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FREE COMPACT ABELIAN GROUPS

SIDNEY A. MORRIS, Sydney, Australia
§1. INTRODUCTION

In this paper we give a construction of free compact abelian groups. The
method is similar to that used by Gelbaum [1] to prove the existence of free
topological groups. However, in Gelbaum’s case the group obtained may
have to be retopologized whilst this is not necessary in our case.

We show that the subgroup ¢/ of the free compact abelian group on a to-
pological space X generated algebraically by X is the free abelian group on X.
From this we deduce the existence of free abelian topological groups.

The theory of varieties of topological groups was introduced and developed
in [5], [6], [7] and [8]. We show here that the group G mentioned above is the
free topological group of the variety generated by the circle group. Conse-
quently G is not a free abelian topological group.

It was shown in [4] that C(X), as a semigroup, characterizes X within
the class of compact Hausdorff spaces. We investigate the following question:
does there exist an abelian topological group H such that the group of conti-
nuous mappings of X into H characterizes X within the class of compact
Hausdorff spaces? We show that the answer is in the negative.

By the term “group,, we will mean “‘abelian,, group. We will denote the multi-
plicative group of complex numbers of modulus one (the circle group) with
the usual topology by 7. The cartesian product group of a set {G):y eI’}
of topological groups with the usual product topology will be denoted by [ | G.

yel’
Finally note that we write all groups multiplicatively.

§2. PRELIMINARIES

Definition. 4 non-empty class V of topological groups is said to be a variety
of topological groups if it has the properties:
(a) if G is a subgroup of the product group | [ @y, where I'is any index set and

yel’
Gyisin V for ye T, then G isin V,
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(b) if H is a quotient group of any G in V, then H isin V.

Clearly a variety of topological groups determines a variety of groups [9];
the latter is simply the class of groups which with some topology appears in the
former. (This 1s indeed a variety of groups by 15.51 of [9].)

Definition. Let ¢ be any topological group and V(G) be the intersection of all
varieties of topological groups containing (. Then V(&) is said to be the topological
varvety generated by G. (C(learly this is indeed a variety of topological groups.)

Definition. Let F be in the variety V of topological groups. Then F is said to
be a free group of V on the space X, denoted by F(X, V), tf it has the properties

(a) X s a subspace of F,

(b) X generates F algebraically,

(¢) for any continuous mapping ¢ of X into any H in V., there caists a continu-
ous homomorphism ® of F into H such that & = ¢ on X.

In the particular case that V is the variety of all topological groups. F(.X, V)
is called the free topological group on X.

Definition. Let X be any Hausdorff topological space. Then the compact
Hausdorff group I is said to be a free compact group on X if there exists a conti-
nuous mapping w of X into ¥ such that,

(i) the subgroup of F generated algebraically by w(X) is dense in F(X), and

(ii) if ¢ s any continuous mapping of X into any compact group G, there
exists a continuous homomorphism @ of I into G such that du .

For a given topological space .X, the uniqueness of the free topological
and free compact groups on X can be deduced from the proof of Theorem 8.9
of [3].

Lemma 2.1. Let G be a locally compact Hausdorff group and I its dual group.
If A is a subgroup of H which separates points of (!, then A s dense in H.
(c f.) 23.20 of [3])

Proof. Suppose A is not dense in H. Let I3 be the closure of A. Then /I B
is a non-trivial locally compact Hausdorff group. By §1.5.2 of [10]. there
exists a non-trivial continuous homomorphism @ of H/B into 7.

Define the mapping & of H into 7' by &(y) — @(By) for all y in I1. Then &
is a continuous homomorphism of [ into 7" which is not identically one but
is one on B. By the Pontryagin Duality theorem ([10]) there exists an @ —* 1
such that &(y) = y(z) for all y in 1. Then y(x) = 1 for all y in 4. This implies
x — 1. since 4 separates points of (7. This is a contradiction and thus A is
dense in I7.
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§3. FREE COMPACT GROUPS

Let X be a Hausdorff topological space and /(X)) the group of all continuous
mappings of X into 7' where the product of elements f and g of /'(X) is defined
by (fg) (@)  f(x)g (=) forall zin X. Put the discrete topology on I'(X) and let F
(X) be its dual group. We will show that /'(X) is the free compact group of .X.

