GRAPH AUTOMORPHISMS OF SEMIMODULAR LATTICES

Ján Jakubík, Košice
(Received October 13, 1998)

Abstract. This paper deals with the relations between graph automorphisms and direct factors of a semimodular lattice of locally finite length.

Keywords: semimodular lattice, graph automorphism, direct factor

MSC 1991: 06C10

1. INTRODUCTION

Each lattice dealt with in the present paper is assumed to be of locally finite length (i.e., all its bounded chains are finite).

For a lattice L let $G(L)$ be the corresponding unoriented graph.

An automorphism of the graph $G(L)$ is called also a graph automorphism of the lattice L. The graph isomorphism of lattices is defined analogously.

We denote by C the class of all finite lattices L such that each automorphism of $G(L)$ turns out to be a lattice automorphism.

In connection with Birkhoff’s problem 6 from [1], the following result has been proved in [5] (by using the results of [2] and [6]):

(*) Let L be a finite modular lattice. Then the following conditions are equivalent:

(i) L belongs to C.

(ii) No direct factor of L having more than one element is self-dual.

The natural question arises whether in (*) the assumption of modularity can be replaced by the assumption that L is semimodular.

In Section 3 we show by an example that the answer is “No”.

We define the notions of an interval of type (C) in L and of a graph automorphism of type (C) (cf. Definitions 2.1 and 2.2).
Let A be a direct factor of a lattice L and $\emptyset \neq X \subseteq L$. We say that A is orthogonal to X if for any $x_1, x_2 \in X$, the components of x_1 and x_2 in the direct factor A are equal.

Let \mathcal{C} be the class of all lattices L such that each graph automorphism of type (C) of L is a lattice automorphism.

We prove (by applying the results and the methods of [3], [5] and [6]):

(\ast) Let L be a semimodular lattice. Then the following conditions are equivalent:

(i) L belongs to \mathcal{C}.

(ii) If A is a direct factor of L such that A is self-dual and orthogonal to each interval of type (C) in L, then A is trivial (i.e., $\text{card } A = 1$).

2. Preliminaries

In what follows, L is a lattice. For the notion of the unoriented graph $G(L)$ of L cf., e.g., [1], [2].

If $x, y \in L$, $x < y$ and if the interval $[x, y]$ of L is a two-element set, then we write $x \preceq y$ or $y \succeq x$.

Hence a graph automorphism of L is a one-to-one mapping φ of L onto L such that, whenever $x, y \in L$ and $x < y$, then

(i) $\varphi(x) \preceq \varphi(y)$ or $\varphi(y) \preceq \varphi(x)$,

(ii) either $\varphi^{-1}(x) \preceq \varphi^{-1}(y)$ or $\varphi^{-1}(y) \preceq \varphi^{-1}(x)$.

2.1. Definition. Let L_0 be a sublattice of L such that L_0 is isomorphic to the lattice in Fig. 1; then the convex closure $\overline{L_0}$ of L_0 in L is said to be an interval of type (C) in L.

\begin{figure}[h]
\centering
\includegraphics[width=0.2\textwidth]{fig1.png}
\caption{Fig. 1}
\end{figure}

2.2. Definition. A graph automorphism φ of L is said to be of type (C) if, whenever L_1 is an interval of type (C) in L and $x, y \in L_1$, $x < y$, then $\varphi(x) \preceq \varphi(y)$ and $\varphi^{-1}(x) \preceq \varphi^{-1}(y)$.
It is easy to verify that if L is modular, then it has no sublattice of type (C); consequently, in this case each graph automorphism of L is of type (C). Therefore (°) is a corollary of (°1).

We denote by L^\sim the lattice dual to L. If L and L^\sim are isomorphic, then L is said to be self-dual.

3. An Example

Let us recall that if L can be expressed as a direct product $L_1 \times L_2$ and if $x = (x_1, x_2) \in L$, $y = (y_1, y_2) \in L$, then $x \prec y$ if and only if either $x_1 \prec y_1$ and $x_2 = y_2$, or $x_1 = x_2$ and $y_1 \prec y_2$.

From this we immediately obtain

3.1. **Lemma.** Let L_1, L_2 be lattices and let ψ be a graph isomorphism of L_1 onto L_2. Put $L = L_1 \times L_2$. For each $x = (x_1, x_2) \in L$ we set

$$\psi(x) = (\psi^{-1}(x_2), \psi(x_1)).$$

Then ψ is a graph automorphism of L.

Consider the lattices L_1 and L_2 in Fig. 2 or Fig. 3, respectively. Both L_1 and L_2 are semimodular.

![Fig. 2](image1.png)

![Fig. 3](image2.png)

3.2. **Lemma.** Both L_1 and L_2 are directly indecomposable.

Proof. The assertion for L_1 was proved in [5], pp. 164–165. The proof for L_2 is similar. \[\square \]

3.3. **Lemma.** Let $i \in \{1, 2\}$. Then the lattice L_i fails to be self-dual.

Proof. It is easy to verify that L_i^\sim fails to be semimodular. Therefore L_i^\sim is not isomorphic to L_i. \[\square \]
Put $L = L_1 \times L_2$.

Since any two direct product decompositions of L have a common refinement and since L_1, L_2 are directly indecomposable by 3.3, we conclude

3.4. Lemma. Let A be a direct factor of L having more than one element. Then the lattice A is isomorphic to some of the lattices L, L_1, L_2.

