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MATEMATICKO-FYZIKALNY CASOPIS SAV, 15, 1. 1965

SAMPLING THEOREM IN ABSTRACT HARMONIC ANALYSIS

IGOR KLUVANEK, Kosice

In the literature on information theory (see e.g. [1]) as to sampling theorem
it is referred to the assertion roughly stated as follows:

If the Fourier transform f (y) of « function f(x) vanishes for |y| > o > 0 then f(x)
is completely determined by its values at ..., —2h, —h, 0, b, 2k, ... where h = n/a,
in fuct the formula

; ) sin a(x — nh) |
J@) n ,;“_’wf(n ) oa(x — nh) ()
holds.

The origin of this theorem can hardly be traced. It, or some of its analo-
gues, was published virtually independently by several autors, e.g. [2], [3], [4].

The aim of this note is to establish and to prove the sampling theorem
in terms of abstract harmonic analysis. The réle of real line will be played by
an arbitrary locally compact Abelian group and the réle of integral multiples
of h by its discrete subgroup. From the so obtained general proposition besides
the sampling theorem just mentioned some more general statements concerning
functions on real line follow.

The proof of generalised sampling theorem, given in this paper, is based
on some relatively elementary properties of groups and Fonrier transforms
on groups treated e.g. in [6] or in the first two chapters of [7]. The concepts
and facts used without reference are to be found there.

Let ¢ be a locally compact Abelian group (written additively) and I its
dual group. The value of a character y € I' in a point x € ¢ will be written
as (@, y).

Suppose I be a discrete subgroup of ¢ with discrete annihilator
A Ay, y) = 1forall ye H). Fory el we denote by [y] the coset of A
which contains y, ie. [y] =y + A. If y € H then (¥, [y]) denotes, of course,
the constant value of (¥, ) on the coset [y).
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The Haar measure on @, vesp. I, ete. will be denoted by wi. resp. mip, cte.
We normalize mr4 so that mp),(I74) == 1. This is possible since 7.1 is com-
pact being the dual group of the discrete group H. Let be further m ({2}) = 1
for 2 € A, mu({y}) = 1 for y € H. We normalize the Haar measure mr so that
the formula

(8
~

fﬁ ) dinp(y) = [ dmppa([y]) > F(y - 2)
rA eyt
for every non-negative Baire (and every integrable) function £ on [ holds.
Such a normalization is possible (see [6], § 33 A; [7], § 27.3). Finally the Haar
measure mq on G let be adjusted so that the inversion formula for Fourier
transform holds, i.e. by the relations

Sy = [(—a, )f(x) dme(x),  flx) == [(x,y) ) dmi; (3)
& r

the Fourier transform and its inverse is given. The Plancherel theorem asserts
that by the relations (3) an isometry f - f of a dense subset in L2(() onto
a dense subset in L2(I") is defined. This isometry can be extended by continuity
(in the only possible way) to be an unitary equivalence (so called Fourier-
Plancherel transform) between L2() and L2I"). We conserve the notation f
for the Fourier-Plancherel transform of an arbitrary function [ e L2((7).

Let further £ be a (Baire) measurable subset of I' containing exactly
one element from every coset of /1, i.e. 2 ~ (y -~ A) consists of a single point
for every y el'.

The set 2 may be intuitively treated as representing the group /7.1. The
situation in the classical sampling theorem mentioned in the introduction

corresponds to the case ¢ = I" == (-, %0), H == {.... —2h. —h, O h, 2h ...}
and Q = (—o, a> .
Put
g() = [(x, ) dmp(y). (4)

4]

Lemma. The function ¢ is by (4) defined everywhere on (¢ It is continuois.
positive-definite and belongs to LAG). Its norm in LX) is 1. We have g(0) 1.
If ye H.y + 0, then o(y) — O and

[qte) gle = y) dmalx) - 0. (5)

(v

Proof. If we choose for £ in (2) the characteristic function yo of O, we
obtain mp(2) == 1 since X, qoly -+ 4) = 1 for all y € A. Thus the integral
in (4) exists for all @ € (. The equality (#) means that ¢ is the inverse Fourier
transform of yo. Since ye is integrable and non-negative. ¢ is continuots
and positive-definite. (The last assertion is a consequence of the Bochner-Weil

44



theorem. The positive-definiteness will not be used in the tollowing.) ye also
belongs to IJ‘Z(I") hence the square of ¢ is integrable and the Plancherel theorem
implies that g == |lyel == 1.