Lemma 3.1. The mapping w of X into F(X) gwen by w(x) = yz, v € X,
where yi(f)  flx) for all fin I'(X) is continuous. Further v is « homeomorphism
of X onto w(X) if and only if X is a completely regular space.

Proof. Clearly, by Theorem 1.2.6 of [10], u is continuous. Obviously
if # is a homeomorphism of X onto u(X), then X is completely regular.

Let X be completely regular. Then for any pair of distinct points « and y
in .\, there is an fin I'(XX) such that f(x) + f(y). Thus « is one to one. Let @
be any open set in X and vy, be any point in «(0). Since X is completely regular,
there is a ¢ in ['(X) such that g(¢) + —1 and {x:g¢g(z) + —1} = 0. But
{y 1y e F(X), v(g) = —1} is open in F(X). Thus {ys: yz(g9) £ —1} is an open
neighbourhood of y4 in #(X), and is contained in «(0). Hence u is a homeo-
morphism of X onto u(X).

Lemma 3.2. Let ¢ be a continuous mapping of a Hausdorff space X1 tnto
a Hausdorff spuce Xso. Then there exists a continuous homomorphism @ of F(X,)
into F(Xo) such that the diagram below commules.

D
0 0
N Uz
|
X — - X
@

Proof. Define &: F(X;) > F(X2) by D(y) =&, ye F(X,), where &(f) —

»(fe) for all fin I'(X3). Clearly & is in F'(X>) and it can easily be verified that
@ is a continuous homomorphism and that the diagram commutes.

Lemma 3.3. If X is a compact Hausdorff group, then there exists an open
continuous homomorphisn. 8 of F(X) onto X such that §(u(x)) = « for all x in X.

Proof. Let I" be the dual group of X. Then I"is a topological subgroup
of I'(X). By Lemma 24.5 of [3], the map O of F(X) onto the dual group H of /',
defined by O(y) —y | I, y e F(X), is an open continuous homomorphism.
By the Pontryagin duality theorem, the mapping «, defined by a(x) — 74 | 11
for all » in X, is a topological isomorphism of X onto H.
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Define 0 : F(X) > X by 6(y) = «71(O(p)), y € F(X). Clearly & is an open
continuous homomorphism of F(X) onto X. Let 6(yz) = y. Then a=1(O(y,))=y;
that is O(yz)f = f(y) for all f in I". Thus f(x) = f(y) for all f in I". This implies
x = y. Thus d(u(x)) = « for all z in X.

Theorem 3.4. For any Hausdorff space X, F(X) i< the freec compact group on X.

Proof. Clearly F{X) is a con:pact group. Let 4 be the subgroup ot F{X)
generated algebraically by u(X). Then u(X), and therefore A, separate points
of I'(X). Thus, by Lemma 2.1, 4 is dense in F(X).

Let y be any continuous mapping of X into any compact Hausdorff group X;.
By Lemma 3.2, there exists a continuous homomorphism @ of F(X) into F(X,)
such that the diagram below commutes.

. D
FX) ———— F(Xy)
0 0
u ' uL
X X1
,‘/) ’

Lemma 3.3 implies that there is a continuous homomorphism 6 of F(X;)
onto X such that d(ui(x)) = x for all zin X;. Define ¥ : F(X) - X1 by P(y) =
= §(D(y)) for all y in F(X). Clearly ¥ is a continuous homomorphism and

Corollary 3.5. The Hausdorff space X is a subspace of its free compact group
iof and only if it is completely regular.

Corollary 3.6. Every compact Hausdorff group is a quotient group of its free
compact group.
Proof. In view of Theorem 3.4, this is just a restatement of Lemma 3.3

§4. CONSEQUENCES

Theorem 4.1. The subgroup A of F(X) algebraically generated by w(X) is
(algebraically) a free group on u(X).

Proof. Suppose a = wu(xi)é: ... u(xp)™ == 1€ A, where wu(x;) + u(x;) for
t % j and ¢ is a non-zero integer for each i. Let O be an open set in «(X)
which contains u(z1) but not u(x;) for ¢ # 1. Since »(X) is completely regular,
there exists a continuous map @ of u(X) into {z:z=¢t, 0 <t <1} =T
such that @(y) = 1 for all y not in O and O(u(x;)) = e.

144



It ¢ Ou. Then ¢ is a continuous mapping of X into 7'. Therefore there
exists a continuous homomorphism @ of F(X) into 7 such that ®u  ¢.

Then @(a) e % 1. This is clearly a contradiction and the theorem is
proved.

