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Matematicky €asopis 22 (1972), No. 2

MIXTURE SETS AND CONVEX SETS

ANDREJ PAZMAN, Bratislava

In [1, 2] the concept of a mixture set was introduced and used for statistical
purposes. Mixture sets keep those properties of convex sets in lincar spaces
which are important for ,statistical mixing” of elements. The aim of this
paper is to show more exactly the rclation between mixture sets and convex
sets.

Definition. A mixture set (R, @) is a set B + & and an operation D,(ry. r2)
assoctating an element of I with each o € 70, 1> and each ordered pair (ry, r2) €
€ R X R such that if o, € <0,1 and r1, r3 € R then

M1: @y(r1, 12) — D1 (r2. 71),
M2: @y(r, 72) 11,
M3: @y [Dps(r1, 12), 2] = Dap(r1, 72).

Lemma 1. [2] In a mixture set (R, @) for each ri,r2€ 1, . B. 7€ 0.1
we have

(l) (I)Q(Tl. 7‘1) — 71,
(2) D [Dp(r1, 12), Dy(r1, 12)] = Pagi ap(r1, 72).

Proof. FFrom MI and M2 we obtain
rn— Di(r1, 1) Do(r1, 1),
and from M3
11— Dao(r1, 11) = P+ [Do(r1. 1), 71] — Dalr1, 71)-

If y — 0 or g — 0, then (2) follows directly from M3. Hence let us suppose
that 0 < g =y (If 0 <<y = B, the proof is similar.) Using M3 we obtain
Dp(r1, r2) Dy o[ DPy(r1, 12). 73]

and hence from M2 and M3
Da[P (11, 12), Py(rs, 12)] = PP pilrz, Py(ry, 12)], Py(r1. 12)}

= Dva gy [r2. Py(r, r2)] — D1 o g Py(r1, 72), 72]
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= Dagr ayp(rL, 12).

Iivery convex subset of any linear space (a covex set) is a mixture set
if we take @,(r1, r2) = ar; + (1 — «)ra. The reverse of this statement is not
always true as it is shown in the examples which follow later.

Definition. Two miature sets (R, @) and (S, V) are isomorphic if there is
« one-to-one map = mapping R onto S such that a[®@y(r1, r2)]  Vila(ry), @(r2)].

Lemma 2. Let (R, @) be a mixture set isomorphic to a convex set. If o, fi €
€ 0,1 and ry, re, r3€ R, then

(3) (2 = B)V (rn=r2) <= Dufr, r2)  Dg(ry, 12)
and
Mi: e+ =sDA<DHAB<] =

Di[ri. P w(r2, 13)]  Dglr2, Paya py(r1, 13)]-

Proof.

1. (pu\(fl, 7‘2) = @5(1'1, 1‘2)© OC?[(’I‘l) —-|- (1 — Ot):'t(?‘z) —
— pa(r) + (1 — f)a(rz) < (« — P)a(r) =
(@ — p)a(re) < (x = B) V (a(r1) — a(r2)).

2. Dofry, Ppja wy(rz, 13)] —
aMHoa(r) + (1 B/(L — a)a(rz) + (1 — /(1 — o))a(ra)]}
a Ypa(ra) + (1 — B)(a/(1 — B))a(ry) + (1 — o/ (1 — B))z(rs)]}
- Dp [r2, Paja-p(r, r3)].
Definition. A mixture set (R, @) is a topological mixture set if R is a Hausdorf
space and D, (r1, r2) is continuous with respect to the product topology on <0, 1 > X
I x I
Example 1. Let us put B — {—1} U <0, 1> a set of real numbers. Let us
define @y(r1, r2)  orp -+ (1 — o)raif r1,72€ <0, 1> and ae {0, 1>; Dy( 1,7)
@,(0,7r) if xe 0,1) and r = —1; Py(—1,7) = —1if « 1 orr 1;
Do(r, —1) = D1 o(—1, r) for «€<0,1>. (R, ®) is a mixture set where M+
is valid, but @1 1, 1) — @12(0. 1), hence (R, @) is not (isomorphic to)

a convex set.
Example 2. (I, 0) is a metric space with the metric o such that for every

r1, r2 € R and every o € {0, 1> a unique solution » of the equations
(4) ol 7) (1 — @)olri. 7o),
o(rz2, ) = ag(r1, r2)

does exist. We define @,(r1. r2) = r. (R, @), is a mixture set. M1 and M2
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are evident and we shall prove only M3. Denote r3 = @q(r1, 12), ra  DPp(rs, 72).
From (4) and the properties of a metric we obtain

9(7'4, /"2) = /39(7'3’ 7’2) = “ﬁ@(rl) 72):

o(re, 11) Z o(r1, 72) — o(ra, 72) = (1 — af)o(r1, 72),

and
o(ra, 11) = o(ra, r3) + 0(r3, 1) = (L — Blo(rz, 73) + (1 — a)o(r1, r2) =

= (1 — apo(r1, 12),
hence ry = Dyp(r1, 12).