To prove (5) note. that gp(ax — y) (for fixed y) is the inverse Ifourier transform
of (4, »)xoly). Using again the Plancherel theorem and (2) we obtain for
all gy o I

[ye)gle - y) dmfa le =1, )xoly) drip(y) = I(y Y)xely) dmp(y) =

by
= [ lyD) durpa (7))
ria

Since (4, ]y]) is (as a function of [y]) a character of compact group /74 the last
integral vanishes for every non-zero y € H. It follows at once that ¢(y) = 0
for y ¢ Il y = 0. The cquality ¢(0) == 1 is clear.

Theorem. Swuppose [ € L2G) and fi) = 0 for almost all y ¢ Q. Then [ is equal
almost cveryichere to a continuouns function. If [ iiself is conlinwous then

Sy = 2> gl = y) (6)

ve ll

unifornly on (and in the sense of the convergence in L2(G). Furtheremore

W= X ) (

ue II

~1
~

Prootf. Since {1 is the dual group of 174, every character of 174 may be
writter as (4, [3]) for some y € fi. The set of all characters forms a complete
orthonormal family of functions in L2(17.1) (see [7], § 38 C).

Denote [K] - Ayl v e B} for B C I Patting F = 4 in (2) we get mp(l) =

mppa([F]) for all measurable sets & C Q. Denoting Fi([y]) = #(y) for
a function # on 2 it follows that 1 ¢ LY(Q) if and only if I} € L1(1]A4) and
J\!_:/'v(‘}’) dmip(y) = ff’»,,["l(!y’l) dinpja([y]). Thus F e L2Q) if and only if
#0 ¢ L2( ). We conclude that the characters (y, y) for y € H (inore precisely
the partial functions restricted to y € Q) form a complete orthonormal family
in L2(0Q).

The assumption and the Plancherel theorem implies that fe L. Since
f(;r) 0 for almost all v ¢ 2. there exist nambers «, so that

J) = 3 ayly, y)yely) (8)
well
in the sense of convergence in L2(17).
Put ¢,(v) == g (r —y) for y e H. By lemma the functions ¢, are ortho-
normal; ¢ () = ¢ol) = xo(y) and ¢u(») — (—y, ¥)xe(y). The Fourier-Plan-
cherel transform being unitary we get from (8)



f=2 ayiu

ye ll
in L2(G) and, consequently, ||f2 = X, la,[2

Since mp(£2) is finite, L1(Q2) > 1L2(Q). Hence fe L1(I") and

P

S@) = [(x, y)[(y) dmr(y
I

almost everywhere on (. Since the integral on the right hand is a continuous
function, f is equivalent to continuous function.

The convergence in L2(£) implies that in L1(2). It follows, that the equal-
ity (8) holds in L1(I') too. Hence if f itself is continuous, we have

flx) = f v ) f) dar(y) = [, p) dmr() Y ayly, y)zely) =

I yeH
= > ay [(x =y, Y)gey) dmre(y) = > ayg (@)
yell I :/ell
for all x € G, i.e.
J@) = > a yq,@). {9)
yell

The interchange of integration and summation is based on the convergence
in L1(I') of the sum in (8) and on the fact that the bounded function (x, y) does
not violate this convergence. The equality (9) holds also uniformly on (7, since
for an arbitrary set H; ¢ H we have

@) = 2 ayg ()= | [@oy) dmp(y) S ayly, v)zel):

yell, I yell-—1T1

< [I > ayly, y)ye) dmp(y)

I yeH - Th

and the integral on the right hand may be made arbitrarily small by the
suitable choice of H;.

If we put « = yo in (9) for some yy € H, by lemma we have f(yo) = «
The proof is complete.

