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MATEMATICKO-FYZIKÁLNY OASOPIS SAV, 15, 1, 1965 

SAMPLING THEOREM IN ABSTRACT HARMONIC ANALYSIS 

IGOR KLUVÁNEK, Košice 

In the literature on information theory (see e.g. [1]) as to sampling theorem 

it is referred to the assertion roughly stated as follows: 

If the Fourier transform f(y) of a function f(x) vanishes for \y\ > a > Othenf(x) 

is completely determined by Us values at ..., —2h, — -h, 0, h, 2h, . . . where h = TZ\OC, 

in fact the formula 

00 sin oc(x —- nh) 
f(x) = y f(nh)—- — - (1) 

w = - 0 0 oc(x — nh) 
holds. 

The origin of this theorem can hardly be traced. It, or some of its analo­

gues, was published virtually independently by several autors, e.g. [2], [3], [4]. 

The aim of this note is to establish and to prove the sampling theorem 

in terms of abstract harmonic analysis. The role of real line will be played by 

an arbitrary locally compact Abelian group and the role of integral multiples 

of // by its discrete subgroup. From the so obtained general proposition besides 

the sampling theorem just mentioned some more general statements concerning 

functions on real line follow. 

The proof of generalised sampling theorem, given in this paper, is based 

on some relatively elementary properties of groups and Fourier transforms 

on groups treated e.g. in [6] or in the first two chapters of [7]. The concepts 

and facts used without reference are to be found there. 

Let G be a locally compact Abelian group (written additively) and V its 
dual group. The value of a character y e F in a point x e G will be written 
as (a\ y). 

Suppose II be a discrete subgroup of G with discrete annihilator 

A - {y : (//, y) - 1 for all y e H}. For y e F we denote by [7] the coset of A 

which contains 7, i.e. [7] = y + A. If y e H then (y, [y]) denotes, of course, 

the constant value of (y< y) on the coset [y]. 
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The Haar measure on G, resp. F, etc. will be denoted by m(;. resp. mr, etc. 
We normalize mr\A so that mr\A(F\/\) - 1. This is possible since F\A is com­
pact being the dual group of the discrete group H. Let be further wu({/}) —: 1 
for A e A, mn({y}) = I for y e H. We normalize the Haar measure mr so that 
the formula 

$F(y) dmr(y) = J d ^ 7 ; 1 ( [ 7 ] ) V / ( 7 + /) (2) 
E VJA /.eA 

for every non-negative Baire (and every integrable) function F on F holds. 
Such a normalization is possible (see [()], § 33 A; [7], § 27.3). Finally the Haar 
measure % on G let be adjusted so that the inversion formula for Fourier 
transform holds, i.e. by the relations 

f(Y) = / ( - * , )')/(•*) dma(x), f(x) =-. J(.r , y)f(y) dmr(y) (3) 
G V 

the Fourier transform and its inverse is given. The Flancherel theorem asserts 
that by the relations (3) an isometry / - > / of a dense subset in L2(G) onto 
a dense subset in L2(F) is defined. This isometry can be extended by continuity 
(in the only possible way) to be an unitary equivalence (so called Fourier-
Plancherel transform) between L2(G) and L2(F). We conserve the notation / 
for the Fourier-Plancherel transform of an arbitrary function f e L2(G). 

Let further Q be a (Baire) measurable subset of F containing exactly 
one element from every coset of A, i.e. Q r (y -|- A) consists of a single point 
for every y e F. 

The set Q may be intuitively treated as representing the group FjA. The 
situation in the classical sampling theorem mentioned in the introduction 
corresponds to the case G — F =- ( >:, oo), H -- {— —2h. — h, 0, h, 2h, ...} 
and Q — ( — a, a) . 

