Mathematic Bohemia

Ján Jakubík

Sequential convergences in a vector lattice

Mathematica Bohemica, Vol. 123 (1998), No. 1, 33-48
Persistent URL: http://dml.cz/dmlcz/126295

Terms of use:

© Institute of Mathematics AS CR, 1998

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

SEQUENTIAL CONVERGENCES IN A VECTOR LATTICE

JÁn Jakubík, Košice
(Received August 5, 1996)

Abstract. In the present paper we deal with sequential convergences on a vector lattice L which are compatible with the structure of L.

Keywords: vector lattice, sequential convergence, archimedean property, Brouwerian lattice

MSC 1991: 46A19

In this paper we will investigate the system Conv L of all sequential convergences in a vector lattice L. The analogously defined notions of sequential convergences in a lattice ordered group or in a Boolean algebra were studied in [3]-[12].

The following results will be established.
The set Conv L is nonempty if and only if L is archimedean. Let L be archimedean. Then Conv L has the least element (it need not have, in general, a greatest element). Each interval of Conv L is a Brouwerian lattice. If L is ($\aleph_{0}, 2$)-distributive, then Conv L is a complete lattice. There is a convex vector sublattice L_{1} of L such that (i) Conv L_{1} is a complete lattice; (ii) if L_{2} is a convex vector sublattice of L such that Conv L_{2} is a complete lattice, then $L_{2} \subseteq L_{1}$. Let $X_{i}(i=1,2)$ be archimedean vector lattices; if X_{1} and X_{2} are isomorphic as lattices and if Conv X_{1} is a complete lattice, then Conv X_{2} is a complete lattice as well. If L is a direct sum of linearly ordered vector lattices, then Conv L is a complete lattice and has no atom. Some further results (concerning orthogonal sequences and strong units) are also proved.

1. Preliminaries

The notion of a vector lattice is applied here in the same sense as in [1], Chap. XV. (In [16], the term "Riesz space" is used; in [13] vector lattices are called K-lineals.)

Let L be a vector lattice and let \mathbb{N} be the set of all positive integers. The direct product $\prod_{n \in \mathbb{N}} L_{n}$, where $L_{n}=L$ for each $n \in \mathbb{N}$, will be denoted by $L^{\mathbb{N}}$. The elements of $L^{\mathbb{N}}$ are denoted, e.g., as $\left(x_{n}\right)_{n \in \mathbb{N}}$, or simply $\left(x_{n}\right)$; instead of n, sometimes other indices will be applied. $\left(x_{n}\right)$ is said to be a sequence in L. If $x \in L$ and $x_{n}=x$ for each $n \in \mathbb{N}$, then we denote $\left(x_{n}\right)=$ const x. The notion of a subsequence has the usual meaning.

If $\alpha \subseteq L^{\mathbb{N}} \times L$, then instead of $\left(\left(x_{n}\right), x\right) \in \alpha$ we also write $x_{n} \rightarrow_{\alpha} x$.
If the partial order (as defined in L) is not taken into account, then we obtain a linear space which will be denoted by $\ell(L)$; similarly, if we disregard the multiplication of elements of L by reals, then we get a lattice ordered group; we denote it by $G(L)$.

The set of all reals will be denoted by \mathbb{R}. The symbol 0 denotes both the real number zero and the neutral element of L; the meaning of this symbol will be clear from the context. For $\left(a_{n}\right) \in \mathbb{R}^{\mathbb{N}}$ and $a \in \mathbb{R}$ the symbol $a_{n} \rightarrow a$ has the usual meaning.
1.1. Definition. (Cf., e.g., [15].) A nonempty subset α of $L^{\mathbb{N}} \times L$ will be said to be a convergence in $\ell(L)$ if it satisfies the following conditions:
(i) If $x_{n} \rightarrow_{\alpha} x$ and if $\left(y_{n}\right)$ is a subsequence of $\left(x_{n}\right)$, then $y_{n} \rightarrow_{\alpha} x$.
(ii) If $x_{n} \rightarrow_{\alpha} x$ and $x_{n} \rightarrow_{\alpha} y$, then $x=y$.
(iii) If $x_{n} \rightarrow_{\alpha} x$ and $y_{n} \rightarrow_{\alpha} y$, then $x_{n}+y_{n} \rightarrow_{\alpha} x+y$.
(iv) If $x_{n} \rightarrow_{\alpha} x$ and $a \in \mathbb{R}$, then $a x_{n} \rightarrow_{\alpha} a x$.
(v) If $x \in L,\left(a_{n}\right) \in \mathbb{R}^{\mathbb{N}}, a \in \mathbb{R}$ and $a_{n} \rightarrow a$, then $a_{n} x \rightarrow_{\alpha} a x$.

The system of all convergences in $\ell(L)$ will be denoted by Conv ℓL.
1.2. Definition. (Cf. [3].) A nonempty subset α of $L^{\mathbb{N}} \times L$ will be said to be a convergence in $G(L)$ if it satisfies the conditions (i), (ii), (iii) from 1.1, and if also the following conditions are fulfilled:
(i_{1}) If $\left(\left(x_{n}\right), x\right) \in L^{\mathbb{N}} \times L$ and if each subsequence $\left(y_{n}\right)$ of $\left(x_{n}\right)$ has a subsequence $\left(z_{n}\right)$ such that $z_{n} \rightarrow_{\alpha} x$, then $x_{n} \rightarrow_{\alpha} x$.
(iii) If $x \in L$ and (x_{n}) $=$ const x, then $x_{n} \rightarrow_{\alpha} x$.
(iii 1_{1} If $x_{n} \rightarrow_{\alpha} x$, then $-x_{n} \rightarrow_{\alpha}-x$
(iv1) If $x_{n} \rightarrow_{\alpha} x$ and $y_{n} \rightarrow_{\alpha} y$, then $x_{n} \wedge y_{n} \rightarrow_{\alpha} x \wedge y$ and $x_{n} \vee y_{n} \rightarrow_{\alpha} x \vee y$.
(v_{1}) If $x_{n} \rightarrow_{\alpha} x, y_{n} \rightarrow_{\alpha} x,\left(z_{n}\right) \in L^{\mathbb{N}}$ and $x_{n} \leqslant z_{n} \leqslant y_{n}$ for each $n \in \mathbb{N}$, then $z_{n} \rightarrow_{\alpha} x$.

The system of all convergences in $G(L)$ will be denoted by Conv ${ }_{g} L$.
Let us remark that in the paper [14] the Urysohn property (i_{1}) (which will be systematically applied below) was not assumed to be valid when investigating a sequential convergence in a lattice ordered group.

