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Summary. Classes of functions continuous in various senses, in particular ^-continuous, 
o> continuous, feebly continuous a.o., and relations between the classes, are studied. 
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1. INTRODUCTION 

The notion of a ^-continuous function between topological spaces was introduced 
by S. Fomin in his study of extensions of Hausdorff spaces [6]. Since then this concept 
has been frequently used in investigations of nonregular Hausdorff spaces. A function 
/ : X —• Y is called ^-continuous if for every x £ X and every open neighborhood V 
of f(x) there exists an open neighborhood U of x such that /(CI 17) C CI V. It is 
clear that continuous functions are ^-continuous and that ^-continuous functions into 
regular spaces are continuous. Although ^-continuous functions behave, in general, 
nicely, they may cause some unexpected problems. For instance, as was pointed 
out in [24], if / : X —• Y is 0-continuous, then / : X —• f(X) is not necessarily 
^-continuous. The possible bad behavior of a ^-continuous function / : X —• Y is 
caused by the following possible deficiency: there may exist a point x 6 X and 
open neighborhoods V of f(x) and U of x such that /(CI U) C CI V and f(U -
{x}) C CI V — V. In [24] 0-continuous functions with this property at x £ X are 
called defective at x. In order to overcome the possible defectiveness of ^-continuous 
functions L. Rudolf [24] introduced two subclasses of ^-continuous functions having 
better categorical properties, namely, weakly continuous functions and 5-maps. A 
function / : X —• Y is weakly continuous (in the sense of Rudolf) if for every x G X 
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and every open neighborhood V of f(x) there exists an open neighborhood U of 
x such that /(CI U) C CI V and (U - {x}) D f~l(V) contains a set which is open 
and dense in U. A basic fact about a weakly continuous function is that it becomes 
continuous if its domain is appropriately retopologized. Namely, / : (X, r) —• Y is 
weakly continuous iff / : (X,«(r)) —> Y is continuous, where S(T) is the topology 
{AC X: U C AclntClU for some U € r} , called the standard r.o. extension of r 
[24], Further strengthening of 0-continuity is obtained in a similar way: a function 
/ : (X, r) —» (y, <r) is called an s-map if / : (X, S(T)) -+ (y, «(<r)) is continuous. These 
two new classes of noncontinuous functions were used in [24] for obtaining Taimanov 
type theorems about extensions of ^-continuous functions. 

Recently, T. Noiri [19] and A. S. Mashour et al. [15] defined strongly semi-
continuous or a-continuous functions. A function / : (K, r) —• Y is called a-
continuous if / : (X} r a ) —• Y is continuous, where r a is the topology {A C X : A C 
Int Clint A} of a-open sets introduced by O. Njastad [18]. Noticing that r a = S(T) 
we see that the a-continuity is precisely the weak continuity of L. Rudolf. Similarly, 
the a-irresolute functions considered in [14] are precisely the «-maps. In this paper 
we continue the study of a-continuous and a-irresolute functions. 

In Section 3 we introduce nearly feebly open functions and establish that a semi-
continuous function is nearly feebly open iff it inversely preserves nowhere dense sets. 
This result enables us to improve Z. Frolik's theorem on preservation of Baire spaces. 

In Section 4 we consider a class of generalized open sets in a space, called almost 
locally dense sets, and their connection with the problem of preservation of properties 
of sets under a-continuous functions. Making use of nearly feebly open functions we 
show that an almost locally dense set A in a space X has an important property 
that nowhere denseness and category of a subset B of A are the same relative to X 
and to A. 