Put 
cp(x) ,-= S(x,y)<\mr(}>). (4) 

Lemma. The function cp is by (4) defined everywhere on G. It is continuous, 
positive-definite and belongs to L2(G). Its norm in L2(G) is L Wc hove <p(o) 1. 
If y e FT. y 4= 0, then rp(y) ---• 0 w?tf 

/ ^ ( . r ) ^ - //) dn^.r) O. (.*>) 
tv 

Proof. If we choose for F .in (2) the characteristic function '/(> of L>, we 
obtain mr(fl) = 1 since 2 ^ ^ ( 7 -f- A) - 1 for all y e A. Thus the integral 
in (4) exists for all x e G. The equality (I) means that r/ is the inverse Fourier 
transform of %o. Since /# is integrable and non-negative, (p is continuous 
and positive-definite. (The last assertion is a consequence of the 'Bochner-Weil 
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theorem . The posi t ive-denniteness will not be used in the following.) %u a ^ ° 

belongs to L2(F), hence t he square of cp is in tegrable a n d the Plancherel theorem 

implies t h a t \\y-\ ----- \\%Q\\ —: V 

IV) prove (5) note, t h a t y>(x — y) (for fixed ?/) is t he inverse Fourier t ransform 

of (-—//, y)Xii(y)- Using again t h e Plancherel theorem and (2) we obtain for 

all // c / / : 

JvU-)7-U' - ,y) dm(x) - $x!.>(y)(-y> y)x<Ay) (1>My) ~= jiy ,y)yMy) dmr(y) _= 

- J(^[/J)d'^M (iy\)' 
r\A 

Since (//, |y | ) is (as a function of [y]) a charac te r of compac t g roup I1//! t he last 

integral vanishes for every non-zero // e; IJ. I t follows a t once t h a t q>(y) — 0 

for // C: IL y + 0. The equal i ty o/(0) -= 1 is clear . 

Theorem. Suppose f e L2(G) and f(y) ~ 0 for almost ally $Q. Then f is equal 

id most everywhere to a continuous function. If f itself is continuous then 

/(•>•) -•= y At/hi* - //) («) 
V t II 

uniform I if on G and in the sense of the convergence in L2(G). Further encore 

W-I'\f(y)\2. (7) 
// e // 

Proof . Since / / is the dual g roup of FjA, every charac ter of V\A m a y be 

writ ten as (//. \y\) for some y e H. The set of all charac te rs forms a complete 

or thonormal family of functions in L2(FjA) (see [7j, § 38 C). 

.Denote [E\ - {[y] : y e E} for E C F. Pu t t i ng F -- %E in (2) we get mr(E) .= 

----- mrjA(\E\) for all measurab le sets A ' c f i . Denot ing Fi([y]) =- F(y) for 

a function F on U it follows t h a t F e 1A(Q) if and only if Fi e Ll(FjA) and 

JoF(; . ')(l^/(>') - JE/,iI7i(fyl) dH/p/.ii^/]). Thus F e L2(Q) if a n d only if 

Fj e L'1(FjA). We conclude t h a t the charac ters (//, y) for H e / / (more precisely 

the partial functions restr icted to y t~. U) form a complete o r thonormal family 

in L*(D). 

'I'hc assumpt ion a n d the I 'lancherel theorem implies t h a t / e L 2 ( / ' ) . .Since 

/() ') 0 i'or a lmost all y $ Q. thei'e exist n u m b e r s «,, so t h a t 

AY) = »*(</> r)zfi(r) («) 
?/ e / / 

in the sense of convergence in L2(F). 

Put oyy(.r) •--= y (.r —- //) for yell, P v lemma the functions 7 >(/ are o r tho-
normal; (/(y) - ( / o f } ; ) - ^ ( l ' ) and ^ ( y ) ----- (—#, }')^(}')- The Four ier-Plan-
eliere 1 t ransform being uni tary we get from (8) 
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/ = 2 avЧ-v 
yell 

in L2(G) and, consequently, ||/||2 =- Z}/€„\ay\
2. 