As a special case let us consider a subset R of the unit sphere in the 3-dimen-

sional Euclidean space with the metric o(r1, 72) equal to the arc length between
r1 and 7z, measured on the great circle through »; and r2. We take B - {r : »
— (@, 9), p € (0, 7/2>, 9 € 0, 7/2)}, where ¢, ? are usual spherical coordinates.
(R, @) is a topological (metric) mixture set, but it is not (isomorphic to)
a convex set since M4 is not valid. To show that, it is sufficient to take r; —
- ((pl = 0, l?]_ == :’t/2), T9 — ((pz == .TE/2, 7_92 = 7Z/2), rg —= (q93, '(93 - 0). If we
denote r4 = Dy [11, Ppr1-a) (72, r3)] and 75 = Dg [r2, Pyya p(r1, r3)], We obtain
by elementary computations

cos® 91 = [1 — (3 — sin? (1 — a)/4)2]/[1 + tg? (B/2(1 — )],
cos? B5 = [1 — (3 — sin? (1 — B)/4)2)/[L + tg? (aa/2(1 — A))].

If « = 4/7and f = 1/7 then a + f <1, tg?[fz/2(1 — a)] = tg®x/6 — 1/3,
tg? [an/2(1 — B)] = tg2 w/3=3, (1l — a)/4 = 3/28, (1 — B)/4 = 3/14. Therefore
cos? ¥y = [1 — (1 — sin? (37/28))2] 3/4 > [1— (1/2)2]3/4 > [1 — (} — 1)21/4 >
> [1 — 1 — sin? (37/14))2]1/4 = cos? Os.

Thus r4 + 75 anddMal is not true.

Lemma 3. In a topological mixture set (R, D) the equivalence (3) is valid.
. Proof. The right-hand side of (3) follows directly from the left-hand side
using (1).

Suppose now that a1 #fzxz (say o < o), 71 F rpand Dy (r1, r2) = Dy, (11, 12) —
=r. If ax <1, we denote 4 = (a2 — 1)/(l — «;). Evidently 4 € (0, 1) and
ag = (1 — Aoy -+ A. We define ap = (1 — A)ap—1 + 4 for n = 3,4, ... Then
lim (1 — ap) = (1 — oa) lim (1 — A4)»~1 = 0, hence lim oy, = 1. If @y (r1, 72) —
noo GOETASY. | n>o o
—=r for ¢ =12,...,n—1, then, according to (2),

Dy, (11, r2) = Par+-ayo,_, (11, 12) = Da[r1, Do _ (11, 72)] =

= Py[r1, Do, ,(r1, 12)] == Do, _ (11, 12) = 7.



Thus @y (r1, r2) = r for n = 1, 2, ..., and from the continuity of @ we obtain

1 Ql(rl, 72) = lim ®O(”(rly 7‘2) = 7.
N—>00

Since P—a,)(r2, 1) = D1-ay(72, 71), We repeat the proof putting a; =
1 —oy<1— o3 =ay, and obtain r = lim @y (r2, r1) = Dy(r2, 1) = 2.

Nn—->0

Hence 7, = r = r2, which contradicts the assumption that r; =+ 7.

Lemma 4. Let (R, ®) be a topological mixture set with the property M4.
If ri,r3,13€e R and 0 <o < B <1, then Dy(ra, r1) = Dp(rs, r1) = Ay €

€ (0, 13)(r3 = Dy(ra, 11)).
Proof. If r, = ry = r3, the statement is trivial and we can exclude this

case. Let
/g = sup {13’: (Hale (O: ﬂ,>) (Qa’ (7’2, 7'1) = @, (737 Tl))}'

Since @ is continuous we have @ (rs, r1) = Dy(r3, 1) for some &e (0, B.
If & 0, then r; = @,(r2, 1) = Dy(r3, 1), and according to Lemma 3 and
from > 0 we obtain r3 = r1. Hence @y(rs, 1) = DPps(rs, 1) = 71 and, since
a > 0, we have r2 = r1. Thus & € (0, 3). Suppose first that § < 1. The numbers
0 a1 —pB))1 —apf)and e = B(1 — a)/(1 — a&f) are such that e, d€ (0, 1),
& 60/(1 — &) and f = ¢/(1 — d). From (2) and M4 it follows

D5 syoy1 o(rz2, 1) = DPo[r2, Doy o(r2, 11)] = Do[r2, Peya-s(rs, r1)] =
De[rs, Doy g(r2, 11)] == Pers, Pey1-0)(r3, 11)] = Pesi-eyer (73, 1)

But & 4+ (1 — &)e/(1 — 8) = f + (1 — B)e > B. This is a contradiction to the
definition of . Hence § = 1 and r3 = @, (r2, 1).