In the last Section of this paper we investigate several classes of functions be­
tween the weak continuity in the sense of Levine and the a-irresoluteness. The main 
result of this section is that ^-continuous feebly open feebly continuous irreducible 
surjections are a-irresolute. There are a few interesting consequences of this result. 
First, a Hausdorff space X is quasiregular iff kx: EX —> X is a-irresolute, where 
(EXykx) is the lliadis absolute. Second, if a Hausdorff space X is quasiregular, 
then X is a Baire space iff EX is a Baire space. Third, spaces (X, r) and (y, a) are 
semi-homeornorphic iff (X, Ta) and (Yy <ra) are homeomorphic. 
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2. PRELIMINARY DEFINITIONS AND NOTATION 

Throughout the present paper (X, r) and (Y, <r) (or X and Y) denote topological 
spaces on which no separation axioms are assumed unless explicitly stated. For 
a subset .A of a space X, CI .A, Int A and BdA denote the closure, interior and 
boundary of A in X, respectively. Recall that a set A in a space (X, r) is regular 
open if A = Int CI A and that the family of regular open sets of (X, r) is a base for a 
topology TS on X coarser that r. The space (X,rs) is called the semiregularization 
of (X, r). Also, recall that a set A in a space X is a-open [18] (resp. locally dense [2], 
semi-open [13]) if A C Int Clint A (resp. A C Int CI A, A C Clint A). The family of 
all a-open sets in (X, r) is a topology on X, denoted as ra. It is shown in [18] that 
T

a = {U — N\U E T and N is nowhere dense in (X, r)} (a set A C X is nowhere 
dense (codense) if Int CI A = 0 (Int A = 0)). Also, A € Ta iff A is locally dense and 
semi-open. A function / : X —• Y is called a-continuous [15] (resp. nearly continuous 
[22], semi-continuous [13]) if f~x(V) is a-open (resp. locally dense, semi-open) for 
every open set V in y . Clearly, / is a-continuous iff it is nearly continuous and semi-
continuous. Another class of noncontinuous functions is introduced in [7]. A function 
/ : X —• Y is feebly continuous if Int /" l (V) ^ 0 for every nonempty open set V is Y. 
Evidently, semi-continuous surjections are feebly continuous and the converse does 
not hold in general. We also need the following weak forms of openness of functions. 
A function / : X —• Y is called nearly open [22] (semi-open [13]) if f(U) is locally 
dense (semi-open) for every open set U in X. Finally, a function / : X —• Y is said 
to be feebly open [7] if Int f(U) ^ 0 for every nonempty open set U in X. 

3. NEARLY FEEBLY OPEN FUNCTIONS 

The following generalization of feebly open functions will be very useful. We say 
that a function / : X —• Y is nearly feebly open if Int CI f(U) ^ 0 for every nonempty 
open set U in X. In our first result we offer several characterizations of nearly feebly 
open functions. The straightforward proof is omitted. 

Lemma 3.1. The following are equivalent for a function f: X —• Y. 
(a) / is nearly feebly open. 
(b) The inverse images under f of open dense sets in Y are dense in X. 
(c) The inverse images under f of (closed) nowhere dense sets in Y are codense 

inX. 
(d) For every open set V in Y, /""1(Bd V) is codense in X. 

Our next result improves and extends Corollary 4.5 of [9]. 
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Lemma 3.2. Let / : X —• Y be a semi-continuous function. Then the following 
are equivalent. 

(a) / is nearly feebly open. 
(b) The inverse images under f of nowhere dense sets in Y are nowhere dense 

inX. 
(c) f(U) C CI Int CI f(U) for every open set' U inX. 
(d) /-x(Int CI V) C Cl/^HV) for every open set V in Y. 

P r o o f . (a)=>(b): It is enough to show that the inverse images of closed nowhere 
dense sets are nowhere dense. Let N be a closed nowhere dense set in Y. Since / is 
semi-continuous, /~1(Y — N) is semi-open and hence IntCl/~1(N) C f~x(N). By 
Lemma 3.1, Int f'x(N) = 0 and consequently, Int CI f'x(N) = 0. 

