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Summary. We give Mal’cev conditions for varieties V whose congruences on the product
A x B, A, B € V, are determined by their restrictions on the axes in A x B.
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The present paper is a contribution to the problem of restoration of a congruence
from its given subset. Recall that any regular congruence is uniquely determined by
any one of its blocks, see [1], [8], [11]. For weakly regular congruences it suffices to
give up the congruence blocks at the nullary operations ¢y, ..., cn, see [6] and (8].
Subregular congruences are determined by their blocks on an arbitrary subalgebra,
see [2] and [4]. The recent paper [5] investigates congruences on the square A x A
which uniquely correspond to their blocks over the diagonal Aax. Here we study
congruences on the product A x B which are uniquely determined by their restrictions
on axes in A x B.

Definition 1. Let A, B be similar algebras, a € A, b € B arbitrary elements.
The subsets A x {b}, {a} x B of A x B are called azes in the product A x B.

1. CONGRUENCES DETERMINED BY TRACES ON AXES

Let ¢ be a congruence on an algebra A, S a subset of A. Then the trace NS x S of

Y on S is denoted by ¥ [ S. The symbol 8(S,,...,S,) denotes the least congruence
on A containing subsets S, ..., Sp of A x A.
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Definition 2. A congruence ¢ on the product A x B of similar algebras A, B is
said to be determined by its traces ¥ | A x {b}, ¥ | {a} x B on the axes A x {b},
{a} x B, respectively, whenever ¢ = 8(¢ | A x {b}, ¢ [ {a} x B).

We say that a variety V has congruences determined by traces on axes whenever
each congruence on the product A x B of any A, B € V has this property.
Before stating the main theorem of this section we prove an auxiliary result.

Lemma 1. Let a, b, c be elements of an algebra A. Then the traces ® | A x {c},
® | {c} x A of the principal congruence ® = 0((a, a), (b, b)) € ConA x A on the axes
A x {c}, {c} x A, respectively, satisfy the symmetry law ((f,c),{g,c)) € ® | A x {c}
i {(c,f),(c.9)) €@ [ {c} x A.

Proof. Let ((f.c),(9,c)) € ® | Ax {c}. From ((f,c),(g,c)) € & =
6((a,a), (b,b)) we get that

f= ‘Pl(“t b):
¢ = p1(a,d),
i(b, a) = pis1(a,b),
pi(b,a) = piy1(a,b), 1<i<n,

9= n(b,a),
c= pp(b,a)
for an integer n > 1 and suitable algebraic functions ¢y, ..., ¢, over A x A, see
e.g. [3; Thm. 1]. Apparently the above equalities yield that also ((c, f), (c,g)) € ®.
Altogether, ((c, f),(c,9)) € ® | {c} x A and the proof is complete. a
The symbol ¢ stands for a finite sequence ¢, ..., ci.

Theorem 1. For a variety V the following conditions are equivalent:

(1) V has congruences determined by traces on axes;

(2) there exist ternary terms py, ..., Pm, q1, - - 4m, €1, -+ Ck, d1, ..., di, fi,
v fiy 91y 91, (4+ k)-ary terms ty, ..., tm, and (2 + 1)-ary terms &%, ..., &,
1 < i < m, such that

z= tl(pl(zv v Z), QI(zy Y Z), 2,2, c(z, Y 2)),
z=1 (zi 3;?1(”; Y, 2), ¢h(=, Y, Z), d(zr Y, z)):
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ti (gi(z, 9, 2), i(=,9,2), 2,2, €(2,9,2)) =
=tiy1 (P:'+1(3, ¥, 2), 6i+1(2, ¥, 2), 2, 2, c(z,y, z)),
) ti(z, 2, 9i(z, 9, 2), pi(z, ¥, 2), d(2, ¥, z)) =
=tip1 (z, z,pi41(2, ¥, 2), Gis1(z, ¥, z),d(z,y, ’))’ 1<i<m,
Y = tm(am(2, ¥, 2), Pm(2, ¥, 2), 2, 2, €(2, 9, z)),
Y = tm (2, 2,4m(2, 4, 2), Pm(2, 9, 2), d(2,, 2))

