<y <. <ok and 22 +1is a Fermat
prime whenever § € {o; o U810, U (.

Notice again that the three sets {a}/,, {8;}/=1, {1}, are pairwise disjoint,
K > 0-and m > 0. Notice also that I.+.J > 0.

We proceed in four steps.
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Step2L K=Jand vy =05 +1forallk=1,..., K.

From formulae (28) and from the arguments immediately below formula (7), it
follows that

I
[logy(z —9)] = 3" 2%,

Pt
J
(29) llogs(z +9)] = 3727,
Py
K
[logz(2? + y3)] = 3" 2™,
k=1
We now uge the following obvious
Lemma.
1) 'If z is a positive number, then
(30) [log, 2%] € {2]log, z),2[logy 2| + 1}
2) If a > b are positive numbers, then
(31) [logy(a + D)} € {|logy al, [logy a -+1}.

From identity (5) and the above Lemma; it follows that

1+ [logy (2% +3%)| = [log, (2(2” + %))
(32) = {logs((z +9)* + (z — y)*))]
€ {2]logy(z + )} +uju=0,1,2}

From formulae (29) and (32), it follows that

K J
(33) 1+ 22’"‘ =t Z 9Pitt for some u € {0,1,2}.
= =

Since 41> 0, it follows that the number appearing on the left hand side of equation
(33)isodd. Hence;u=1, K=Jandye =5 +1forallk =1, K.
Step 2.1 is thus proved.
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Step 21L 0€ {a:} U{Bi},.

Assume that this is not the case, By Step 2.1, we know that J > 0. In particular,
B> 0.
We use formulae (28) and identity (5) to conclude that

K 1 J
(34) 2JTe™ + 1) = [J@" + 02+ [I@7 +1)°

k=1 i=1 J=1

By the arguments employed in Step 1.1, it follows that

: K
24 2271 f higher powers of 2 = 2 H(QZ” +1)
(35) . k=1 *
= H(z‘z"‘ 12405 27 %1 1 higher powers of 2).

i=1

If I = 0, then formula (35) becomes

K
242271 o higher powers of 2= 2 I[(Q?u +1)
: k=1

=141+ 92141 o higher powers of 2).

(36)

From formula (36), it follows that 272 + 1 = 261 + 1 or 1 = f3;, which is impossible.
Suppose now that I > 0. In this case, oy >-0. By the arguments employed in
Step 1.1, it follows that

K
2422+ 4 higher powers of 2= 2 [T (22" +1)

@7 - kel
=(1+2%"*1 4 higher powers of 2)

+ (1 4+ 2271 4 higher powers of 2).

From equation (37), it follows that one of the following situations must occur:
1) 27 1= 2% + 1. This implies 91 = o, which is impossible.
2) .27+ 1 =2 4 1. This implies 71 = A, which-is impossible.
3) 20041 =20 1+ 1. This implies a1 = f1, which is impossible.
Step 2.IT is thus proved,

Step 2111 Tfeither I'=0orap#0 theny =2 andy =1

476



Suppose that either 7 = 0 or oy # 0By Steps 2.1 and 2.IT above; it follows that
By=10and v = 1. We now show that I = 0 and J = 1. :Suppose that this is not
the case. Then at least one of the numbers oy or 2 exists. From formula (34) and
thefact that 81 = 0 and v; = 1, it follows that :

i
2 + 23 + higher powers of 2 =2 H(z”“ +1)

k=1
! g J 3.
38) [l + 2+ 32 @2 +1)
izl iz2

1 J
=T v o T 412
i=1 iz2
It follows that K > 2. Since J = K, it follows that J = 2 as well. Suppose, for
example, that I = 0. From formula (38), it follows that

K
2428 42241 4 higher powers of 2 = 2 H(Qw +1)
(39) o

=1 £ (14 28)(1 4 2221 4 higher powers of 2).

