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M a t e m a t i c k ý časopis 20 (1970), N o . 2 

NOTE ON STOCHASTIC TRANSFORMERS 

JAN CERNY, Kosice 

On many practical occassions we meet a source (emitter) of random signals 
which are processed by some random or non-random devices. Of course the 
words ,,source", ,,signals" ( = letters from a finite alphabet), ,,device" have 
a very general meaning; e. g. the ,,source" may be a railway which emits 
tank trains to a factory, etc. 

Both the source and the processor are usually well described but their general 
behaviour together is not always easy to predict or calculate. Sometimes the 
Monte Carlo method may be (or may seem to be) the most suitable and useful 
method of solution for the above problem. The main purpose of this paper 
is to show the possibility of a stationary source simulation by a special type 
of stochastic automaton . Similarly as in Gill's fundamental paper [1] and 
in [2], [3] we shall also consider the approximate simulation in the sense of 
some metrics, denned on the space of all stationary sources with a given 
alphabet. I t is obvious that the metrics will depend on the ,,processing de­
vice". However, metrics can be found which may be useful in many practical 
cases. In [1], [2], [3] the metric expresses the maximum difference between 
the probabilities of individual letters in both sources. This metric is suitable 
for independent sources only; for our purposes we shall define a metric which 
takes in account probabilities of all strings (the ,,global" metric in the sense 
of [3]). 

1. NOTATIONS AND D E F I N I T I O N S 

The symbols X, Y, Z denote finite alphabets, AT denotes the set of all na­
tural numbers. 

The symbol XN denotes the set of all sequences x = (x\, x%, . . .) , where 
xt e X, [i = 1, 2, . . .) . x is said to be periodical if there exists an n e N such 
that xi + H = x\ for i = 1,2, . . . 

The set of all x = (x\, . . ., xn, . . .) e XN, such that for the given i e N, 
n G N, a\ e X, . . . , an e X we have x% + j = aj (j = 1, . . ., n) is called an ele­
mentary cylinder and denoted by E£*'"a„+n-
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Instead of E);;;;;n
an we use Eai,...,an-

We denote by XN the minimal a-algebra over the set of all elementary 
cylinders, X* denotes the set of all (x\, ..., xn) e X x ... X X = Xn 

(n e N) and of the element e $ X. The elements of K* are called strings, 
e is the empty string. 

The probability space (XN, XN, u) is called a source. We write /4#i, . . . . »») 
instead of [J,(Eax,...,an)-

The source S = (XN, XN, /A) is called stationary, if for every (a\, . . ., an) e Xn 

and i e N we have 

Am, ...,an) = f*(Eit:Cn)-

Q is called regular if for every x = (x±, x2, . . .) e XN we have jbt(x) = 
= lim /u(x±, . . ., xn) = 0. The source © is called degenerated if there exists 

w-»oo 

an x e XN such that /u(x) = 1. If, moreover, x is periodical, S is called perio­
dically degenerated. 

j / = (̂ 4, JC, Y,f,g,a0) is called a generalised sequential machine (g.s.m.), 
if (see [4]) A, X, Y are finite sets of states, input and output signals, / is a 
mapping of A X X into A (a transmission function), g is the mapping of 
A X X into Y* (an output function) and a0e A (the initial state). The map­
p i n g s / a n d g can be extended to A x K* in the following way: 

f(a, xi, . . .,xn) = / ( . . .(f(a, xi), x2, . . ., xn), 

g(a, xi, . . ., xn) = g(a, xi), g(f(a, xi), x2), . . ., g(f(a, xu . . ., xn-i). xn). 

If we replace Y* by Y in the definition of g.s.m. we obtain the usual finite 
automaton . 

The concept of the stochastic automaton without input (i.e. the stochastic 
generator) can be defined by generalization of the notion of a finite auto­
maton but this way is not the most suitable. We prefer the method described 
e.g. in [5]: Let X, Z be finite alphabets, let Jc e N and let y be a mapping 
of Z into X. Let X = (ZN, ZN, n) be a Markov source (Markov chain) with 
a transition matrix (n(zi\zi) and with a given initial letter (initial state of the 
chain) z', i.e. let 

I 0 for z\ =# z 
7l(Zi, . . . , z n ) = / 

\ n(z2\z\) . . . 7t(zn\zn-i) otherwise. 

The source S = (KA\ XN, /u) is called an a-generator (a stochastic automaton 
without input) arising by composition of X and y at the origin k if wre have 

(-T1, • • • , Xn) = 2 ^ ( 3 * , . . . , Zn+Jt-l) 
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where the sum is taken through all (zk, . . ., zn+k-i) for which (x±, . . ., xn) = 
- (y(zk), . . .,y(zn+k-i)). 