(b)=>(c): Let U be open in X and y £ Clint CI f(U). There exists an open set V in 
Y such that y € V and Vf\f(U) is nowhere dense [11, Theorem 2, p. 72]. Therefore 
f~l(V n f(U)) D f~l(V) n U and f'x(V) n U is nowhere dense in X. This implies 
lnt(f~l(V) n U) = I n t / ' ^ V ) n C/ = 0 and hence Clint /"X(V) n U = 0. Since / 
is semi-continuous, /~*(V) C Clint / - 1(V) and consequently, /""1(V) n U = 0. So, 
y g /(C/) and /(C/) C CI Int CI/(C/). 

(c)=>(a): Obvious. 
(c)=>(d): Let V be open in Y and a? £ C1/~1(V). There exists an open set 

U in X with x € C/ and C/ n fx(V) = 0. This gives f(U) n V = 0 and hence 
ClIntCl/(C/)nlntClV = 0. Since f(U) C ClIntCl/(C/), f(U)f) IntCIV = 0. 
Therefore C / n / ^ I n t C l V ) = 0. So, x g f~l(IntCIV). 

(d)=>(c): Let U be an open set in X and y 0 CI Int CI/(C/). There exists an open 
set V in Y with y € V and V n Int CI /(C/) = 0. This implies V n CI Int CI f(U) = 0 
and hence, /~X(V) C / ^ ( Y - Clint CI/(C/)). Since Y - Clint CI/(C/) = Int(Y -
IntClf(U)) = IntCl(Y - C1/(C/)), /"X(V) C C l / " 1 ^ - C1/(C/)) by (d). But 
C\f~x(Y-C\f(U)) C C\r1(Y-f(U)) C C\(X-U) = X-C/ so that f-x(V)C\U = 
0. Therefore V n /((/) = 0 and y $ f(U). • 

We remark that in the proof of (c)<<->(d) the assumption that / is semi-continuous 
is not used. 

Recall that a space X is Baire if no nonempty open set in X is meager. (A subset 
of X is meager if it is a countable union of nowhere dense sets). In [9, Theorem 
4.7] (see also [5]) it is shown that if / : .K —> Y is a feebly continuous surjection 
satisfying condition (b) of Lemma 3.2 and X is a Baire space, then Y is a Baire 
space. This result is then used to obtain Z. Frolik's result [7] that if / : X —• Y is 
a semi-continuous feebly open surjection and X is a Baire space, then Y is a Baire 
space. By Lemma 3.2 and Theorem 4.7 in [9] we have the following theorem. 
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Theorem 3.3. If f: X —> Y is a semi-continuous nearly feebly-open surjection 
and X is a Baire space, then Y is a Baire space. 

The following example shows that Theorem 3.3 is an actual improvement of Frolik's 

result. 

E x a m p l e 3.4. Let (R, r ) be the space of the reals with the usual topology and 
let <T be the simple extension of r by the set of irrationals P, i.e., <r = {U U (V n 
P ) : U, V 6 r } . Note that both (R,r) and (R,<r) are Baire spaces. The identity 
function i : (R,<r) —• (R, r ) is continuous and nearly feebly open (moreover, nearly 
open) while it is not feebly open since Int i(P) = 0. 

4. ALMOST LOCALLY DENSE SETS 

We say that a set A in a space X is almost locally dense if A C CI Int CI A. 
This class of generalized open sets was considered in [1] under the name of serhi-
preopen sets. It is not difficult to show that A is almost locally dense iff A = B C\ C, 

where B is semi-open and C is locally dense in X iff A = CW n D where U is 
open and D is dense in X iff A is dense in a semi-open set. By using the fact that 
CI Int CI A = {x G X: U n A is not nowhere dense in X for every open neighborhood 
U of x} [11, Theorem 2, p. 72], an almost locally dense set may be described as the 
set being not locally nowhere dense at each of its points. It is easy to show that 
an arbitrary union of almost locally dense sets is almost locally dense and that the 
intersection of an open set and an almost locally dense set is almost locally dense. A 
simple example of an almost locally dense set which is neither semi-open nor locally 
dense is the set [0, l ) f l Q (Q denotes the set of rationals) on the real line with the 
usual topology. 