From equation (39); it follows that 272 + 1 = 92 + 1. which is impossible because

2 # Bo.
Assume now:that I >0. From formula (38), it follows that

K
2+ 2% +227F1  higher powers of 2= 2 [T (2% +1)
k=1
40 .
0 = (1 + 2% 4 higher powers of 2)
+ (1 +28(1+ 222! 4 nigher powers of 2).

From equation (40); it follows: that one'of the following must occur:

1) 272 +1= 2% 4 1. This is impossible because va # oy

2)/272 41 =272 1 1. This is impossible because 7 # fo.

3) 2%+ 1'= 272 4 1. This is impossible because a1 # [2:

Hence, I =0,/ J.:= K'= 1, 5 = 0 and 7 = 1. It follows that z = y = 1 and
x +y =3. Hence, (z,y) = (2,1) = (220,1) which is.one of the solutions claimed by
Theorem.

Step 2.111 is thus proved.

Assurne now that (2,v) # (2,1). By Steps 2.1, 2.1T and 2.111, it follows that [ >0
and oy = 0. Theproof of Theorem will'be completed once we show
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Step 21IV. If oy =0, then (z,%) = (2% 1) for some [ =1,2,3.

Lett>1besuchthato; =i—1forg =1, . tandeither I =tor>tand
gy t+1. It now follows that

I b 1 : I :
@y Jlemsn=0le +0 [T @ +n=0" -1 J] & +1)
i=1 =l izthy >i4+1
Hence,
1 : .
(42) 1—[(22 P 4+1)2 = 142793 4 higher powers of 2.
i1
From equation (34), it follows that .
K
2422711 + higher powers of 2= 2 [T(2*" + 1)
k=1
= (14 2%+ § pigher powers of 2)
+(1+ 22041 | higher powers of 2).

(43)

From equation (43) and the fact that 41 = 8;+1 > By, it follows that 284 1:= 281 41
or 1 = t. Hence, 71 =1 + 1. Equation (34) now becomes

K
2422741 | nigher powers of 2 = 2 H(Zz‘m +1)
k=1
(44) 2 ! i i J .
=@ - [T @ v 2@ w12 + 12
[ 722
We now show that I =tand J =1:
Suppose, for example, that I'> t and J = 1. Then, from formula (44), it follows
that K >'1, which contradicts the fact'that K = J.
Suppose now that-I =t and J > 1. Then K = J > 1. Since 33 2 t+2; it follows,
by formula (44), that
(45)
41 7: ; kS 57
24277+ 4 92 higher powers of 2 =2 T[] (22" +1)
k=1
=22 124+ (2% + 1)2 + 227+ | higher powers of 2

=9 {924l £ 92l | piohor powers of 2.
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Equation (45) implies that s = (35 which is impossible.

Finally, suppose that I > ¢tand'J > 1. Since f2 > t+2 and au41 2 t+ 2, it
follows, by formula (44), that
(46)

g =
24 2271 4 924§ igher powersof 2 = 2 [T (27 + 1)
=1
= (2% ~ )% + 22"+ higher powers of 2)
+ (2 1)+ 22%241 | higher powers of 2)

=24 9T o2 L 92 L pieher powers Of 2.

Equation (46) implies that one of the following three situations must occur:
S 1):272 41 = 2% 4 10 This implies 72 = o1, which is impossible;

2) 27 £ 1=2% 1. This implies 42 = P2, which is impossible:

3) 2241 41 =2f2 4 1. This implies az41 = B2, Which is impossible.

The above arguments show that I =, J = K =1, o =i—1fori=1,.,,t,
By =+t and v =t+1. It now follows that

(47) z-y=2¥-1 and zH+y=2"+1

This implies © = 22 and y = 1. It remains to show that ¢ < 3. But this comes from
the fact that if ¢ > 4, then 2% — % = 22" _ 1 is divisible by 2% +1 which is not a
Fermat prime (in fact, 4p(225 +.1) is not a power of 2).

Theorem is thus completely proved.
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