Corollary 4.2. Let X be a completely reqular Hausdor[f space. Then the free
lopological group on X exists and is Hausdorff.

Proof. By comments in §2 of [2] it is sufficient to prove that there exists
some ilausdorff group topology on the free group on X, which indices the given
topology on X.

Lemma 3.1 implies X is a subspace of F(X) and Theorem 4.1 implies that
the subgroup of £(X) generated algebraically by X is the free group on X.
The proof is complete.

Remark 4.3. We are led to ask: If X is a completely regular Hausdorff
space, is the subgroup 4 of F(X) algebraically generated by X (actually u(X))
the free topological group on X? If this is not true in general is it true for
some X 2 We will show in Theorem 4.4 that the answer to each of the questions
is in the negative.

Theorem 4.4. If X is a completely regular Hausdorff space, then the subgroup A
of F(X), algebraically generated by X, is the free group F(X, V(T')) on X of the

topological variety V(T) generated by T'. Consequently A is not the free topological
group on X. o

Proof. Theorem 5.4 of [7] shows that F(X) is in V(T'). Therefore A4 is
in V(T). Thus by Theorem 2.6 of [5], F'(X, V(T)) exists. Clearly F(X, V((T))
is algebraically isomorphic to 4 and has a finer topology than 4. Consequently
F(X, V(T)) is Hausdorff which implies by Lemma 5.3 of [7] that it can be
imbedded in a compact Hausdorff group H.

Let ¢ be the identity mapping: X(< F(X)) > X(< F[X, V(T)]). Then ¢
is a continuous mapping of X into H. Theorem 3.4 implies that there exists
a continuous homomorphism @ of F(X) into H such that ® X  ¢. The
map D | 4 is a continuous algebraic isomorphism of 4 onto F(X, V(T')). There-
fore A has a finer topology than F(X, V(T)). Hence A is topologically iso-
morphic to F(X, V(T)). B

The final remark in the theorem now follows immediately from Theorem 7.28
of [8].

Corollary 4.5. The topological variety V(T) is a p-variety ([6]).
Proof. This statement is equivalent to the fact that F(X, V(7)) exists
and is Hausdorff, which is proved in Theorem 4.4.

The following theorem which appears in [1] is an immediate consequence
of Theorem 3.4.
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Theorem 4.6. Let X be a completely reqular Hausdorff space. Then F(X)
is the Bohr compactification of the free topological group on X.

We point out that Theorem 3.4 could have been proved using Theorem 4.6.
Whilst this proof would have been shorter in the case that X is completely
regular, the proof in the more general case would not.

§5. CHARACTERIZATION OF TOPOLOGICAL SPACES

In this section all topological spaces considered will be Hausdorff. A. N.
Milgram [4] showed that if X and Y are compact spaces such that C(X)
and C(Y) are isomorphic semigroups then X and Y are homeomorphic.
We are therefore led to ask the question: does I'(X) characterize X within
the class of compact spaces? The following theorem, together with results
in [2] shows that the answer is in the negative.

Theorem 5.1. Let X and Y be topological spaces with topologically iso-
morphic free topological groups. Then their free compact groups are topologi-
cally isomorphic. Further, I'(X) and I'(Y) are isomorphic.

Proof. This is an immediate consequence of Theorem 4.6 and the Pontryagin
duality theorem.

We point out that it is shown in [2] that there do exist non-homeomorphic
compact spaces with topologically isomorphic free topological groups.

Let G be any topological group and X any topological space. Define I'(G, X)
to be the group of all continuous mappings of X into @ with the obvious group
structure.

We are led to ask the question: does there exist a topological group G such
that I'(G, X) characterizes X within the class of compact spaces? The following
theorem shows that the answer is again in the negative.

Theorem 5.2. Let X and Y be topological spaces with topologically isomor phic
free topological groups. Then for any topological group G, I'(Q, X) is isomorphic
to I'(G, Y).

Proof. Let F be the free topological group on X. Then for any continuous
mapping ¢ of X into @, there is a unique continuous homomorphism @ of F
into ¢ such that ®u = ¢. Thus there is a one-one correspondence ¢ <> @
between continuous mappings of X into ¢ and continuous homomorphisms
of F into @. In fact this gives an algebraic isomorphism between ['(.X) and
the group of continuous homomorphisms of F into . Thus F determines I'(.Y).
From this the result immediately follows.
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