We are now ready to justify the introduction of almost local denseness of a set in 
a space. 

Theorem 4 . 1 . The following are equivalent for a set A in a space (X, r ) . 
(a) A is almost locally dense. 

(b) The inclusion function i: A—+ X is nearly feebly open. 

(c) For every nowhere dense set N in X, AON is nowhere dense in A. 

(d)IfU£ T\A, then U is almost locally dense in X. 

(e) Int CI V n A C C\A(V C\ A) for every open set V in X-

P r o o f . The inclusion function i: A —• X is continuous so that (b) O (c) <-> 
(d) <<-> (e) follow by Lemma 3.2. Since the intersection of an almost locally dense 
set and an open set is almost locally dense (a) =-> (d). Finally (d) => (a), because 
A € T\A. D 
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Since it is known that if B C A C X and B is nowhere dense in A, then B is 
nowhere dense in X, we conclude that a set A in X is almost locally dense iff nowhere 
denseness (and category) of any subset B C A is the same relative to X and to A. 

R e m a r k 4.2. One may characterize semi-open and locally dense sets in a space 
in a way similar to the characterization of almost locally dense sets in Theorem 
4.1. Namely, a set A in a space X is semi-open (locally dense) iff the inclusion 
function t: A —• X is semi-open (nearly-open). In the previous statement it is 
possible to replace "semi-open" with "feebly-open* since continuous (moreover, semi-
continuous) feebly open functions are semi-open. It is stated in 6.3 of [16] that 
"nearly-open" can be replaced by "skeletal", where a function / : X —• Y is defined 
to be skeletal if In t /^^CIV) C C\f~l(V) for every open set V in Y. Since it is 
not difficult to show that a continuous function / is skeletal iff / satisfies one of the 
equivalent conditions in Lemma 3.2, 6.3 of [16] gives a characterization of almost 
locally dense sets. 

Theorem 4.3. Let A be an almost locally dense set in a space (X} r ) . Then 
(r|A)« = r«|A. 

P r o o f . We need only to show that r a |A C (r|A)a since (r|A)a C r° |A for 
any A C X. Let U € Ta\A. Then U = (V - N) O A where V € r and N is nowhere 
dense in X. Clearly, U = (V C\ A) - (N O A). Since V f) A e T\A and N 0 A is 
nowhere dense in A by Theorem 4.1, U G (^|A)°. • 

The converse of Theorem 4.3 is not true as the following example shows. Let (R, r) 
be the reals with the usual topology and N the set of all natural numbers. Since N 
is closed discrete and nowhere dense in (R,r) both (r|N)a and r a |N are discrete. 
Clearly, N is not almost locally dense in (R, r). 

We now improve and generalize the result due to T. Noiri [20] that the image 
of a locally dense connected set under an a-continuous function is connected, as 
well as the result of I. L. Reilly and M. K. Vamanamurthy [23] that the same holds 
in the case of semi-open connected sets. We say that a property P of a space is 
semitopological if a space (X,r) has P iff (X>Ta) has P (See Remark 5.11). We 
also say that a property P is a continuous (a-continuous) invariant if it is preserved 
under continuous (a-contiriuous) surjections. The proof of the following lemma is 
left to the reader. 

Lemma 4.4. A property P of a space is an a-continuous invariant iff P is a 
continuous invariant and semitopological. 
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Theorem 4.5. Let P be an a-continuous invariant property, let f: (X%T) —* 
(y, <r) be an a-continuous function and Jet .A be an a/most loc&lly dense set in X 
such tb&t (A, T\A) b&s P. Then (f(A), <r\f(A)) b&s P. 