Definition. Let (R, @) be a mixture set with the property M4. For each r; € R,

n n
0,1y, i=1,...,n, > a;=1, n 2 2 we define an element of R, >’ wr;,
i1 i1
such that
(5a) > airy = Qo(ry, r2)
i-1,2
n n-1 .
> airy = Dy [ra, > ()(1 — an))ri], if an <1
il -1
(5b) — T R ifan =1
forn =34, ... .
Lemma 5.
n n
(6) S s, = S i,
-1 i1
where (i1, ..., 1,) is an arbitrary permutation of (1, ..., n).



Proof. From M4t it follows that

n n 2
2’ ol @a,‘vn, (Z)zn 1 (1 z,,)(rn 1, ZI Biri)] =
i1 -1

n-2 n
(Dxn-ll—r” L (D“n/(l-zn 1)(7'", Z’ ﬁiri)] o Z, %o
- P2

where i1 1, &2 2, ..., 4p2 n—2, tg1—mn, i, —n 1, and fi —
=o/(1  ap1—a),7 1,...,n  2.Using this, (6) is proved by induction
with respect to n.

n
Lemma 6. Letbeoye (0,1), e R0 —1,...,m,m 2 2,1 <n<m, > o —
i1

m

1, > o — L /)’E(O 1).
1,n+1

Then

m-n-1

m
(7) Dy ( z xTy, > ory) = Z, Vili
7 m n 71
where yi uff for ©=1,....m—mn; yi=a(l—p) for ¢ wm 0+
+1,...,m
Proof. Forn = 1(7) follows directly from (5b), If (7) is valid forn >n 1
then from (5b), (6), and M4 we obtain

m-n 1 m m-n-1 m
(D/;( Z, x2iri, Z, ocm-) = ¢55 [ E, Xt , ¢¢m n(?'m Ny z’ [oc;/(l — A ,L)]I',;)]
{1 i m-n i1 i m-n+l
m n-1 m
Dt pyan altm ns Povi- gy, 0 (2 ire, 2 [oaf(1 — o )]r)]
-1 T-m-n+1
m m

Yy . _ ’
— D q B, ,,[rm ns }_ diri] =- E Yiri,
[ i1
TEM N

where 6; — %if/[1 — (1 — Blom—n] if 1=1,....m —n—1 and &
—og(l — B[l — (1 — Blom—n] if 4 —m —n 4+ 1,..., m.

Definitions. Let (R, @) be a mixture set with the property M+. We define:
1. The mixture lmll S* of a set S = R is the set of all points r € R eaxpressible

n
asr > g for somen = 1,1,€8,7 1,...,n.
i1
2. A finite set S {s1,...,sa} < Ris dependent if tkere are nummbers oy
n

>0, ... > 0, Z o« — 1 and a set S & S such that Z ois; € (S')*.
=1



3. A not dependent finite set is independent. An arbitrary set 8 < R 1s in-
dependent if every finite subset of S is independent.

Lemma 7. If (R, @) is a maxture set with the property M4, then to each r € R
there exists a maximal independent set S, < R containing r.

Proof. The one-point set {r} is an independent set. We consider the class &%
of all independent sets containing r. & is partially ordered by inclusion.
The union of independent sets in any linearly ordered subclass of & is an
independent set. Therefore, every linearly ordered subclass of &% has an upper

bound in & and & contains a maximal element S, by Zorn’s lemma of the
set theory .

Theorem. A topological mixture set (R, @) with the property M4 is isomorphic
to a convex subset of a linear space.

Proof. 1. If § is a maximal independent subset of R, then
(8) (Vre R) (31, r2e 8*) (Je e (0, 1 ) (r1 = Du(r, 12)),

where S* is the mixture hull of S.
We shall prove (8). If re §, (8) is obvious. If re B — S, then S U {r}
is a dependent set and there is a finite set So — {s1, ..., sm} = S such that

So U {r} is a dependent set. Hence there are numbers op > 0, x>0, ...,
m

m
o > 0, }:chi 1. and a set S" < S U {r} such that z(;' wisi= > Pisi, where we
12 1

SiEN’
m

put so instead of r. Wedenote > [o/(L—ao)]si, ra = > [Bi/(1—po)]si.
i1 S1€8"={r
This is possible, since g < 1, and if o 1, then @y(r, 1) = ;,}hence, follow-
ing Lemma 3, 2p 1. Thus we have @,,(r, r1) = Dg, (1, 12), 1. €. Py o) (11, 1)
®q gy (r2, 7), where (1 — o) > 0 and (1 — ap) > 0. According to Lemma 4
cither ra @y(ry,r) or vy Dy(re, r) for some y € (0, 1>. But if y = 1, then
1 re, €Ny, rae (8 — {r})*, and S* — {r} © Sp would be a dependent set.