We denote by d the system of all elements $\left(\left(x_{n}\right), x\right) \in L^{\mathbb{N}} \times L$ having the property that there is $m \in \mathbb{N}$ such that $x_{n}=x$ for each $n \geqslant m$. It is easy to verify that d belongs to $\mathrm{Conv}_{g} L$, hence $\mathrm{Conv}_{g} L$ is nonempty. The system Conv ${ }_{g} L$ will be considered to be partially ordered by inclusion. It is obvious that d is the least element of $\mathrm{Conv}_{g} L$.

Let us remark that the conditions (i), (ii), (iii), (i_{1}), (iii $)$ and (iii ${ }_{1}$) define a convergence group in the sense of [18] or a FLUSH convergence on the corresponding group (cf. [17]).
1.3. Definition. A nonempty subset α of $L^{\mathbb{N}} \times L$ will be said to be a convergence in L if $\alpha \in$ Conv $_{\ell} L \cap \operatorname{Conv}_{g} L$. The system of all convergences in L will be denoted by Conv L. If Conv $L \neq \emptyset$, then the set Conv L will be partially ordered by inclusion.

The vector lattice L is said to be archimedean if, whenever $x, y \in L$ and $0 \leqslant n x \leqslant y$ for each $n \in \mathbb{N}$, then $x=0$.
1.4. Lemma. Let L be non-archimedean. Then $\operatorname{Conv} L=\emptyset$.

Proof. There exist $x, y \in L$ such that $0<n x \leqslant y$ for each $n \in \mathbb{N}$. By way of contradiction, assume that $\alpha \in \operatorname{Conv} L$. Because $\frac{1}{n} \rightarrow 0$ in \mathbb{R}, in view of 1.1 , (v) we infer that $\frac{1}{n} y \rightarrow_{\alpha} 0$. Since $0<x \leqslant \frac{1}{n} y$ for each $n \in \mathbb{N}$, according to (ii i_{1}) and (v_{1}) of 1.2 the relation $x_{n} \rightarrow_{\alpha} x$ is valid, where $\left(x_{n}\right)=$ const x. Thus in view of (ii i_{1}) and (ii) we have arrived at a contradiction.
1.5. Lemma. Let $\alpha \in \operatorname{Conv}_{g} L$. Then α satisfies the condition (iv) from 1.1.

Proof. Let $x_{n} \rightarrow_{\alpha} x$ and let $a \in \mathbb{R}$. There is $m \in \mathbb{N}$ with $|a| \leqslant m$. We have

$$
x_{n} \rightarrow_{\alpha} x \Rightarrow\left|x_{n}-x\right| \rightarrow_{\alpha} 0
$$

whence in view of (iii) and by induction we get $m\left|x_{n}-x\right| \rightarrow_{\alpha} 0$. Since

$$
0 \leqslant\left|a x_{n}-a x\right|=|a|\left|x_{n}-x\right| \leqslant m\left|x_{n}-x\right|,
$$

according to (v_{1}) we obtain $\left|a x_{n}-a x\right| \rightarrow_{\alpha} 0$, thus $a x_{n} \rightarrow_{\alpha} a x$.
1.6. Corollary. Let $\alpha \in \operatorname{Conv}_{g} L$. Then $\alpha \in \operatorname{Conv} L$ if and only if α satisfies the condition (v) from 1.1.

If $L \neq\{0\}$, then the element d of $\operatorname{Conv}_{g} L$ does not satisfy the condition (v) of 1.1. Hence if $L \neq\{0\}$, then $\operatorname{Conv}_{g} L$ fails to be a subset of Conv L.

The positive cone $\{x \in L: x \geqslant 0\}$ of L will be denoted by L^{+}. Under the inherited partial order and the operation,$+ L^{+}$is a lattice ordered semigroup.
1.7. Definition. A convex subsemigroup β of $\left(L^{+}\right)^{N}$ will be said to be a 0 -convergence in $G(L)$ if the following conditions are satisfied:
(I) If $\left(g_{n}\right) \in \beta$, then each subsequence of $\left(g_{n}\right)$ belongs to β.
(II) If $\left(g_{n}\right) \in\left(L^{+}\right)^{N}$ and if each subsequence of $\left(g_{n}\right)$ has a subsequence belonging to (β), then $\left(g_{n}\right)$ belongs to β.
(III) Let $x \in L^{+}$. Then const x belongs to β if and only if $x=0$.

The system of all 0 -convergences in $G(L)$ will be denoted by $0-\operatorname{Conv}_{g} L$. Let d_{0} be the set of all $\left(x_{n}\right) \in\left(L^{+}\right)^{\mathcal{N}}$ such that $\left(\left(x_{n}\right), 0\right) \in d$. Then $d_{0} \in 0-\operatorname{Conv}_{g} L$. Hence 0 - $\operatorname{Conv}_{g} G \neq \emptyset$. The system 0 -Conv ${ }_{g} L$ is partially ordered by inclusion.

Let $\alpha \in \operatorname{Conv}_{g} L$. Put

$$
\begin{equation*}
\varphi_{1}(\alpha)=\left\{\left(\left|x_{n}-x\right|\right): x_{n} \rightarrow_{\alpha} x\right\} . \tag{1}
\end{equation*}
$$

Conversely, let $\beta \in 0-$ Conv $_{g} L$. Denote

$$
\begin{equation*}
\varphi_{2}(\beta)=\left\{\left(\left(x_{n}\right), x\right):\left(\left|x_{n}-x\right|\right) \in \beta\right\} \tag{2}
\end{equation*}
$$

1.8. Lemma. (Cf. [4], Lemma 1.4 and Theorem 1.6.) φ_{1} and φ_{2} are inverse isomorphisms of $\mathrm{Conv}_{g} L$ onto $0-\mathrm{Conv}_{g} L$, or of $0-\mathrm{Conv}_{g} L$ onto $\mathrm{Conv}_{g} L$, respectively.
1.9. Definition. A nonempty subset β of $\left(L^{+}\right)^{N}$ will be said to be a 0 -convergence in L if $\beta \in 0-$ Conv $_{g} L$ and if, moreover, the following condition is satisfied:
(IV) If $x \in L$ and $a_{n} \rightarrow 0$ in \mathbb{R}, then $\left(a_{n} x\right) \in \beta$.

Let 0 -Conv L be the set of all 0 -convergences in L. If this set is nonempty, then it will be considered to be partially ordered by inclusion.

Now let α and β run over the set Conv L or 0 -Conv L, respectively, and let φ_{1} and φ_{2} be defined as in (1) and (2). Then by a routine proof and by using 1.5 we obtain the following result which is analogous to 1.8 :
1.10. Lemma. (i) $\operatorname{Conv} L=\emptyset \Leftrightarrow 0$-Conv $L=\emptyset$. (ii) If $\operatorname{Conv} L \neq \emptyset$, then φ_{1} and φ_{2} are inverse isomorphisms of $\operatorname{Conv} L$ onto 0 -Conv L, or of 0 -Conv L onto Conv L, respectively.