By the same argument as in 3.3 we obtain

3.5. Lemma. The lattice L is not self-dual.

Now, 3.3, 3.4 and 3.5 yield

3.6. Corollary. The lattice L satisfies the condition (ii) from (*).

It is easy to verify that there exists a graph isomorphism φ of L_2 onto L_2 such that φ fails to be a lattice isomorphism. Hence there are x_1, y_1 in L_1 such that $x_1 < y_1$ and $\varphi(x_1) > \varphi(y_1)$. Consequently, if ψ is defined as above, then ψ is not a lattice automorphism of L.

In view of 3.1 we conclude that in (*), the assumption of modularity cannot be replaced by the assumption of semimodularity of the lattice L.

We also remark that ψ is an example of a graph automorphism on a semimodular lattice such that ψ is not of type (C).

4. Proof of (*).

In this section we assume that the lattice L is semimodular.

4.1. Lemma. Suppose that B is a direct factor of L such that

(i) B is self-dual;
(ii) B is orthogonal to each interval of type (C) in L;
(iii) card $B > 1$.

Then L does not belong to C_1.

Proof. There is a lattice A such that there exists an isomorphism ψ of L onto $A \times B$. Further, in view of (i), there is an isomorphism χ of the lattice B onto B^{-}.

For each $x \in L$ we put $\varphi(x) = y$, where

$$\varphi(x) = (a, b), \quad y = \psi^{-1}(\langle a, \chi(b) \rangle).$$

Then φ is a graph automorphism of the lattice L (cf. [5], Lemma 1.1). Moreover, (ii) yields that φ is of type (C). By applying Lemma 1.2 of [5] we conclude that φ fails to be a lattice automorphism. Therefore L does not belong to C_1. \qed
Let L_1 and L_2 be semimodular lattices. Suppose that φ is a graph isomorphism of L_1 onto L_2 such that

(a) if X is an interval of type (C) in L_1 and $x_1, x_2 \in X$, $x_1 \prec x_2$, then $\varphi(x_1) \prec \varphi(x_2)$;

(b) if Y is an interval of type (C) in L_2 and $y_1, y_2 \in Y$, $y_1 \prec y_2$, then $\varphi^{-1}(y_1) \prec \varphi^{-1}(y_2)$.

We apply similar steps as in Section 2 of [5]. For the sake of completeness, we recall the corresponding notation.

Let A_1 be the set of all intervals $[x, y]$ of L_1 such that

$$x \prec y \quad \text{and} \quad \varphi(x) \prec \varphi(y).$$

Further, let B_1 be the set of all intervals $[u, v]$ of L_1 such that

$$u \prec v \quad \text{and} \quad \varphi(u) \succ \varphi(v).$$

Similarly we define the sets A_2 and B_2 of intervals of L_2 (with φ^{-1} instead of φ).

Choose $x_1^1 \in L_1$, $x_2^1 \in L_2$. We denote by A_1^1 the set of all elements $x \in L_1$ such that either $x = x_1^1$, or there exist $y_1, y_2, \ldots, y_n \in L_1$ such that

(i) $y_1 = x_1^1$, $y_n = x$,
(ii) for each $i \in \{1, 2, \ldots, n - 1\}$, the elements y_i, y_{i+1} are comparable and the corresponding interval belongs to A_1.

Similarly we define the set B_1^1 (taking B_1 instead of A_1). The subsets A_1^2 and B_1^2 are defined analogously (taking x_2^1 and φ^{-1} instead of x_1^1 and φ).

We apply the notion of the internal direct product decomposition of a lattice L with the central element x^0 in the same sense as in [5] (cf. also [6]). By using this notion and by applying the assumption given above we conclude that the results of [3] (cf. Theorem 2 in [3] and the lemmas applied for proving this Theorem) yield

4.2. Proposition. Under the assumptions as above, there exist internal direct product decompositions

\[\psi_1 : L_1 \to A_1^0 \times B_1^0 \quad \text{(with the central element x_1^0)} \]
\[\psi_2 : L_2 \to A_2^0 \times B_2^0 \quad \text{(with the central element x_2^0)} \]

such that

(i) the lattices A_1^0 and A_2^0 are isomorphic,
(ii) the lattice B_1^0 is isomorphic to $(B_2^0)^\sim$.

Now suppose that the lattice L satisfies the condition (ii) of (*i).

Let φ be a graph automorphism of type (C) of the lattice L.

463
Choose $x^0 \in L$. We put $L = L_1 = L_2$ and $x^0 = x^0_1 = x^0_2$. The fact that φ is of type (C) yields that the conditions (a) and (b) are satisfied. Hence we can apply Proposition 4.2.

The further steps are the same as in Part 3 of [5]. By using them we obtain

4.3. Lemma. Let L be a semimodular lattice satisfying the condition (ii) of $(*)_1$. Then the condition (i) of $(*)_1$ is valid.

In view of 4.1 and 4.3, we infer that $(*)_1$ holds.

If L_1 is a sublattice of L and $a, b \in L_1$, $a < b$, then we denote by $[a, b]_1$ the corresponding interval of L_1. We put $a \prec_1 b$ if $[a, b]_1$ is a two-element set.

We say that L_1 is a c-sublattice of L if, whenever $a, b \in L_1$ and $a \prec_1 b$, then $a < b$.

We remark that Theorem 2 in the paper [7] by Ratanaprasert and Davey (this theorem solved a problem proposed in [4]) implies that in Definition 2.1 above it suffices to consider only those sublattices L_0 of L which are c-sublattices of L.

References

Author’s address: Matematický ústav SAV, Grešákova 6, 040 01 Košice, Slovakia, e-mail: musvko@email.sanke.sk