and

pi(z, 9, 2) = 81 (2,9, f(2,9,2)),
z=3i(2,9,9(,9,2)),
(ii) sj- (v, =, f(z,y., z)) = j‘+l (2,9, f(z,, 7)),
8 (v, 2,9(2,,2)) = 841 (2,9, 9(z,9,2)), 1<i<n,
qi(z: Y, z) = 35- (y’ z, f(z’ Y, z)),
z=48(y,z,9(z,9,2)), 1<ig<m,

are identities in V.

Proof. (1) = (2): Denote by & the principal congruence 6((z,z), (y,y)) on
the square A x A = Fy(z,y,z) x Fy(z,y, z). Consider the axes A x {z} and {z} x A
in A x A. By hypothesis is determined by its traces on the axes, so ® = 6(® |
A x {z},® | {z} x A). Since ® is finitely generated we infer that the above equality
holds true for some finite subsets of ® | A x {z}, ® | {2z} x A. Furthermore, using
Lemma 1 we can state that

®= V 9(((1’-',1) ) (Qi,Z)), ((z,p.') ) (Z, q‘)»

1<i<h

for some py, ..., pn, q1,...,qn € A. Now the relation

((z, z) ’ (ys y)) € V 0«<p") z) ’ (Ql': z))’ ((z,p,—) , (2, q‘)»

1€igh

yields the identities (2) (i) where {p1,...,pm} = {p1,...,pn} and {q1,...,dm} =
{q1,--.,qn}, see [2; Thm. 1]. Similarly from {{p;, z) ,(q.-,z)) € 0((z,2z), (v, 1),
1 < i < m, we obtain the other identities (2) (ii).

Notice that the 1dent1t1es (2) (ii) ensure also the relatlons {(z,p) , (2, 4)) €
0((z,2), hw)), 1 <

(2) = (1): Let ¢ be a congruence on the product A x B of algebras A,B € V.
Choose arbitrary elements a € A, b € B. We have to verify the equality ¢ = (¥ [ Ax
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{8}, ¢ | {a} x B). To this end take a pair ((z,y),(u,v)) € ¢. Setting 2 := 4, y .= u
in the odd identities from (2) (ii) and z := b, y := v, z := y in the even identities
from (2) (ii) we get that {{pi(%,u,a),}), (¢i(z,u,a),b)) € ¥ for 1 < i < m. Similarly,
setting z := a, y := u in the even identities from (2) (ii) and 2:= b, ¥y := v, z := y
in the odd identities from (2) (ii) we obtain that ((a, pi(y, v, b)), (a, % (y, v, D)) €Y
for 1 < i < m. Further, setting z := a, y := u in the odd identities from (2) (i) and
z:=b, § := v, z := y ini the even identities from (2) (i) we find that (e, v),{u,v)) €
1"'V‘m 9«(}’-‘(3, u, a)a b) ’ (q.-(z, u, a): b))) ((av p.'(y, v, b)) ) (ar q.-(y, v, b)))) and thus
{(z,9),{u,v)) € 6(v | A x {b},% | {a} x B). Since ((z,y),(u,v)) is an arbi-
trary element from ¢ we conclude that ¢ C 0(1/; [ Ax{b},¢ [ {a} x B), which was
to be proved. O

Example 1. Let V be a variety of rings with 1. We propose the terms from
Theorem 1 (2) as follows:

r(z,y,2) =z,

a(z,y,2) =y,

ti(a,b,u,v,c1,c2) =a-c; +u-ca
a(z,y,z)=1, ciz,y,2)=0,
di(z,y,2) =0, da(z,y,2)=1,
si(a,b, fr, o) =a- fi+ fo,
hH(z,y,2)=1, foz,y,2)=0,
91(2z,y,2) =0, ga(z,y,2) =z