As we remarked in the introduction, we are interested in studying the partially ordered system Conv L. Now, in view of 1.10 , it suffices to investigate the system 0 -Conv L. Next, according to 1.4 , it suffices to consider the case when L is archimedean.

2. Regular sets

In what follows we assume that L is an archimedean vector lattice.
Let $\emptyset \neq A \subseteq\left(L^{+}\right)^{\mathbb{N}}$. The set A will be said to be regular with respect to $G(L)$ (or L, respectively) if there is $\alpha \in 0-\operatorname{Conv}_{g} L$ (or $\alpha \in 0$ - Conv L) such that $A \subseteq \alpha$.
2.1. Lemma. Let $\emptyset \neq A \subseteq\left(L^{+}\right)^{N}$. Then the following conditions are equivalent:
(i) A fails to be regular with respect to $G(L)$.
(ii) There exist $0<z \in L$, positive integers m, k, elements $\left(y_{n}^{1}\right), \ldots,\left(y_{n}^{k}\right)$ of A and subsequences $\left(x_{n}^{1}\right)$ of $\left(y_{n}^{1}\right), \ldots,\left(x_{n}^{k}\right)$ of $\left(y_{n}^{k}\right)$ such that

$$
z \leqslant m\left(x_{n}^{1} \vee x_{n}^{2} \vee \ldots \vee x_{n}^{k}\right) \quad \text { for each } n \in \mathbb{N} .
$$

Proof. The implication (ii) \Rightarrow (i) is obvious. Let (i) be valid. In view of the results of [4] (cf. also [10], Proposition 2.1) there exist $0<z \in L$, positive integers m_{1}, k, elements $\left(y_{n}^{1}\right), \ldots,\left(y_{n}^{k}\right)$ of A and subsequences $\left(x_{n}^{1}\right)$ of $\left(y_{n}^{1}\right)_{2} \ldots,\left(x_{n}^{k}\right)$ of $\left(y_{n}^{k}\right)$ such that

$$
z \leqslant m_{1}\left(x_{n}^{1}+x_{n}^{2}+\ldots+x_{n}^{k}\right) \quad \text { for each } n \in \mathbb{N} .
$$

Hence according to Lemma 2.4, [10] there is $m \in \mathbb{N}$ with

$$
z \leqslant m\left(x_{n}^{1} \vee x_{n}^{2} \vee \ldots \vee x_{n}^{k}\right) \quad \text { for each } n \in \mathbb{N} .
$$

Let A_{0} be the set of all sequences $\left(x_{n}\right)$ in L having the property that there are $0 \leqslant x \in L$ and $\left(a_{n}\right) \in\left(\mathbb{R}^{+}\right)^{\mathbb{N}}$ such that $a_{n} \rightarrow 0$ in \mathbb{R} and $x_{n}=a_{n} x$ for each $n \in \mathbb{N}$.
2.2. Lemma. The set A_{0} is regular with respect to $G(L)$ and also with respect to L.

Proof. By way of contradiction, assume that A_{0} fails to be regular with respect to $G(L)$. Then the condition (ii) from 2.1. holds for A_{0}.

For each $i \in\{1,2, \ldots, k\}$ there are $0<x^{i} \in L$ and $\left(a_{n}^{i}\right) \in\left(\mathbb{R}^{+}\right)^{\mathbb{N}}$ such that $a_{n}^{i} \rightarrow 0$ in \mathbb{R} and

$$
x_{n}^{i}=a_{n}^{i} x^{i} \quad \text { for each } n \in \mathbb{N}
$$

For $n \in \mathbb{N}$ we put $a_{n}=\max \left\{a_{n}^{1}, a_{n}^{2}, \ldots, a_{n}^{k}\right\}$. Then $a_{n} \rightarrow 0$ in \mathbb{R} and

$$
\begin{aligned}
0<z & \leqslant m\left(x_{n}^{1} \vee x_{n}^{2} \vee \ldots \vee x_{n}^{k}\right)=m\left(a_{n}^{1} x^{1} \vee \ldots \vee a_{n}^{k} x^{k}\right) \\
& \leqslant m a_{n}\left(x^{1} \vee \ldots \vee x^{k}\right) \text { for each } n \in \mathbb{N} .
\end{aligned}
$$

Next, for each $n \in \mathbb{N}$ there is $n(1) \in \mathbb{N}$ such that $m a_{n(1)}<\frac{1}{n}$, hence

$$
0<z<\frac{1}{n}\left(x^{1} \vee \ldots \vee x^{k}\right) \text { for each } n \in \mathbb{N} .
$$

Thus $n z<x^{1} \vee \ldots \vee x^{k}$ for each $n \in \mathbb{N}$, which is impossible, because L is archimedean. Thus there is $\alpha \in 0-\operatorname{Conv}_{g} L$ with $A_{0} \subseteq \alpha$. Then α fulfils the condition (IV), hence $\alpha \in 0$-Conv L.

2.3. Theorem. Let L be an archimedean vector lattice. Then $\operatorname{Conv} L \neq \emptyset$.

Proof. In view of 2.2 there is $\alpha \in 0$-Conv L with $A_{0} \subseteq \alpha$. Hence 0 - Conv $L \neq \emptyset$. Thus according to 1.10 we have Conv $L \neq \emptyset$.

2.4. Lemma. Let $\alpha \in 0$-Conv L. Then $A_{0} \subseteq \alpha$.

Proof. This follows immediately from the fact that α satisfies the condition (IV) of 1.9 .
2.5. Corollary. Let I be a nonempty set and for each $i \in I$ let $\alpha_{i} \in 0$-Conv L. Then $\emptyset \neq \bigcap_{i \in I} \alpha_{i} \in 0$-Conv L.

Let us denote by d^{0} the intersection of all $\alpha_{i} \in 0$ - Conv L with $A_{0} \subseteq \alpha_{i}$ (such α_{i} do exist in view of 2.2). According to 2.4 and 2.5 we obtain:
2.6. Corollary. d^{0} is the least element of 0 -Conv L. If $\alpha \in 0$-Conv L, then the interval $\left[d^{0}, \alpha\right]$ of the partially ordered set 0 -Conv L is a complete lattice.