Proof. Since / : (XyT
a) -+ (Y,<r) is continuous, f\A: (A,Ta\A) 

-+ (f(A),<r\f(A)) is continuous. By Theorem 4.3, ra\A = (r\A)a since A is al­
most locally dense. Therefore, f\A: (A,(r|.A)°) -• (f(A),<r\f(A)) is continuous. 
This means f\A: (A,T\A) -+ (/(.A),<r|/(.A)) is a-continuous. Since (A,r|.A) has P% 

P is an a-continuous invariant and f\A is an a-continuous surjection, (/(A), <r|/(A)) 
has P. D 

Since connectedness is a semitopological and a continuous invariant property, The­
orem 4.5 gives an improvement of the above mentioned results. We remark that there 
are some other important properties for which Theorem 4.5 and Lemma 4.4 apply. 
For instance, pseudocompactness and feeble compactness are a-continuous invari­
ants. 

5. BETWEEN WEAK CONTINUITY AND a-iRRESOLUTENESs 

It is well known that a function / : X —• Y is semi-continuous iff for every x € X 
and any open neighborhoods U and V of x and /(x), respectively, there exists a 
nonempty open set G C U such that f(G) C V, iff f(U O D) is dense in f(U) for 
every open set U and every dense set D in X [17]. Along these lines one can obtain 
the following characterizations of a-continuity. The proof is left to the reader. 

Theorem 5.1. The following are equivalent for & function f:X-+Y. 
(a) / is a-continuous. 
(b) For every x G X, every semi-open set U cont&ining x and every open set V 

containing f(x) there exists & nonempty open setGcU such tb&t f(G) C V. 
(c) /(CI 17) C CI f(U O D) for every open set U and every dense set DinX. 
(d) /(CI 17) C CI /(CI UClD) for every open set U and every dense set D in X. 
(e) / (CM) C CI f(A) for every (almost) loc&lly dense set A in X. 

V 

We now turn our attention to sufficient conditions for a-irresoluteness of functions. 
Recall that a function / : (X, r) - • (Yt a) is a-irresolute [14] if / : (X, Ta) -+ (Y9 <ra) 
is continuous. In [20] ([15]) it is established that if / : X —> Y is a-continuous and 
semi-open (nearly open) then / is a-irresolute. Our next result generalises these 
results. 

Theorem 5.2. Iff - (X, r ) —• (y, er) is a-continuous and neatly feebly open, then 
f is a-irresolute. 
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P r o o f . Let V € <ra. Then V = W - JV, where IV 6 <r and 1V* is nowhere dense 
in y . Since f~l(V) = f~1(W)C\(X - /^(-V)) and /~ l (W0 € r a , the result follows 
if we show that X — f~l(N) £ T°. But this is clear, since /-1(1V) is nowhere dense 
in X by Lemma 3.2. D 

The following interesting class of functions was considered in [4] in connection with 
completely regular absolutes of arbitrary spaces. A function / : X --• (y, <r) is called 
^-continuous if (i) / : X —• (Y,~s) is nearly continuous and (ii) IntCl/-1(t7) n 
I n t C l / - 1 ^ ) = IntClf~ l(U n V) for any regular open sets U and V in Y A 
stronger form of ^continuity is defined in [20]. A function / : X —• Y is strongly 
^-continuous if (i) / is nearly continuous and (ii) IntCl f~l(U) n l n t C l / - 1 ( V ) = 
IntClf~ l(U n V) for any open sets U and V in Y.Recall also that a function / : 
X —• y is weakly continuous [12] (in the sense of Levine) if for every x £ X and 
every open neighborhood V of f(x) there exists an open neighborhood U of x such 
that f(U) C CI V. The following chain of implications holds: a-irresoluteness => a-
continuity =-> strong ij-continuity =-> rj-continuity -=» 0-continuity => weak-continuity. 
The reverse implications are not true in general, It is shown in [4] that weakly 
continuous closed irreducible surjections and weakly continuous open functions are 77-
continuous. Since both classes of 17-continuous functions in these results are contained 
in the class of feebly open functions the following theorem generalizes both results. 

Theorem 5.3. If / : X —• Y is weakly continuous and nearly feebly open, then f 
is strongly rf-continuous. 