Then
t (pl(zv‘.% z)’ ql(zx Y, Z), z, Z,C](I, Y, Z), 02(3) Yy, Z)) = pl(z) y, Z) =z,
t1(z,2,p1(2, 9, 2), q1(z, y, 2), di(2, 9, 2), da(, 9, 2)) = pr(2,9,2) = &
ti(a1(, 4, 2), P1(2, 9, 2), 2, 2, 01(2, 9, 2), €2(, 4, 2)) = qu(2,9,2) Z ¥
tl(zozv 91(1‘,% z)rpl(z,y, z))dl(z:yr z),dg(z,y, Z)) = ql(z? y, 2) =¥
and

51(2,9,i(m3,2), fo(2,0,2) =21+ 0=z = pi(2,3,2),
51(2,5,01(2,9,2),2(z, 4, 2)) =2 - 0+ 2 = 2,
8.2 fi(z,0,2), 1z0,2) =y 140=y = a1(z,1,2),
s (v.2.9(, z), ga(z, v, 2))=y-0+z=1z
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Other examples follow from our next observation.

Corollary 1. Any variety satisfying the Fraser-Horn property, see (7], has con-
gruences determined by traces on the axes.

Proof. Immediate. a

2. CONGRUENCES DETERMINED BY PAIRS ON DIFFERENT AXES

Definition 3. A congruence 3% on the product A x B of similar algebras A, B is
said to be determined by pairs on different azes whenever ¢ = 9(¢ﬂAx {4} x{a} xB)
for any elements a € A, b € B.

We say that a variety V has congruences determined by pairs on different azes
whenever each congruence on the product A x B of any algebras A,B € V has this
property.

Theorem 2. For a variety V the following conditions are equivalent:

(1) V has congruences determined by pairs on different axes;

(2) there exist ternary terms p;, ..., Pm, 91, - qm, €1, - .., Ck, d1, ..., d, fl,
cofiy91, -5 91, (1+k)—ary termsty, ...ty and (1 +I)-ary terms s}, - " 85,
1 £ i < m, such that

z = t1(p1(, ¥, 2), (2, ¥, 2)),
z =t,(z,d(z,y,2)),
@) ti(z, (2,9, 2)) = tiv1 (B (2,9, 2), (2,9, 2)),
ti(¢i(z, y, 2), d(2, ¥, 2)) = tig1(z,d(z,y, 7)), 1<i<m,
y = tm(z, c(i, ¥,2)),
y=tim (Qm(zr ¥,2),d(z,y, z))’

and

pi(z,y, 2) = 8} (z,f(z,¥,2)),
z = 8 (2, 9(2,,2)),
(i) 5 (v, f(2,9,2)) = s}41 (2, f(2,9,2)),
s;: (y’ 9(z, v, z)) = "j‘+1(31 9(z, ¥, z))v 1<i<n,
z=sf,(y,f(z,y,z)), o
gi(z,9,2) = 3:-(%9(3!”’ z))’ 1€ig m,
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are identities in V.

Proof. (1) = (2): Choose algebras A = B = Fy(z,¥,2) € V, the principal
congruence 0((:, z),(y,y)) on A x B and the axes A x {z}, {z} x Ain A x B. By
~ hypothesis 8({z, z), (y,y)) is uniquely determined by pairs on the axes A x {z} and
{2z} xA, i.e. we have 0((z,z), (y,3)) = V 0((p.,z) (2, ¢i)) for some py, . .., pa, q1,

-» @ € A. The relation {(z,z), (y, y)) e V 0((p‘, z), (2, ¢i)) yields the identities

z =t1(p1(z,9,2), 2,¢(z, y, z)),
z=1t (z, u(z,y,2),d(z, v, z)),

(11) ti(z,pi(z,9,2), c(z,9,2)) = tis1(Pis1(2, ¥, 2), 2, c(2, ¥, z)),
ti(qi(2,v,2),2,d(2,9,2)) =tip (2, gi+1(2, 9, 2),d(z, 9, 7)), 1<i<m,
y= tm(z»pm(zsy’ z), c(z,y, z))’
y=tm (q'n(zf ¥,2),2,d(z,y, z))r