2.7. Proposition. $d^{0}=A_{0}$.

Proof. In view of the definition of d^{0} we have $A_{0} \subseteq d^{0}$. Let $\left(z_{n}\right) \in d^{0}$. Then in view of [10], Proposition 2.1, and according to 2.4 there are $m, k \in \mathbb{N}$, elements $\left(y_{n}^{1}\right), \ldots,\left(y_{n}^{k}\right)$ of A_{0} and subsequences $\left(x_{n}^{1}\right)$ of $\left(y_{n}^{1}\right), \ldots,\left(x_{n}^{k}\right)$ of $\left(y_{n}^{k}\right)$ such that

$$
z_{n} \leqslant m\left(x_{n}^{1} \vee \ldots \vee x_{n}^{k}\right)
$$

For each $i \in\{1,2, \ldots, k\}$ there are $x^{i} \in L^{+}$and $\left(a_{n}^{i}\right) \in\left(\mathbb{R}^{+}\right)^{\mathbb{N}}$ such that $a_{n}^{i} \rightarrow 0$ in \mathbb{R} and $x_{n}^{i}=a_{n}^{i} x^{i}$ for each $n \in \mathbb{N}$. Put $a_{n}=\max \left\{a_{n}^{1}, \ldots, a_{n}^{k}\right\}$. Hence $a_{n} \rightarrow 0$ in \mathbb{R} and

$$
z_{n} \leqslant a_{n}\left(m x^{1} \vee \ldots \vee m x^{n}\right)
$$

Thus $\left(z_{n}\right) \in A_{0}$ and therefore $d^{0} \subseteq A_{0}$.

For each $X \subseteq\left(L^{+}\right)^{\mathbb{N}}$ let us clenote by X^{*} the set of all $\left(x_{n}\right) \in\left(L^{+}\right)^{\mathbb{N}}$ such that each subsequence of $\left(x_{n}\right)$ has a subsequence which belongs to X.

Let A_{1} be the set of all $\left(x_{n}\right) \in\left(L^{+}\right)^{N}$ which have the following property: there exist $0 \leqslant x \in L$ and $m \in \mathbb{N}$ such that $x_{n} \leqslant \frac{1}{n} x$ for each $n \geqslant m$.

Another constructive characterization of d^{0} is given by the following lemma.
2.8. Lemma. $d^{0}=A_{1}^{*}$.

Proof. Since $A_{1} \subseteq A_{0}$, we clearly have $A_{1}^{*} \subseteq d^{0}$. Let $\left(x_{n}\right) \in d^{0}$. In view of 2.7 there are $x \in L^{+}$and $\left(a_{n}\right) \in\left(\mathbb{R}^{+}\right)^{\mathbb{N}}$ such that $x_{n}=a_{n} x$ for each $n \in \mathbb{N}$. Let $\left(y_{n}\right)$ be a subsequence of $\left(x_{n}\right)$ and let $\left(b_{n}\right)$ be the corresponding subsequence of $\left(a_{n}\right)$; hence $y_{n}=b_{n} x$ for each $n \in \mathbb{N}$. There exists a subsequence $\left(c_{n}\right)$ of $\left(b_{n}\right)$ such that $c_{n} \leqslant \frac{1}{n}$ for each $n \in \mathbb{N}$. Put $z_{n}=c_{n} x$ for each $n \in \mathbb{N}$. Then $\left(c_{n} x\right)$ is a subsequence of $\left(y_{n}\right)$ and $\left(c_{n} x\right) \in A_{1}$. Hence $\left(x_{n}\right) \in A_{1}^{*}$ and thus $d^{0} \subseteq A_{1}^{*}$.
2.9. Proposition. There exists an archimedean vector lattice L such that 0 -Conv L has no greatest element.

Proof. It suffices to apply an analogous example as in [3], Section 5 (with the distinction that the real functions under consideration in the example are not assumed to be integer valued).
2.10. Theorem. Let L be an archimedean vector lattice. Suppose that L is ($\aleph_{0}, 2$)-distributive. Then 0 -Conv L possesses a greatest element.

Proof. This is a consequence of 2.6 and of the fact that $0-\operatorname{Conv}_{g} L$ has a greatest element (cf. [12]).

Lemma 1.10 and Lemma 2.6 yield that each interval of the partialiy ordered set 0 -Conv L is, at the same time, an interval of $0-$ Conv $_{g} L$. Hence in view of [5], Theorem 2.5 we obtain:
2.11. Proposition. Each interval of 0-Conv L is a Brouwerian lattice.

3. The sets of the form $\alpha \cup A_{0}$

Let $\emptyset \neq \alpha \subseteq\left(L^{+}\right)^{\mathbb{N}}$ be such that α is regular with respect to $G(L)$. We shall investigate the problem whether the set $\alpha \cup A_{0}$ is regular with respect to L.

First we shall deal with the case when L is a projectable vector lattice. (Projectable lattice ordered groups and vector lattices were studied by several authors; cf. e.g., [2] and [16].)

For the sake of completeness we recall the following notions.

Let L be a vector lattice and $X \subseteq L$. We put

$$
X^{d}=\{y \in L:|y| \wedge|x|=0 \quad \text { for each } x \in X\}
$$

Then X^{d} is said to be a polar of L. The vector lattice L is called projectable if for each $x \in L$, the set $\{x\}^{d}$ is a direct factor of L.

An element $e \in L$ is called a strong unit of L if for each $x \in L$ there is $n \in \mathbb{N}$ such that $x \leqslant n e$.
Since each strong unit of an archimedean vector lattice L_{1} is, at the same time, a strong unit of the Dedekind completion of L_{1}, we have
3.1. Proposition. (Cf., e.g., [19], Theorem V.3.1.) Let L_{1} be an archimedean vector lattice having a strong unit. Then there is a set I such that there exists an isomorphism of L_{1} into the vector lattice $\prod_{i \in I} R_{i}$, where $R_{i}=\mathbb{R}$ for each $i \in I$.
3.2. Lemma. Let $\alpha \in \operatorname{Conv}_{g} L$. Then the following conditions are equivalent:
(i) The set $\alpha \cup A_{0}$ fails to be regular with respect to $G(L)$
(ii) There are $t, z \in L$ and $\left(z_{n}\right) \in \alpha$ such that $0<z \leqslant t$ and

$$
z=z_{n} \vee\left(z \wedge \frac{1}{n} t\right) \quad \text { for each } n \in \mathbb{N} .
$$

Proof. According to 2.1, (ii) \Rightarrow (i). Suppose that (i) is valid. Thus in view of 2.7 and 2.8 , the set $\alpha \cup A_{1}$ fails to be regular with respect to $G(L)$. Hence the condition (ii) from 2.1 holds, where $A=\alpha \cup A_{1}$.