Since rap(.Q) is finite, IJ(Q) } L2(,Q). Hence / e Ll(F) and 

J%) = J(^» 7)/(y) dwp(y) 
I1 

almost everywhere on 6?. Since the integral on the right hand is a continuous 
function, / is equivalent to continuous function. 

The convergence in L2(Q) implies that in IJ(Q). I t follows, that the equal­
ity (8) holds in L1(F) too. Hence if / i tself is continuous, we have 

f(x) = J(r, y)f(y) dmr(y) -= J(.T, y) dmr(y) £ ay(y, y)xo(y) =-
r r yeH 

= 2 av Ux + y> 7)^(y) dmp(y) - V %<f ^ ' ) 

for all x є 6г, i.e. 

f(x) = 2«-iŕГ»W- (») 
.'/ e // 

The interchange of integration and summation is based on the convergence 
in Ll(r) of the sum in (8) and on the fact that the bounded function (x, y) does 
not violate this convergence. The equality (9) holds also uniformly on G, since 
for an arbitrary set H\ C H we have 

\f(x) - 2 W-v(*)\ = I J>< y) dmr(y) T ay(y, y)yJ}(y)\ > 
yell, r yell Ih 

^SJI 2 av(!^y)xMy)\dmr(y) 
r yeH Ih 

and the integral on the right hand may be made arbitrarily small by the 
suitable choice of H\. 

If we put x = Ho in (9) for some ?/n e H, by lemma we have /(//o) = a_../o. 
The proof is complete. 

Choosing G = F = (—oo, oo), Q ~ ( — a, a> and, consequently, H = 
= {..., — 2h, —h, 0, h, 2h, ...} with ha -= n for the function from (4) we get 
(p(x) — (sin OLX)I(LXX). Hence, if f e L2( — oo, oo) and /(y) = 0 for |yj > a. 

we obtain (1). 
But from the theorem just proved we may deduce more. If f(y) =- 0 outside 

an arbitrary measurable set Q of numbers pairwise incongruent modulo 2a, 
then/(#) is completely determined by its values belonging to H. The function 
(sin ocx)l(ocx) in formula (1) must be of course replaced by (p(x) = fnePudy. 
E.g. if f(y) = 0 for \y\ 5g ±oc and \y\ ^ 5a then / is determined by its values 
on H. Using the classical formulation of sampling theorem, however, it were 

46 



necessary to determine its values in points ..., —|A, —\h, 0, \h, \h, . . . I t is 
clear from these notes that the converse of the qualitative part of sampling 
theorem i.e. of the assertion ,,if the spectrum of a function is concentrated 
in < —a. a) then the function is determined by its values in . . . , —2h, —h, 
0, h, 2//, . . . " is not true. A function may possess an unbounded spectrum 
and depend only upon its values on H. 

It follows, further, that it is impossible to prove the sampling theorem 
for functions on the real line in such a generality as follows from the theorem 
proved in this paper by the means of the theory of interpolation of entire 
functions. In fact, by the well-known Paley-Wiener theorem a function 
/ e L-(— oo, GO) is an entire one of exponential type if and only if its Fourier 
transform vanishes outside a compact set. Let us note that we have proved 
the uniform convergence of (1) on the whole interval (—GO, OO) and by the 
means of the theory of functions of complex variable we can prove the uniform 
convergence only on bounded subsets of (—oo, oo). (See [5].) 

If we choose for O the multiplicative group of complex numbers z with 
z\ 1 for H the group of all roots of the equation zn — 1 = 0, we get a for­

mula due to Cauchy obtained in [2] by the means of the Lagrange's interpo­
lation formula-. 

R E F E R E N C E S 

[ l j S h a n n o n C E., Communication in the Presence of Noise, Proc . IRK 37 (1949). 

