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MATEMATICKO-FYZIKALNY CASOPIS SAV, 12. 3. 1962

THE INTERVAL TOPOLOGY OF AN I-GROUP

JAN JAKUBIK, Kogice

Let G be an /-group, a, c € G. We shall call ¢ an archimedean element, if a > 0
and if for each b e G there exists a positive integer n such that na % b. The sets

Ii(c) ={x|xeG, x = ¢}, L(c) = {x|xe G, x = ¢}

are called infinite intervals (in G). The interval topology of G is defined by taking
as a sub-basis for the closed sets all infinite intervals and the set G. We will consider
the following condition:

(1) G is a topological group in its interval topology.

G. Birkhoff [1, p. 233, problem 104] has asked the question: Does any /-group
satisfy the condition (r)? It is a rather trivial fact that any ordered (= lincarly
ordered) /-group satisfies (¢£). E.S. Northam [4, proposition 6] proved that the
additive group A of all continuous real-valued functions defined on the closed
unit interval (using the natural ordering) is an /-group which does not satisfy (¢).
T. H.Choe [3] has shown: If each non-empty subset M = G* has a minimal
element and if G satisfies (¢), then G is ordered. In the recent paper [2] P. Conrad
studies /-groups which fufill the condition (F): Each ae G, a > 0 is greater than
or cqual to at most a finite number of disjoint elements. (The elements ¢, de G
are called disjoint if ¢ nd = 0.) It is proved in [2, theorem 6.3]: If G satisfies the
conditions (F) and (¢) then G is ordered. (Evidently this theorem includes the result
of Choe but not that of Northam.) In this note we prove the following

Theorem. If there exist disjoint archimedean elements a,be G then G does not
satisfy ().

Corollary. Any archimedean I-group satisfying (t) is ordered.

Clearly this implies the result of Northam. Since an /-group in which each non-
empty subset M < G+ has a minimal element is archimedean (this follows easily
from [l, p.236, Theorem 21]) the result of Choe is also a consequence of the
corollary.

1. Let a,be G, a>0,b>0,anb =0. Let I be the set of all integers, A =
= {x|x = ma, mel}, B= {y|ly =nb, nel}, C={z|]z=x+y, xe€A, x € B).
Then a) C is an l-subgroup of G, and b) C is isomorphic with the direct product ([1, p. 222)]
of l-groups A, B.
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Proof. Let m,nel, m > 0,n > 0, m;, n;el, i = 1,2. From a n b = 0 follows
(cf. [1, p. 219)) ma ~ nb = 0, ma + nb = ma U nb = nb + ma, hence m,a + n,b =
= pn,b + m,a. Therefore C is a subgroup of the group G. Let m; = max (m, m,),
ny = max (n,, n,), my = min (m,, m,), n, = min (n,, n,), z; = ma + nb. If m;, n;
(i = 1, 2) are non-negative, then z; = m;a U n;b, hence (because of the distributivity
of G)

0)) z, Uz, = mya + nzb, Z, N Zy, = mua + nub.

If m;, n; are arbitrary, we choose m, n such that m + m; =2 0,n + n; 2 0,i = 1, 2;
let o€ {n, u}. From

2,0z, =((z, + 20z, +2) ~ 2

follows that in this case (1) also holds. Thus the assertion a) is proved. It is now
immediate that the mapping C - 4 x B defined by ma + nb — (ma, nb) is an
isomorphism.

In the following C has the same meaning as above.

2. Let a, b be archimedean elements. Let ue G, A = I,(u)n C £ 0. Then A is
an infinitive interval in C.

Proof. Let mga + ngbe A. Put M = {mlmel, ma + nob < u}. Since a is
archimedean, there exists the greatest element m; in M. Denote N = {n|nel,
m,a + nb < u}; there exists the greatest element n, in N. If ma+ nb <
< ma + nb £ u, then ny < n, ma + nb < u, hence n;, = n; moreover m,; < m,
ma + ngb < u, thus m = m,. This shows that ¢, = m,a + n,b is the greatest
element of A. Evidently each element ce C, ¢ < ¢, belongs to A.

A similar result holds for 7,(u) n C.

3. Let A, B be nonzero ordered groups, D = A x B. Then D is not Hausdorff
in its interval topology.

This assertion is proved (though not explicitly stated) in [2, proof of the
lemma 6.2].

4. Proof of the theorem. Let a, b be disjoint archimedean elements of G. Let
p,qe C, p = g. Suppose that G satisfies (¢). Then there exist infinite intervals
I', ..., I" such that Ul'= G and no I' contains both p ¢ (this follows casily from
the definition of the sub-basis; cf. also [2, proof of the lemma 6.5, and 6.4]). It
follows from 2 that the set /' n C = J;is aninfinite intervalin C or J; = 0; clearly
u J; = C and no J; contains both p and ¢. Hence C in Hausdorff in its interval
topology. But from 1 and 3 we obtain that C is not Hausdorff, and we have
a contradiction.
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MHTEPBAJIBHAA TOINOJOI'MA B L-TPVYIIITAX

SIu Sxybuk

Pe3iome

IMycte G — Il-rpynna; a, ¢ € G. DneMeHT a Ha3bIBAeTCs apXMMeIOBbIM, eciid @ > 0 u ecnu s
Kaxcaoro b € G cylecTByeT HaTypalbHOE YUCIO 1 Takoe, YTO na £ b. MHOXHCTBa

Il(c)={x|xeG,x§c}, Iz(c)={x‘xeG,xgc}

HA3bIBAIOTCSA OECKOHEYHBIMH MHTepBajiamMu B G. VHTepBasibhas TomoJsiorusi B G ompenesieHa Tak,
YTO B KayecTBe Cy00a3bl 3aMKHYTBIX MHOJKECTB O€peTcst CHCTEMA, COCTOSIUAS U3 BCEX OECKOHEYHbIX
HHTEPBAJIOB ¥ U3 MHOXeCTBa G. MbI roBOpUM, 4TO G 00/1anaeT CBOMCTBOM (2), ecii G — TOMOJIOr U=
YyecKas rpymna B MHTEpBaIbHOM Tomosiorud. [Joka3zaHa crieayroiuas

Teopema. Eciiu B G CyluecTBYIOT apXMMENOBbBI 3JieMeHusbl a, b,a N b = 0, To G He obnanaer
CBOWCTBOM (7).

CneacrBue. Apxumenosa /-rpynmna, o0Jiagaroluasi CBOMCTBOM (2), SIBJSIETCSl YIOPSIOYEHHOM.

M3 3toro BeITCKalOT Kak 4acTHble ciaydam Teopembl Hoprtrama [4] u You [3], kacarommecs
HHTCPBAJILHOW TOMOJIOTUH B [-rpynne.
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