If $\left(x_{n}^{1}\right), \ldots,\left(x_{n}^{k}\right) \in \alpha$, then α would not be regular with respect to $G(L)$, which is a contradiction. If $\left(x_{n}^{1}\right), \ldots,\left(x_{n}^{k}\right) \in A_{1}$, then we obtain a contradiction with respect to 2.2 . Hence without loss of generality we can suppose that there is $k(1) \in \mathbb{N}$ with $1<k(1)<k$ such that

$$
\left(x_{n}^{1}\right), \ldots,\left(x_{n}^{k(1)}\right) \in \alpha \quad \text { and }\left(x_{n}^{k(1)+1}\right), \ldots,\left(x_{n}^{k}\right) \in A_{1}
$$

Put $z_{n}=m\left(x_{n}^{1} \vee \ldots \vee x_{n}^{k(1)}\right)$ for each $n \in \mathbb{N}$. Then $\left(z_{n}\right) \in \alpha$.
For each $j \in\{k(1)+1, \ldots, k\}$ there are $0<y^{j} \in L$ and $\left(a_{n}^{j}\right) \in\left(\mathbb{R}^{+}\right)^{\mathbb{N}}$ such that $a_{n}^{j} \rightarrow 0$ in \mathbb{R} and $y_{n}^{j}=a_{n}^{j} y^{j}$ for each $n \in \mathbb{N}$. Denote

$$
a_{n}=\max \left\{a_{n}^{k(1)+1}, \ldots, a_{n}^{k}\right\}, \quad t=y^{k(1)+1} \vee \ldots \vee y^{k}
$$

There is a subsequence $(n(1))$ of the sequence (n) such that

$$
m a_{n(1)}<\frac{1}{n} \quad \text { for each } n \in \mathbb{N}
$$

Hence we have

$$
m\left(x_{n(1)}^{k(1)+1} \vee \ldots \vee x_{n(1)}^{k}\right) \leqslant \frac{1}{n} t \quad \text { for each } n \in \mathbb{N}
$$

Therefore

$$
0<z \leqslant z_{n(1)} \vee \frac{1}{n} t \text { for each } n \in \mathbb{N} \text {. }
$$

Becuase $\left(z_{n(1)}\right) \in \alpha$, it suffices to write z_{n} instead of $z_{n(1)}$. Thus

$$
\begin{equation*}
z=z \wedge\left(z_{n} \vee \frac{1}{n} t\right)=\left(z \wedge z_{n}\right) \vee\left(z \wedge \frac{1}{n} t\right) \text { for each } n \in \mathbb{N} \tag{1}
\end{equation*}
$$

If $z \wedge t=0$, then $z \wedge \frac{1}{n} t=0$ for each $n \in \mathbb{N}$, whence $z \leqslant z_{n}$ for each $n \in \mathbb{N}$ and thus α fails to be regular, which is a contradiction. Therefore $z \wedge t>0$ and then, without loss of generality, we can take $z \wedge t$ instead of z; hence we have $z \leqslant t$. Next, $\left(z \wedge z_{n}\right) \in \alpha$, thus without loss of generality we can take $\left(z \wedge z_{n}\right)$ instead of $\left(z_{n}\right)$. Hence in view of (1) we infer that (ii) is valid.
3.3. Proposition. Assume that L is projectable. Let $\alpha \in 0-$ Conv $_{g} L$. Then $\alpha \cup A_{0}$ is regular with respect to L.

Proof. In view of 2.7 it suffices to verify that $\alpha \cup A_{0}$ is regular with respect to $G(L)$.

By way of contradiction, suppose that $\alpha \cup A_{0}$ fails to be regular with respect to $G(L)$. Then the condition (ii) from 3.2 is valid. There exists $m \in \mathbb{N}$ such that $z \not \equiv \frac{1}{m} t$. Thus

$$
z^{0}=\left(z-\frac{1}{m} t\right)^{+}>0
$$

Let us denote by P the polar of L generated by z^{0}; i.e., $P=\left\{z^{0}\right\}^{d d}$. Since L is projectable, P is a direct factor in L. For each $g \in L$ let $g(P)$ be the component of g in P. In view of the condition (ii) of 3.2 we have

$$
\begin{equation*}
z(P)=z_{n}(P) \vee\left(z(P) \wedge \frac{1}{n} t(P)\right) \quad \text { for each } n \in \mathbb{N} \tag{2}
\end{equation*}
$$

If $z(P)=0$, then $z^{0}=z^{0}(P)=0$, which is a contradiction. Thus $z(P)>0$. Next, from $z \leqslant t$ we infer that $z(P) \leqslant t(P)$.

Let L_{1} be the convex ℓ-subgroup of $G(P)$ generated by the element $t(P)$. Then $t(P)$ is a strong unit of L_{1} and L_{1} is a linear subspace of L. Let I and φ be as in 3.2. For each $i \in I$ we have $\varphi(z(P))(i) \geqslant 0$. According to the definition of P we obtain

$$
\left(z-\frac{1}{m} t\right)^{-} \in P^{d}
$$

whence $\left(z-\frac{1}{n} t\right)(P)=z_{0}(P)$. In view of (1 $)$,

$$
\begin{equation*}
0<z^{0}=z^{0}(P)=z(P)-\frac{1}{m} t(P) \tag{3}
\end{equation*}
$$

hence the set $I_{1}=\{i \in I: \varphi(z(P))(i)>0\}$ is nonempty. Let $i \in I_{1}$ and $n>m$. According to (3),

$$
\begin{equation*}
\varphi(z(P))(i) \geqslant \frac{1}{n} \varphi(t(P))(i) \tag{4}
\end{equation*}
$$

Also, in view of (2),

$$
\begin{aligned}
\varphi(z(P))(i) & =\varphi\left(z_{n}(P)\right)(i) \vee\left(\varphi(z(P))(i) \wedge \frac{1}{n} \varphi(t(P))(i)\right) \\
& \left.=\max \left\{\varphi\left(z_{n}(P)\right)(i), \min \left\{\varphi(z(P))(i), \frac{1}{n} \varphi(t(P))(i)\right)\right\}\right\}
\end{aligned}
$$

Thus according to (4),

$$
\varphi(z(P))(i)=\max \left\{\varphi\left(z_{n}(P)(i), \frac{1}{n} \varphi(t(P))(i)\right\}\right.
$$

By applying (4) again we get

$$
\varphi(z(P))(i)=\varphi\left(z_{n}(P)\right)(i)
$$

Therefore $\varphi(z(P))(i)=\varphi\left(z_{n}(P)\right)(i)$ for each $i \in I$. Hence

$$
\begin{equation*}
0<z(P)=z_{n}(P) \text { for each } n>m \tag{5}
\end{equation*}
$$

Since $z_{n}(P) \leqslant z_{n}$ for each $n \in \mathbb{N}$ and since $\left(z_{n}\right)$ is regular with respect to L, we infer that $\left(z_{n}(P)\right)$ is regular with respect to L. Thus in view of (5) we have arrived at a contradiction.
Now let us drop the assumption that L is projectable. We denote by L^{\prime} the Dedekind completion of L. It is well-known that L^{\prime} is projectable.
3.4. Lemma. Let $\emptyset \neq \alpha \subseteq\left(L^{+}\right)^{\mathbb{N}}$. Assume that α is regular with respect to $G(L)$. Then α is regular with respect to $G\left(L^{\prime}\right)$.