where {p1,...,Pm} = {P1,.-.,2a}, {q1,---,9m} = {q1,-.-,qn}, see [3] again, and
similarly form {(pi, 2}, (z,q,-)) €0((z,z),{y,¥)), 1< i< m, weobtain the identi-
ties

pi(z,y,2) = 3'i (z, v, f(z,y, 3))’
z=8(z,9,9(z,9,2)),
(12) s;: (v, z, f(z,v, 7)) = ;:+1 (z,v,f(z,¥,2),
55 (v,2,9(2,9,2) = 8. (2,1, 9(z,,2)), 1<i<n,
z= sf,(y,z, f(z,y; z)),
gz, 9,2) = si,(y,z,g(z,y, z)) forl1<ig< m.

Now the implication (p(z,y,- 2) =2, 1<1i¢g m) = z = y is a consequence of
the identities (I1), and p(z,z,z) = z, 1 € i < m, follow from the identities (12).
Altogether we find that py, ..., pm are Csdkiny terms ensuring the congruence
regularity of V, see [1]. Hence by [9] V has n-permutable congruences for some
n > 1, and we can state that the terms ¢y, ..., t,, as well as the terms s}, ..., &,
1 < i < m, do not depend on the second variable, see [3]. The identities (2) (i) and
(2) (ii) follow. ‘

(2) = (1): Let ¢ be a congruence on Ax B, A,B€ V, a € A, b € B. Consider the
axes A x {b} and {a} x B in A x B. Take an element ((z,y), (u,v)) € 1. Setting
z:= a, Y := u in the odd identities from (2) (ii) and z := b, y := v, z := y in the
even identities from (2) (i) we obtain that also {(pi(z,u,a),b), (a,qi(y,v,b)}) € ¥
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for 1 < i < m. Applying the same substitutions in the identities (2) (i) we find that
((z,9),(u,v)) € ls\‘/s 0((pi(z,u,a),b), (a,qi(y,v,b))) CO(¥NA x {b} x {a} x B),

which proves that ¥ is determined by pairs on the different axes A x {b} and {a} x B.
The proof is complete. a

Example 2. Let V be a variety of Abelian groups. We propose the terms from
Theorem 2(2) as follows:

n(z,y,2)=z-y+2,
u(z,p2)=y-z+z,
ti(a,c1,63) = a+cy —c,
alz,y,2)=y, cz,y,:2) =z,
di(z,y,2) =z, da(z,y,2) =z,
si(a, fi, fa) =a—fi+ fa,
filz,y,2) =y, faz,9,2) =z,
gz, y,2) =2z, gi(z,y,2)= 2z

Then
tl (Pl(l', v, 2), cl(zi Y, z),cg(z,y, Z)) = (z - y+ Z) + y—z=z,
t1(z,di(z,y,2),d2(z,9,2)) =z +z -2 ==,
tl(z)cl(z,yy Z), cz(z,y, 2)) =z+ y—z=y,
tl(‘ll(-’”: Y, z);dl(z)ya z),dg(z,y, z)) = (y— z+ Z) +z—-2= y
and

s1(z, fi(z,9,2), fa2,9,2)) =2 -y + 2 = pi(2, 9, 2),
s1(z,91(2,9,2),92(z,9,2)) =z —z 4+ 2z =z,
si(, fi(z,9,2), fa(z,9,2)) =y —y+2=¢,
s1(1,91(2,9,2),92(z,9,2)) =y -z + 2 = qu(2,9,2).

Corollary 2. Any variety whose congruences are determined by pairs on different
axes is congruence regular and hence congruence modular and n-permutable for an
integer n > 1.

Proof. Congruence regularity was already verified in the proof of Theorem 2.
The remaining conclusions are due to J. Hagemann [9)]. : (]
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Souhrn
STOPY KONGRUENC{ NA OSACH
JaroMfr Dupa

Jsou ukizdny Mal’cevovské podminky pro variety V jejichz kongruence na souéinu A x B,
A,B € V, jsou uréeny ji stopami na osich v A x B.
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