If S = (YN, YN, p) and X = (YN, YN, v) are stationary sources, we put 

Q(Q,X) = sup |/i(yi, ...,yn) — v(yi, .. .,yn)\ 

where the supremum is taken through all strings (yi, ...,yn)e Y*. I t is 
almost obvious that if S(Y) is the space of all stationary sources in the alpha­
bet Y, then O is a metric on S(Y). 

Now we shall define a subspace of S(Y) from which we shall take the 
simulating (approximating) sources. For a fixed S = (XN, XN, /u) and any 
jtf = (A, X, Y,f, g, a0) we denote by Z(Q, s/) = (YN, YN, v) a source with 
the following property: We put v(y\, . . ., yn) = 2 l*(%i, . . .,%k) where the 
sum runs through all strings (x\, . . ., xk) e K* such that there exist i ^ 0, 
j ^ 0 for which we have g(a0, x±, . . ., xk) = (Hi, ...,yn, . . .,yn+t) and 
g(a0, xi,. . .,xn-i) = (yi, . . .,yn-i-j). The subspace S^Y ) is defined as the 
set of all X(G, s/), where s/ is any g.s.m. with X, Y given. 

2. REGULAR SOURCES 

Lemma 1. Let X = (YN, YN, v) be regular and s > 0. Then there exists an 
integer n(s) e N such that for every (Hi, y^, . . .) e YN we have v(yi, . . . , yn(e)) < e. 

Proof . Indirectly. Suppose that for every neN there exists a string 
(Hi, . . .,yn) such that v(yi, . . ., yn) ^ e. Denote 

En = [ J Eyx yn. 
(2/i yn):v(yi yn) ^ e 

Obviously En+i c En(n e N) and v(En) ^ e, which implies that there exists 
an y = (Hi, H2, . . .)e f]En such that v(y) = lim v(yly ...,yn)^e, which 

neN w^°° 
contradicts the regularity of the source. 

Lemma 2. Let X = (YN,YN, v) be a regular stationary source and e > 0. 
Then there exists a stationary a-generator X = (YN, YN, v) such that g(X, X) > e. 

Proof. Let n(e) be defined for X like in Lemma 1. Let Z = {e} U Y U 
U . . . U Y"(f> and define the transition probabilities by the following requi­
rements : 

a) for m < n(e) 

Hyi, •• •> ym+i) 
n({yi, ...,ym, ym+i)l(yi, • • • ,ym)) = — —> 

v(yi, ...,ym) 
b) for m = ^(e) 
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n((y2, .. .,ym, ymn)l(yi, ..., ym)) = — . 
v(yi, .. .,ym) 

Further in both cases a) and b) the transitions which are different from those 
just described have probabilities equal to zero. 

Let us suppose that e (the empty string) is an initial state. Thus we have 
obtained a Markov source (ZN, ZN, n) with the essential states of the type 
(yl9 ...,yMe)). 

Now let us define the function y for z = e arbitrarily and for z = 
(yu . . .,ym) eZ,z 4= e,hj y(yi, .. ., ym) = ym. Let % = (YN, YN, v) be the 
a-generator which is a composition of (ZN, ZN, n) and y at the origin 2. Ac­
cording to the definition of the a-generator 

a) for m ^ n(e) we have v(yl9 . . .,ym) = v(yi, . . ., ym), 
b) for k e N and m = n(e) + k we have 

, _ . y ( y i . ...,yn(e)+i) 
( ! ) v(yi, . . . , y m ) = v(yi, . . . , yn{e))- — — X 

v(yi, . . .,yn(e)) 

v(y2, • • • , yn(e)+2) v(yk, • • • , lJn(e)+k) 

v(y2, . . . , yn(£)+i) v(yk, . . . , yn(e)+k-i) 

We shall prove that X is a stationary source. Let i, m e N and 
(yi+i, • • .,yi+m) e 7* . Then 

^K+Xz^) = 2 %i> • • - yu yt+i yt+m) 

2/ieT, . . . . ^ e r 

and Ave have to show the last expression to be equal to 
Hyt+i, • • •> yt+m) = *(^i\v::'VJ-

For i = 1 this is trivial. If, for some i this statement is valid for all m and 
all yi+i, . . ., yi+m, then for i + m + 1 ^ ^(e) we have 

2 %1> • • • ' y.+wi+l) = 2%1> • • • ' 2/-+»»+l) = r(^+2? • • • > y.+WJ+l) 
(2/i,...,2/i+i)er<+1 

by the stationarity of v. If i + m + 1 > w(e), we use (1): 

Only the first member of every product depends on y\ and hence after sum­
ming we have 

2 Hyu • • -,yt+i, yi+2, . •., yt+m+i) = 
I/l IA+l6l' i+1 

\ v(y2, . . . , yn(e)-r2) v(yh, . . . , yi+m+i) 
v(yi, ...,yn(e)+i) - = W, 

J (y2, . . .,ljn(e)^) V(ljn, • . .,yt^m) 
2/2, ...,1/1 I G T l/i e r 
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where h — i -f- m -~- 1 — w(e). The inner sum equals v(E^''^yf^)}i). 