Proof. By way of contradiction, assume that α fails to be regular with respect to $G\left(L^{\prime}\right)$. Then the condition (ii) from 2.1 holds (with the distinction that $z \in L^{\prime}$ and A is replaced by α). There exists $0<z_{1} \in L$ with $z_{1} \leqslant z$. But by applying 2.1 again we infer that α fails to be regular with respect to L, which is a contradiction.
3.5. Lemma. Let $\emptyset \neq \alpha \subseteq\left(L^{+}\right)^{\mathbb{N}}$. Assume that α is regular with respect to $G(L)$. Then α is regular with respect to $G(L)$.

Proof. This is an immediate consequence of 2.1.
3.6. Theorem. Let $\emptyset \neq \alpha \subseteq\left(L^{+}\right)^{\mathbb{N}}$. Assume that α is regular with respect to $G(L)$. Then $\alpha \cup A_{0}$ is regular with respect to $G(L)$ and with respect to L.

Proof. In view of $3.4, \alpha$ is regular with respect to $G\left(L^{\prime}\right)$. Because $G\left(L^{\prime}\right)$ is projectable, according to 3.3 we obtain that $\alpha \cup A_{0}$ is ragular with respect to $G\left(L^{\prime}\right)$. Thus 3.5 yields that $\alpha \cup A_{0}$ is regular with respect to $G(L)$. Now it follows from 2.7 that $\alpha \cup A_{0}$ is regular with respect to L.
3.7. Corollary. Let $\alpha \in 0-\operatorname{Conv}_{g} L$. Then $\alpha \vee d^{0}$ does exist in $0-\operatorname{Conv}_{g} L$ and in 0 -Conv L.
3.8. Proposition. The following conditions are equivalent:
(i) 0 -Conv L has the greatest element.
(ii) 0 - $\operatorname{Conv}_{g} L$ has the greatest element.

Proof. We obviously have (ii) \Rightarrow (i). Let (i) hold and let β be the greatest element of 0 -Conv L. Let $\alpha \in 0-$ Conv $_{g} L$. According to 3.7 , the element $\alpha \vee d^{0}$ does exist in 0 -Conv L. Thus $\alpha \leqslant \alpha \vee d^{0} \leqslant \beta$. Hence β is the greatest element of $0-$ Conv $_{g} L$.
3.9. Corollary. Let 0 -Conv L have the greatest element. Then 0 -Conv L is a complete lattice and 0 -Conv L is a principal dual ideal of 0 -Conv ${ }_{g} L$ generated by the element d^{0}.

Let us remark that if L_{1} is a convex ℓ-subgroup of $G(L)$, then it is a linear subspace of L.
3.10. Theorem. There exists a convex ℓ-subgroup L_{1} of $G(L)$ such that the following conditions are satisfied:
(i) Conv L_{1} is a complete lattice.
(ii) If L_{2} is a convex ℓ-subgroup of $G(L)$ such that Conv L_{2} is a complete lattice, then $L_{2} \leqslant L_{1}$.

Proof. This follows from 3.8 and from [10], Theorem 5.5.
Let L_{1} be a vector lattice. If neither the operation + nor the multiplication of elements of L_{1} by reals is taken into account, then we obtain a lattice which will be denoted by L_{1}^{0}.
3.11. Theorem. Let $L_{i}(i=1,2)$ be archimedean vector lattices. Assume that the lattices L_{1}^{0} and L_{2}^{0} are isomorphic and that Conv L_{1} possesses a greatest element. Then Conv L_{2} possesses a greatest element as well.

Proof. According to $1.10,0-\operatorname{Conv} L_{1}$ possesses a greatest element. Then in view of 3.8, 0-Conv $g_{g} L$ has a greatest element. Since L_{1}^{0} is isomorphic to L_{2}^{0}, by applying [10], Theorem 3.5 we conclude that $0-\operatorname{Conv}_{g} L_{2}$ has a greatest element as well. Now according to 3.8 and 1.10, Conv L_{2} possesses a greatest element.

4. Disjoint sequences

A sequence $\left(x_{n}\right)$ in L will be said to be disjoint (or orthogonal) if $x_{n} \wedge x_{m}=0$ whenever n and m are distinct positive integers.

The following assertion follows from the results proved in [4].
(A) Assume that L possesses a disjoint sequence all members of which are strictly positive. Then there exist infinitely many elements α_{i} of $0-\operatorname{Conv}_{g} L$ such that each α_{i} is generated by a disjoint sequence.
4.1. Lemma. (Cf. [4].) Let $\left(x_{n}\right)$ be a disjoint sequence in L. Then the set (x_{n}) is regular with respect to $G(L)$.
4.2. Lemma. Let $\left(x_{n}\right)$ be a disjoint sequence in L. Then the set $\left\{\left(x_{n}\right)\right\} \cup A_{0}$ is regular with respect to $G(L)$ and with respect to L.

Proof. This is a consequence of 4.1 and 3.6.
If $\left(x_{n}\right) \in\left(L^{+}\right)^{\mathbb{N}}$ and the set $\left\{\left(x_{n}\right)\right\}$ is regular in $G(L)$ then the least element α of 0 -Conv ${ }_{g} L$ satisfying the relation $\left\{\left(x_{n}\right)\right\} \cup A_{0} \subseteq \alpha$ will be denoted by $\alpha\left(x_{n}\right)$.

Let $\left(x_{n}\right)$ be a disjoint sequence in L such that $x_{n}>0$ for each $n \in \mathbb{N}$. Then $\left(x_{n}\right) \notin d_{0}$. On the other hand, $\left(x_{n}\right)$ can belong to d^{0} (cf. Proposition 4.6 below).
4.3. Lemma. Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be disjoint sequences in L such that $x_{n} \wedge y_{m}=0$ for each $m, n \in \mathbb{N}$. Let $y_{n}>0$ for each $n \in \mathbb{N}$ and $\left(y_{n}\right) \notin d^{0}$. Then $\left(y_{n}\right) \notin \alpha\left(x_{n}\right)$.