2. 1f S is amaximal independent subset of R, r;, ¢ — 1, ..., n, are mutually
different points from S, then

n n
(9) E' ocﬂ”i——zl Puri< oy B, 1 1,...,n.
1 i1
n
We shall prove (9). If » 2, then (9) coincides with Lemma 3. If Z’ it
i1
n
Z’ Bir; for some n > 2, then either ou — 1 = 1 or we may write in accord-
i1
ance with (5b) and (6)
n n
D~ (71, Z' Qi) Dy (r1, 2 firi), i.e.
T iz



n n
Do) D &ri, 1) = Papy (2 Pure, 11),
e

i2

where & = aif(1 — o), ﬂi Bi/(1 — p1). Suppose that (1 — oq) < (1 — fu).
n

From Lemma 4 we obtain z ﬂm = @,(D 'qri, r1) for some y € (0, 1>. If y < 1,

ice i
n n
the set {r1, ..., 7,} would be dependent. Therefore y = 1 and > &y == >'firi.

-2

The induction with respect to n leads to (9).

3. Let 7 be an arbitrary point from R, S; is the maximal independent subset
of R containing 7 and Z = S, — {7}. Denote by L the linear space of all finite
real functions on Z assuming nonzero values only in a zero or a finite number
of points from Z (with addition and multiplication by scalars defined as usual).

Denote by fr, re S;, the function which is fr(z) =1 if z —», fr(2) O
if 2 & r.

n
* .
If re S, ie. r = > air; for some r; € S;, we define
i

(10a) w(r) = 2 oifr,.
i=1
According to (9) #’ is uniquely defined and one-to-one on S..

If r € R, then according to (8), there are 71, 72 € 8- and « € (0, 1) such that
rL = Da(r, r2). We define

(10b) a(r) = (L)' (r1) — [(1 — a)/o) ]’ (r2)
If 11 = Dq(r, 12), 13 = Dp(r’, 14), &, B € (0, 1>, 11, 13, 73, ra € 8., then
a(r) = a(r') < (1) (r1) +[1—ﬂ/l3n\f4
= (1/p)n"(rs) + [(1 — a)fa)a’(ra) < (Ble)n’(r1) + (1 — Ble)a’(ra) —
(11) (afe)n’(rs) + (1 — a/c)ﬂ'(rz)©‘pﬁ/c(ﬁ, r4) = Doyo(r3, 72),

where ¢ = « + f — «f. Substituting the expression for r;, r3 into (11), and
using M4, we obtain

n(r) = au(r') < Dagye(r, rs) = Dapye(r’, 75),
where 75 = Da wp/a+s-20p) (T2, 74) € S;.
Therefore, using Lemma 4
(12) a(r) = a(')<r=1r".

From (12) it follows that the function n(r) € L is not dependent on the special
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choice of «. r1, r2 and 7 is one-to-one on R. Further, if € S,, we take r, =
=12 — 71, « = 1 and 7(r) = a'(r1), i.e. # and =’ coincide on ;.

4. If ry, 12 € S;, then, according to (10) and Lemma 6
(13) a[Da(r1, r2)] = an(ri) + (1 — o)z(r2).

If r, 7" € R are such that they are not both from S., we proceed as follows:
Take 7 Du(r, r2), r3 = Dp(r’, r4), 71, T2, ¥3, T2 E S:, 0<pf=za <1
(if1 B < a, thenr, 7" €8.). Let us put

y=(x—B)(a(l —B) €0, 1y and 7o = Py(r1, r2) € S,.
IFrom M3 and (2) we obtain
Dp(r, Ta)  DPglr, Py(Pu(r, 12), 12)] = DPpra-pay(r, 12) = Du(r, 12) = 11.
Hence, for an arbitrary ¢ € <0, 1)
Do(r1, r3) — Po[Pp(r, 72), Pp(r’, ra)] = Pp[Ds(r, 17), Do(72, 14)],

where the last equality is obtained using Lemma 5 and Lemma 6, if we write >’
instead of @. Therefore, according to (10) and (13),

al@s(r, r')] = (1/B)7[Ps(r1, 73)] — (1 — B)[B)alPos(T2, 74)] —
= on(r) + (1 — O)x(+').

Thus 7(R) is a convex subset of L and R and z(R) are isomorphic.

Note. Under the assumptions of the theorem, 7(R) is a topological mixture
set in the topology induced by the topology of R, and = is thus a homeomor-
phism. This topology can be extended to the whole of L so that L becomes
a topological mixture set. L will be a topological linear space only if «f will
be continuous on (— oo, c0) X L.
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