According to the stationarity of v we may write 

I F = 2 % - • •••> y*4«+i) = ^ ( ^ : : ; ; : : : 1 ) 
Z/2 l/i+ieF' 

and the second step of the induction is finished. Hence X is a stationary 
source. 

Now we have to calculate Q(X, X). By definition for m ^ n(e) we have 
directly v(yl9 . . ., ym) = v(yl9 . . ., yw). If m > n(e) and yl9 . . ., ym e Ym 

then 0 ^ v(yl9 ...,ym) S v(yl9 . . ., yn{e)) < e, 0 ^ v(yl9 . . ., ym) < e, which 
implies 

I v(yl9 . . . ym) — v(yl9 . . . ym)\ < e 

and o(X, X) < s. This completes the proof of Lemma 2. 
We note that the probability distribution n 

-, .. / 0 for m < n(e), 
7i(yu . . ., ym) = <T 

^ v ( y u • .',ym) for m = w(£), 
represents the stationary vector of the Markov chain (Z, n). 

3. NON REGULAR SOURCES 

The assertion of Lemma 2 can be reformulated in the following way: The 
set of all regular stationary a-generators is dense in the set of all regular 
stationary generators. Naturally, the question arises whether we can omit 
the words „regular" in the last statement . In the sequel we shall discuss this 
question. 

Lemma 3, To every stationary source X = (YN, YN, v) and every e > 0 there 
exist a non-negative integer h, periodically degenerated sources (YN, YN, v), . . ., 

h 

(YN, YN, vn) and a regular source (YN, YN, vo) such that if we put v = 2 hvt 
i=0 

and X' = (YN, YN, v), we have Q(X, X') < s, (i.e. every stationary source can be 
approximated with the given accuracy by a ,,convex combination" of a regular 
and periodically degenerated sources). 

Proof. Let us denote Y0 = {y e YN : v(y) > 0}. Y0 is finite or denumerable 
and measurable. ^(Yo) e < 0; 1 > and owing to the stationarity of X, 
v(Yk x .To) = v(Y0), for every k e N. The set Yk X Yo is finite or denume­
rable and its measure is determined by its elements of positive measure. There­
fore Yo c Yk X Yo, which suggests that Yo has some periodic property. 
As a matter of fact, if y e Yo and Fk = Yk x {y}, then evidently v(Fk) = 
— v(y) > 0 for every k e N, which implies that there exist j , k e N, j < k 
such that Fj n Fk is a non empty set. Let y = (yl9 y2, . . .) e Fj n Fk, then for 
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every i e X we have subsequently yk+i = yt, yJ+l = y{, yJHk-S)-i = yi+(k-j) 
and yi = yi+qc-f). Thus Yo contains only periodical sequences. 

I t is evident that there exists a finite set Y' c: Y0 such that 
v(Y0) < v(Y') + ev(Y* - Y0) if v{7» - Yo) # 0 and v(Y0) < v(Y') + e 

if v{7» - Y0) = 0. 
Let us denote Y' = {y(l), ..., y(h)} and put for every E e YN 

v(Er\(Y* - Y0)) 
- if r ( r * - Yo) * 0, 

vo(E)=<( *(YN-Yo 
x 0 otherwise. 

vt(E) = xE(y(i)) for every ieN. [xE is the characteristic function of the set KJ. 
Further, let lc0 = v(YN - Y'), h = v({y(i)}). 

h 

Obviously, v' = ^ &*?* is a probability measure which satisfies the lemma 
i=o 

(note that v0 may be a trivial measure). 

Theorem 1. Let X = (YN, YN, v) be a stationary source and e > 0. Then there 
exists a stationary a-generator X = (YN, YN. v) such that Q(X, X) < s. If X is 
regular, then X can be chosen also regular. 

Proof . To a given e/2 there exists a X' = (YN, YN, v') with the properties 
of Lemma 3 (s replaced by e/2). Our proof will be completed if we find an 
a-generator T such that Q(X\ X) < e/2. We shall suppose v(Y* -— Y0) =# 0 
(otherwise the proof can be simply modified). To the source X0 = (YN, YN, v0), 
where v0 is from (2), there exists an a-generator Xo = (YN, YN, v0) such that 
Q(X, XO) < e/2. 