P r o o f . First we show that / is nearly continuous. Let V be an open set in Y. 

Since f~x(V) = f~l(ClV) n (X - f~l(BdV)) and since the weak continuity of / 
gives that f~l(V) C I n t / ' ^ C l V), we have 

f~l(V) = I n t r ^ C l K ) n (X - f~\Bd V)). 

By Lemma 3.1, X — / - 1 ( B d V) is dense. Since the intersection of an open set and a 
dense set is locally dense, f~l(V) is locally dense and hence / is nearly continuous. 
Now, let U and V be open sets in Y. We use the fact that / is weakly continuous iff 
Clf~l(V) C f~x(C\ V). Therefore 

IntCl/-^f/)nlntCl/-1(K)Clnt/-1(Clt/)nlnt/-1(ClVr) = Int/-1(ClC/nCiy) 

= int/-1((f/nv,)u(i/nBdVr)u(vrnBdC/)u(Bdc/nBdvr)). 
Clearly N = (U n Bd V) U (V C\ Bd U) U (Bd U C\ Bd V) is nowhere dense and by 

Lemma 3.1, lntfl(N) = 0. Since lnt f~l((U nV)UN) = Int(f'x(U f)V)U 
/ - * ( # » C Int(Cl f~l(U HV)U f~l(H)) C I n t C l / - 1 ^ n V) U lnt f~l(N) = 
IntCl f~l(Uf)V), we have that lnt C I / - H ^ ) Hint C I / - 1 0 0 C IntCl f~x(U n V) 
and the result follows. • 
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To see that weakly continuous nearly feebly open functions are not necessarily a-
continuous consider the identity function t: (R,r) —* (R,<x) where (R,r) and (R,<r) 
are the spaces in the Example 3.4. It is not difficult to see that i is open and weakly 
continuous and hence strongly --continuous. But i is not feebly continuous and hence 
is not a-continuous. In the light of this example, one may conjecture that weakly 
continuous open feebly continuous functions are a-continuous. This is not the case. 

E x a m p l e 5.4. Let (X, r) be the set of real numbers with the usual topology, 
and let (Y,(r) be the Sierpinski space. So Y = {0,1} and a = {0, {0},Y}. Let 
now r* be the topology on X generated by r and the set {0}. Define a function 
/ : (X,T*) — (Y,<r) by f(x) = 0 if x € Q and f(x) = 1 if x $ Q, where Q is the 
set of rationals. It is not difficult to check that / is weakly continuous, open and 
feebly continuous. But / is not semi-continuous, and hence not a-continuous, since 
lnt/-1({0}) = {0} is obviously not dense in Q = rl({0}). 

However, in case of irreducible surjections, the situation is different. Recall that a 
surjection / : X —• Y is irreducible if f(F) ^ Y for every proper closed set F in X, 
or equivalently, for every nonempty open set U in X there exists y 6 Y such that 

rHv) c u. 

Theorem 5.5. Iff:X—*Yisa, weakly continuous feebly open feebly continuous 
irreducible surjection, then / is ct-irresolute. 

Proof . As we have noted in Section 2 a function is a-continuous iff it is 
semi-continuous and nearly continuous. So if we show that / is semi-continuous 
the result will follow by Theorem 5.3 and Theorem 5.2. Let V be an open set 
in Y, let x £ / _ 1 (V) and let G be an open neighborhood of x. We claim that 
GO Int / - 1 ( V ) ^ 0. Since / is weakly continuous there exists an open neighborhood 
G' of s such that f(G') C CIV. Let U = GnG'. Evidently, f(U) C CIV. Since 
/ is feebly open Int f(U) £ 0 and hence Int f(U) n V ^ 0. Let W = Int f(U)n V. 
The feeble continuity of / implies that Int f~l(W) £ 0. Since / is irreducible there 
exists y e Y such that f'x(y) C Int f~l(W). Evidently, y € W C f(U) and hence 
rx(y)nU # 0. Therefore, Unint f~x(W) £ 0 and consequently, Unlntf-x(V) # 0. 
So GHlnt / '^V) ^ 0 and * 6 CI Int f~l(V). This shows that / is semi-continuous 
and the result follows. D 