Proof. By way of contradiction, assume that $y_{n} \in \alpha\left(x_{n}\right)$. Then in view of [10], Lemma 2.3 there are $m, k \in \mathbb{N}$ and $\left(z_{n}^{1}\right), \ldots,\left(z_{n}^{k}\right) \in\left(L^{+}\right)^{\mathbb{N}}$ such that each $\left(z_{n}^{i}\right)$ $(i=1,2, \ldots, k)$ is a subsequence of a sequence belonging to $\left\{\left(x_{n}\right)\right\} \cup A_{0}$ and

$$
0<y_{n} \leqslant m\left(z_{n}^{1} \vee \ldots \vee z_{n}^{k}\right) \text { for each } n \in \mathbb{N}
$$

Since $\left(y_{n}\right) \notin A_{0}$, without loss of generality we can assume that $\left(z_{n}^{1}\right), \ldots,\left(z_{n}^{k-1}\right)$ are subsequences of $\left(x_{n}\right)$ and that $\left(z_{n}^{k}\right)$ is a subsequence of $\left(\frac{1}{n} x\right)$ for some $0<x \in L$. Thus

$$
0<y_{n} \leqslant\left(m z_{n}^{1} \vee \ldots \vee m z_{n}^{k-1}\right) \vee \frac{1}{n} x^{\prime} \quad \text { for each } n \in \mathbb{N}
$$

where $x^{\prime}=m x$. But $y_{n} \wedge\left(m z_{n}^{1} \vee \ldots \vee m z_{n}^{k-1}\right)=0$, whence $y_{n} \leqslant \frac{1}{n} x^{\prime}$ for each $n \in \mathbb{N}$. Since $\left(y_{n}\right) \notin d^{0}$, we have arrived at a contradiction.
4.4. Theorem. Assume that L possesses an infinite orthogonal subset. Next, suppose that no disjoint sequence $\left(x_{n}\right)$ in L with $x_{n}>0$ for each $n \in \mathbb{N}$ belongs to d^{0}. Then 0-Conv L is infinite.

Proof. In view of the assumption there are disjoint sequences $\left(x_{n}^{i}\right)(i \in \mathbb{N})$ in L such that $x_{n}^{i}>0$ for each $n, i \in \mathbb{N}$, and $x_{n}^{i} \wedge x_{m}^{j}=0$ whenever $m, n, i, j \in \mathbb{N}$ and $i \neq j$. In view of 4.2 we have $\alpha\left(x_{n}^{i}\right) \in 0-\operatorname{Conv}_{g} L$ for each $i \in \mathbb{N}$. Let i, j be distinct elements of \mathbb{N}. According to $4.3, \alpha\left(x_{n}^{i}\right) \neq \alpha\left(x_{n}^{j}\right)$.

For a relevant result concerning convergences in a lattice ordered group cf. [4].
4.5. Theorem. Assume that L possesses no infinite orthogonal subset. Then 0 -Conv L is a one-element set.

Proof. The case $L=\{0\}$ is trivial; let $L \neq\{0\}$. The system 0 -Conv ${ }_{g} L$ was described in [4], Section 6. According to [4], if $\alpha \in 0-\operatorname{Conv}_{g} L$ and $\left(\frac{1}{n} x\right) \in \alpha$ for each $0<x \in L$, then α is the greatest element of $0-\operatorname{Conv}_{g} L$; hence only this greatest element of $0-\operatorname{Conv}_{g} L$ can belong to 0 -Conv L.
4.6. Proposition. Assume that L is orthogonally complete. Then each disjoint sequence in L belongs to d^{0}.

Proof. Let $\left(x_{n}\right)$ be a disjoint sequence in L. Then $\left(n x_{n}\right)$ is disjoint as well. Since L is orthogonally complete, there exists $x=\bigvee_{n \in \mathbb{N}} n x_{n}$ in L. For each $n \in \mathbb{N}$ we have $0 \leqslant x_{n} \leqslant \frac{1}{n} x$, whence $\left(x_{n}\right) \in d^{0}$.
4.7. Corollary. The assertion (A) does not hold in general if 0 -Conv ${ }_{g} L$ is replaced by 0 -Conv L.
4.8. Proposition. Assume that $L \neq\{0\}$ has a strong unit and that $\left(x_{n}\right)$ is a disjoint sequence in L such that $x_{n}>0$ for each $n \in \mathbb{N}$. Then there is a sequence (a_{n}) with $a_{n} \in \mathbb{N}$ for each $n \in \mathbb{N}$ having the property that $\left(a_{n} x_{n}\right) \notin d^{0}$.

Proof. Let e be a strong unit in L. Since L is archimedean, for each $n \in \mathbb{N}$ there is $a_{n} \in \mathbb{N}$ such that

$$
\begin{equation*}
a_{n} x_{n} \nsubseteq e . \tag{1}
\end{equation*}
$$

By way of contradiction, assume that $\left(a_{n} x_{n}\right) \in d^{0}$. Hence in view of 2.8 there is a subsequence $\left(b_{n} y_{n}\right)$ of $\left(a_{n} x_{n}\right)$ such that $\left(b_{n} y_{n}\right) \in A_{1}$. Thus there are $m \in \mathbb{N}$ and $0<x \in L$ such that $b_{n} y_{n} \leqslant \frac{1}{n} x$ for each $n \geqslant m$. Next, since e is a strong unit in L, there is $k \in \mathbb{N}$ with $x \leqslant k e$. Thus

$$
b_{n} y_{n} \leqslant \frac{k}{n} e \text { for each } n \geqslant m
$$

Hence for $n>\max \{m, k\}$ we have $b_{n} y_{n} \leqslant e$. But in view of (1) the relation $b_{n} y_{n} \nsubseteq e$ is valid for each $n \in \mathbb{N}$, which is a contradiction.
4.9. Proposition. Assume that L has a strong unit. Then (A) is valid with Conv $_{g} L$ replaced by Conv L.

Proof. This is a consequence of 4.3 and 4.8 .

5. Direct sums of linearly ordered vector lattices

Let us denote by \mathcal{S} the class of all archimedean vector lattices which can be expressed as the direct sum of linearly ordered vector lattices. Next, let \mathcal{L} be the class of all linearly ordered vector lattices.

In this section it will be shown that if $L \in \mathcal{S}$, then 0 -Conv L is a complete lattice which has no atom.

The case $L=\{0\}$ being trivial, we assume in the present section that L is a nonzero archimedean vector lattice which can be represented as
(1) $L=\sum_{i \in I} L_{i}, \quad$ where $L_{i} \in \mathcal{L}$ for each $i \in I$.

Also, without loss of generality we can suppose that $L_{i} \neq\{0\}$ for each $i \in I$.
5.1. Proposition. 0 -Conv L is a complete lattice.

Proof. From (1) it follows that L is completely distributive. Hence in view of $2.10,0$-Conv L possesses a greatest element. Thus 0 -Conv L is a complete lattice.
5.2. Lemma. Let $\left(x_{n}\right)$ be a disjoint sequence in L such that $x_{n}>0$ for each $n \in \mathbb{N}$. Then $\left(x_{n}\right)$ is not upper-bounded in L.

Proof. This is an immediate consequence of (1).
In view of 5.2 and 2.8 we obtain
5.3. Corollary. Let $\left(x_{n}\right)$ be as in 5.2. Then $\left(x_{n}\right)$ does not belong to d^{0}.
5.4. Proposition. Let I be finite. Then 0 -Conv L is a one-element set.

Proof. From (1) we infer that L has no infinite orthogonal subset. Hence in view of 4.5, 0 -Conv L is a one-element set.