Let £o be a composition of So = (Z0, ZN, no) and some mapping y0 a t 
the origin 2. The set of states Z0 will be a subset of the set Z which we have 
to construct. The ing elements of Z will consist of states for v\. ...,vn 
from (2). 

Let Vi(y(i)) = 1. y(i) is periodic, i.e. there exists p(i) e N such that j - t h 
and (j -f- p(i))—th components of y(i) are equal for every j e N. Such sequen­
ces can be generated by ,,Markov" sources with transition probabilities 
0 or 1. Thus the corresponding a-generator Xt — the composition of (Zf, Zf, m) 
and the mapping yt — can be chosen in the form: Zf = {z{(l), . . ., zl(p(i))}, 
m(zi(2)lzi(l)) =1, ..., 7n(zi(p(i))lzi(p(i) - 1)) = 1, 7ti(z*(\)\zHp(i))) = 1, the 
other transitions having probabilities 0; yi(z^(j)) = y(i)j for j = 1, . . .,p(i). 

h h 
Now we denote Z = {z} U [J Zi, where z $ ( J Z{ is a supplementary 

i=0 i=0 

state (which will be an initial state). 
Let Zio = zl(p(i)) be the initial state of Zt. Let the origin be 2, (for i = 1, 

. . . , h). 
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Put»(-W-) = < v ( ! . ( i ) ) o t h e r w i s e . 

Other transitions from z have the probability 0. If for some i = 0, . . ., h 
we have z' e Z$, then the transitions from z' are possible only into z\ with 
the probabilities n\(.\z'). 

We have just defined a Markov source S = (ZN, ZN, n). Define the map­
ping y by the requirement: I t is 

1. arbitrary on z, 
2. equal to y% on Zt. 
Let X be a composition of S and y at the origin 3. I t is evident that v = v 

on Y' and | v —- v \ < e/2 on (Y^ — Y'), which completes the proof. 

4. STOCHASTIC TRANSFORMERS 

Throughout this section we suppose that there is given a stationary indepen­
dent source U = (XN, XN', /u) such that all x e X have equal probabilities. 
It is a trivial consequence of the results of [1], [2], [3] that for a given Mar­
kov source S = (ZN, ZN, n) there exists the g.s.m. stf such that by the com­
position of U and s/, i.e. by letting the input tape of s/ be the output tape 
of S , we can obtain a Markov source S = (ZN, ZN, n) with the transition 
probabilities different from those of S by less than a given e > 0. In other 
words G(S, S ) = sup \TZ(ZIIZ2) — 71(21/22), < £. 

ZiZ2GZ 

Let y be a mapping of Z into Y and let X, X be the compositions of S , y, 
resp. S , y. Let S be the source of the form from the proof of Theorem 1. 
What can we say about Q(X, X)? 

Lemma 4. Let S = (ZN, ZN, n), S = (ZN, ZN, n) be Markov stationary sources. 
LetX, resp. X be the composition of S resp. S and a given mapping y. Then to an 
arbitrary e > 0 there exists a d > 0 such that if a(Q, S ) < d, then Q(X, X) < e. 

Proof . The assertion of Lemma 4 follows form the fact that the stationary 
vector of a Markov source is a continuous function of the transition probabi­
lities. 

We can now formulate a theorem on stochastic transformers which is 
a generalisation of those in [1], [2], [3]. 

Theorem 2. Let U = (XN, XN, /u) be a stationary independent source with 
equal probabilities of all letters from X and the number of elements in X greater 
than 1. Let X = (YN, YN, v) be a stationary source and let s > 0. Then there 
exists a g.s.m. sJ = (A, X, Y, f, g, a0) such that if X IS l^e composition of U 
and st/, the?i Q(X, X) < s. 
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Proof . According to Theorem 1, there exists a stationary a-generator X 
such that o(X, X) < ej2. Let X be the composition of S and y. I t follows 
from Lemma 4 that to e/2 > 0 there exists a d > 0 such that if ff(S', S) < <5, 
then Q(X', X) < e/2, where X' is the composition of S ' and y. As we have 
mentioned above, for the Markov source S there exists a g . s . m . j / ' such that 
the composition S ' of XI and s0' has the property that c/(S', S ) < d. I t is 
obvious that the mapping y is also realisable by some g.s.m. s/". Let A be 
a composition of A' and stf" and X the composition of H and s/. Then Q(X, X) ^ 
^ Q(X, X) + Q(X, X) < S which completes the proof. 
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