We now derive a few consequences of Theorem 5.5. First, we need the concept of a 
quasiregular space. A space X is called quasiregular [21] if for every nonempty open 
set V in X there exists a nonempty open set U in X such that CI 17 C V. It is clear 
that weakly continuous surjections onto quasiregular spaces are feebly continuous. 
Combining this fact and Theorem 5.5 we obtain the following corollary. 
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Corollary 5.6. Weakly continuous feebly open irreducible surjections onto quasi-
regular spaces are ex-irresolute. 

Recall now that with every Hausdorff space X we associate the space EX% called 
the Iliadis absolute, which is unique (up to homeomorphism) with respect to having 
these properties: EX is Tichonov extremally disconnected and zero-dimensional 
and there exists a perfect (i.e., closed with compact fibers) ^-continuous irreducible 
surjection kx' EX —• X (see [21J for definitions and properties). The surjection kx 
is not necessarily continuous. In fact, kx is continuous iff X is regular [21]. Since 
kx is feebly open (being closed and irreducible); it follows from Corollary 5.6 that 
kx is a-irresolute if X is quasiregular. Our next result implies that the converse is 
also true. 

Lemma 5.7. Quasiregul&rity is preserved under feebly open feebly continuous 
closed surjections. 

Proof . Let / : X —• Y be a feebly open feebly continuous closed surjection, X 
a quasiregular space and V a nonempty open set in Y. Since / is feebly continuous, 
U = hitf~l(V) is nonempty. There exists a nonempty open set W in X such that 
Cf W C U since X is quasiregular. The feeble openness and closedness of / give 
0 / Int/(1V) C Clint/(WO C C\f(W) C f(C\W) C f(U) C V. Therefore Y is 
quasiregular. D 

We can now state the promised result. 

Theorem 5.8. Let X be a Hausdorff space. Then X is quasiregular iff kx" EX —• 
X is a-irresolute (feebly continuous). 

Theorem 5.9. Let X be a Hausdorff quasiregular space. Then X is a Baire space 
iff EX is a Baire space. 

Proof . The sufficiency follows by Theorem 5.8 and Theorem 3.3. To establish 
necessity suppose that EX is not a Baire space. Then there exists a nonempty 
open meager set U in EX. Since nowhere dense sets are preserved under closed 
^-continuous irreducible surjections [Theorem 6.5 (d), 21], kx(U) is meager in X. 
The feeble openness of kx gives Int kx(U) ?-~ 0 which contradicts the assumption 
that X is a Baire space, and the result follows. D 

Another consequence of Theorem 5.5 involves the concept of a semi-hbmeomor-
phism of spaces. A bijection / : X - • Y is a semi-homeomorphism [3] if / and f~l 

preserve semi-open sets and then X and Y are said to be semi-homeomorphic spaces. 
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It was shown in [10] that a bijection / : X —• Y is a semi-homeomorphism ifF / is a 0-

homeomorphism (i.e., / and f"1 are ^-continuous) and / is a feeble homeomorphism 
(i.e., / and f~l are feebly continuous). Since bijections are irreducible, the previous 
result and Theorem 5.5 give at once the following result from [8]. 

Theorem 5.10. Spaces (X, r ) and (Y, a) are semi-homeomorphic iff(X, r a ) and 
(Y, (T°) are homeomorphic. 

R e m a r k 5.11. In Section 4 we have defined a property to be semitopological 
if it is shared by a space (X, r ) and the space (X, r ° ) . Originally, semitopological 
properties were defined in [3] as properties preserved under semi-homeomorphisms. 
Theorem 5.10 justifies our definition. For a list of semitopological properties see [10]. 
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