10 21. 
[ 2 | C u i c h y Л., Mćmoire sur diverses íormules ďaualyse, C H. Acad. Sci. Haris 72 

( 1 8 4 1 ) , 28.4 - 2 9 8 . 

| 4 | W h i t t a k c г E. T., ()n the junctions гvhich are represented hy the expa,нsioas of tìы 

intcrpotatioи-theorjp Pľoс. R o y . Soc. E d i n b u r g h . S^ction A. 35 (1915), 181 — 191. 
| 4 | H oтc . i ыi и кo в H. Л., 0 nponycкnoiï crwcoCnюcmu <<jфupa» u npoвoлoкu в .iлcкmpo-

ccч.iu, Hcccoювп. oиcpг. кoм., Maтepиялы к пcpвoмy иccсoккшoмy cъeздy пo вoпpoсaм 

тcxи. pcкoнcтpyкцпи дcлa свяви и pa.mитин слaбoтoчпoй пpo-ги, 1944. 
[5] X y p п i н Я . IV, Я к o в л e в H. JL, Memoíìы ineopuu цeлыx фyнкąuiï e paduoфiuuкc 

meopuu cв.ч.ìu u oitntuкe, Mocквa 1962. 
[()[ L o o n i i s L. H., An introduction to Abstract Harmonic Analysis, Ncдv York 1954. 

( . l ю м n c - I . , Hвedeuue в aбcmpaкmныiï гapмoнuчecкuiï, auaлuл, Moсквa 1956.) 
| 7 | H u d i n W., Fourier Analysis on Groups, Now York — London 1962. 

H(»с(мv(łd I)(Ч'cmb(ч' 27, 1964. 
Katedra matematiky 

Prírodovedeckej fakulty 
'Univerzity P. J. Safárika, 

Košice 

47 



ГEOPEMA O T C Ч E T O B Б A Б C T P Л K T H O M ľ A P M O H H Ч Ľ C K O M Л H A Л П З E 

Игopь K л y в a п e к 

1 * e з ю м e 

Пycть G — лoкaльнo кoмпaктнaя кoммyтaтивпaя rpyппa и F ee гpyппa (нeиpepыв-

ныx) xapaктepoв . Пycть II — диcкpcтнaя пoдгpyппa гpyппы G, aппyлятop Л кoтopoií 

(миoжecтвo xapaктepoв, знaчeпиe кoтopыx paвнo 1 нa вceм II) тoжe диcкpeтнып. Пycть, 

дaлee, fì — измepимoe пoдмпoжecтвo F, coдepжaщee пз кaждoгo клacca cмeжнocтп 

пo Л paвнo oдин элeмeнт. Oпpeдeлим фyнкцию çp paвeнcтвoм (4),гдe -mľ пaдлeжaщим 
oбpaзoм пopмиpoвaнпaя мepa Xaapa нa F. B cтaтьe дoкaзывaeтcя oлeдyющaн 

Teopeмa. Пycть f — фyикция из LҶC7) пpeoбpaзoвaпиe Фypьe кoтopoп oGpaщaeтcя 
в пyль внe мнoжecтвa fì. Toгдa f пoчти вcюдy paвнa пeкoтopoй нeпpopыiшoп фyнкцпи. 

Ecли f caмa нeпpepывнa, тo имeeт мecтo (6) paвпoмepнo пa G и в cмыcлe cxoдпмocти 

в Ľ-(G)\ кpoмe тoгo cпj)aвeдливa фopмyлa (7). 

Ecли пoлoжим G = Г = ( —• c o , co) , II = { . . . , — 2 h , — h , 0, h, 2һ, ...} (h • 0) 

и fì = {• —a, a) , гдe ah = .т, тo из зтoii тeopeмы вытeкaeт cпpaвeдлпвocть тeopeмы, 

извecтпoй в литepaтype пo тeopии инфopмaцич пoд нaзвaниeм тeopeмы oтcчeтoв Koтeль-

иикoвa. Б этoм cлyчae paвeнcтвo (6) пoлyчaeт вид (1). 
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