5.5. Proposition. Let I be infinite. Then 0 -Conv L is infinite.

Proof. According to (1), L possesses an infinite orthogonal subset. Then 4.4 and 5.3 yield that 0 -Conv L is infinite.
5.6. Lemma. Let $\alpha \in 0$-Conv L. Assume that $\left(x_{n}\right) \equiv \alpha, x_{n}>0$ for each $n \in \mathbb{N}$, and that the sequence $\left(x_{n}\right)$ is disjoint. Then α fails to be an atom of 0 -Conv L.

Proof. Consider the sequences $\left(x_{2 n}\right)$ and $\left(x_{2 n+1}\right)$. In view of 5.3, $\left(x_{2 n}\right) \notin d^{0}$ and $\left(x_{2 n+1}\right) \notin d^{0}$. Hence by applying the notation from Section 4 we have

$$
d^{0}<\alpha\left(x_{2 n}\right) \leqslant \alpha, \quad d^{0}<\alpha\left(x_{2 n+1}\right) \leqslant \alpha .
$$

Next, according to 4.3, $\alpha\left(x_{2 n}\right) \neq \alpha\left(x_{2 n+1}\right)$. Hence α cannot be an atom of 0-Conv L.

For $x \in L$ and $i \in I$, let $x(i)$ be the component of x in L_{i}. We put $\operatorname{Sup} x=\{i \in I$: $x(i) \neq 0\}$. If $\left(x_{n}\right)$ is a sequence in L, then we denote

$$
\operatorname{Sup}\left(x_{n}\right)=\bigcup_{n \in \mathbb{N}} \operatorname{Sup} x_{n}
$$

5.7. Lemma. Let $\left(x_{n}\right) \in\left(L^{+}\right)^{\mathbb{N}}$ be such that $\left\{\left(x_{n}\right)\right\}$ is regular and suppose that $\operatorname{Sup}\left(x_{n}\right)$ if finite. Then $\alpha\left(x_{n}\right)=d^{0}$.

Proof. In view of the assumption there is a finite subset $I(1)$ of I such that $x_{n} \in L(1)=\sum_{i \in I(1)} L_{i}$ for each $n \in \mathbb{N}$. Then according to $4.5,\left(x_{n}\right)$ belongs to the least element of 0 -Conv $L(1)$. Next, in view of $2.8,\left(x_{n}\right)$ belongs to d^{0}. Hence $\alpha\left(x_{n}\right)=d^{0}$.
5.8. Lemma. Let $\left(x_{n}\right) \in\left(L^{+}\right)^{\mathbb{N}}$ be such that $\left\{\left(x_{n}\right)\right\}$ is regular and suppose that $\operatorname{Sup}\left(x_{n}\right)$ is infinite. Then $\alpha\left(x_{n}\right)$ contains a disjoint sequence with strictly positive elements.

Proof. Since $\operatorname{Sup}\left(x_{n}\right)$ is infinite and (1) holds, there is a subsequence $\left(y_{n}\right)$ of (x_{n}) such that for each $n \in \mathbb{N}, \operatorname{Sup} y_{n}$ is not a subset of the set

$$
\operatorname{Sup} y_{1} \cup \ldots \cup \operatorname{Sup} y_{n-1}
$$

Therefore the sequence $\left(y_{n}\right)$ is disjoint and belongs to $\alpha\left(x_{n}\right)$.
5.9. Theorem. Let $L \in \mathcal{S}$. Then 0 -Conv L has no atom.

Proof. By way of contradiction, assume that, α is an atom of 0 -Conv L. Then there is $\left(x_{n}\right) \in\left(L^{+}\right)^{\mathbb{N}}$ such that $\alpha=\alpha\left(x_{n}\right)$. If $\operatorname{Sup}\left(x_{n}\right)$ is finite, then 5.7 yields a contradiction. If $\operatorname{Sup}\left(x_{n}\right)$ is infinite, then by means of 5.8 and 5.6 we arrive at a contradiction.

References

[1] G. Birkhoff : Lattice Theory. Third edition, Providence, 1967
2] P. Conrad: Lattice Ordered Groups. Tulane University, 1970
[3] M. Harminc: Sequential convergences on abelian lattice ordered groups. Convergence Structures, Proc. Conf. Bechyně 1984, Mathematical Research 24 (1985), 153-158.
4] M. Harminc: The cardinality of the system of all sequential convergences on an abelian lattice ordered group. Czechoslovak Math. J. 37 (1987), 533-546.
[5] M. Harminc: Sequential convergences on lattice ordered groups. Czechoslovak Math. J. 39 (1989), 232-238.
[6] M. Harminc, J. Jakubik: Maximal convergences and minimal proper convergences in ℓ-groups. Czechoslovak Math. J. 39 (1989), 631-640.
[7] J. Jakubik: Convergences and complete distributivity of lattice ordered groups. Math. Slovaca 38 (1988), 269-272.
[8] J. Jakubik: On summability in convergence ℓ-groups. Časopis Pěst. Mat. 113 (1988), 286-292.
[9] J. Jakubik: On some types of kernels of a convergence ℓ-group. Czechoslovak Math. J. 39 (1989), 239-247.
[10] J. Jakubik: Lattice ordered groups having a largest convergence. Czechoslovak Math. J. 39 (1989), 717-729.
[11] J. Jakubik: Sequential convergences in Boolean algebras. Czechoslovak Math. J. 38 (1988), 520-530.
[12] J. Jakubik: Convergences and higher degrees of distributivity in lattice ordered groups and Boolean algebras. Czechoslovak Math. J. 40 (1990), 453-458.
[13] L. V. Kantorovich, B. Z. Vulikh, A. G. Pinsker: Functional Analysis in Semiordered Spaccs. Moskva, 1950. (In Russian.)
[14] S. Leader: Sequential convergence in lattice groups. In: Problems in analysis, Sympos. in Honor of S. Bochner. Princeton Univ. Press, 1970, pp. 273-290.
[15] L. A. L'usternik, V. I. Sobolev: Elements of Functional Analysis. Moskva, 1951. (In Russian.)
[16] W. A. J. Luxemburg, A. C. Zaanen: Riesz Spaces, Vol. 1. Amsterdam-London, 1971.
[17] P. Mikusiński: Problems posed at the conference. Proc. Conf. on Convergence, Szczyrk 1979. Katowice 1980, pp. 110-112.
[18] J. Novák: On convergence groups. Czechoslovak Math. J. 20 (1970), 357-374.
[19] B. Z. Vulikh: Introduction to the Theory of Semiordered Spaces. Moskva, 1961. (In Russian.)

Author's address: Ján Jakubik, Matematický ústav SAV, Grešákova 6, 04001 Košice, Slovakia, e-mail: musavke@linuxi.saske.sk.