Choosing (/= " == (—o0, 0), £ —~ (—x, o> and, consequently, H ==

ooy —2h, —h, 0, k. 2k, ...} with ke = 7 for the function from (4) we get
¢(x) == (sin ax)/(ecx). Hence, if fe [2(—oc0, ) and f'(y) = 0 for iy > x
we obtain (1).

But from the theorem just proved we may deduce more. Iff(y) == 0 outside
an arbitrary measurable set £ of numbers pairwise incongruent modulo 2x,
then f(x) is completely determined by its values belonging to /. The function
(sin az)/(ax) in formula (1) must be of course replaced by ¢(x) = [oelvud;.
E.g. if &) = o for lv] < 4a and |y| = 5o then f is determined by its values
on H. Using the classical formulation of sampling theorem, however. it were

/U
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necessary to determine its values in points ..., —2h, —3h, 0, 1A, 2h, ... It is
c¢lear from these notes that the converse of the qualitative part of sampling
theorem i.e. of the assertion ,,if the spectrum of a function is concentrated
in (--a. o> then the function is determined by its values in ..., —2h, —h,
0,h, 2k, .." is not true. A function may possess an unbounded spectrum
and depend only upon its values on H.

It follows, further, that it is impossible to prove the sampling theorem
for functions on the real line in such a generality as follows from the theorem
proved in this paper by the means of the theory of interpolation of entire
functions. In fact, by the well-known Paley-Wiener theorem a function
fe L¥(—o0, o) is an entire one of exponential type if and only if its Fourier
transform vanishes outside a compact set. Let us note that we have proved
the uniform convergence of (1) on the whole interval (— o0, o0) and by the
means of the theory of functions of complex variable we can prove the uniform
convergence only on bounded subsets of (- oo, 00). (See [5].)

If we choose for (7 the multiplicative group of complex numbers z with
=i Ufor Il the group of all roots of the equation z* — 1 = 0, we get a for-
mula due to Cauchy obtained in [2] by the means of the Lagrange’s interpo-
lation formula.
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IEOPEMA OTCHETOB B ABCTPARTHOM TFAPMOHHYECROM AHAJHIBE

Urops RKayraner

Pesome

lHycrs G —-30KQILIO KOMITARTHAA ROMMYTATHBHIAA rpynma 11 /' — ec rpyuna (fetpeppis-
upix) xapaxrepon. Ilycrs I/ ~— puckpersasa nojrpynna rpynnsl ¢, amay.sirop <L kotopoit
(MHOMKECTBO XAPAKTCPOB, 3HAUCIINE KOTOPBIX paso 1 ga BeeM I1) Toxe pncikpernbtii. 1ycers,
jasiee, 2 —- UBMEPHMOC MOJMIOMHKeCTBO 7, Cojepiraliee 13 Ram0ro KJAQCCa CMCAHOCTIT
1o /A pasHo ojui vaemeut. OmpeacgauM QyHRINO @ paseHCTBOM (4), UIIC M HALTCHAUM
oGpasom Hopmuposaunas mepa Xaapa na I'. 3 crarbe oKasbIBAETCsL CleyVIoULas

Teopema. Hyers f — Qyurist u3 L*(G) npeodpasosanie dypoue kortopoil odpaiactest
B Hyab pie muomeersa £. Torpa f moutn Bewjly paBHa HEKOTOPOIT HenpepLIBHOil Gy ORI,
Eean f cama HempepsiBia, TO HMeeT MecTo (6) paBmoMeplio Ha (11 B ¢MBICTC CXO,UIMOCTH
s L7((); kpome Toro cnpapejnpa gopmyaa (7).

Lean nonomum G =1 = (— oo, co), Il = {...,—2h, —h, 0, h, 2h, ...} (h -0
n Q= —u a), rac «h =z, TO N3 HTOI TCOPCMBL BBITCKACT CHPABELTIBOCTL TCOPCMbI,
MBBCCTHON B JINTEPATYPE 1O TEOPUH HHPOPMAIUIIT 0] HAZBAIICM TCOPEMbE eTedeTon Ivoretn-
nnkopa. BB nrom cayuae pasencrno (6) noayuact Bug (1).
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