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Mat. čas. 24, 1975, No 3, 293—302 

ON THE CONNECTIONS ON THE PROLONGATIONS 
OF PRINCIPAL FIBRE BUNDLES 

ANTON DEKR.GT 

The prolongations of a principal fibre bundle were studied from different 
points of view by K o l a r [5], G o l l e k [4], V i r s i k [7]. For our purpose the 
approach by K o l a f seems to be the most suitable. The non-holonomic pro­
longation Wr(P) of a principal fibre bundle P(B9 G) has the structure of 
a principal fibre bundle of the symbol Wr(P) (B, 6r

n), n = dim B9 and can be 
identified with the fibre product Hr(B) © Jr(P). The structure group Gn 

coincides with the semi-direct product Lr

nxTn(G) with respect to the jet-action 
of Ln on *Tr

u(G). The canonical projection js

r(s < r) of r-jets into the underlying 
s-jets determines on Wr(P) the structure of a principal fibre bundle over 
WS(P). I n the present paper we study the connections on the latter bundle. 
The standard terminology and notations of the theory of jets, (see [3]), are 
used throughout the paper. Our considerations are in the category C00. 

1. Tn(M) denotes the set of the all non-holonomic r-jets of Rn into M 
with the source 0 e Rn. Let 1 ?g s < r and Y efs

n(M). Let tz denote the 
translation of Rn from 0 e Rn into z e R n . We p u t j(Y) = Jo'iYt;1). We have 
an injection j:Ts

n(M)->Tr

n(M). We will dedenote by (Tr

n(G))W the sub-
manifold j(Ts

n (M)). 
Let us recall tha t Gn is the set of the all 1-jets of local isomorphisms 

ip\ RnxG-+ RnxG with the source (0, e), where e denotes the unit of G, and 
t h a t Gr

n = (Gs

n)n

s. I t is well known that Lr

n coincides with (Ln)n

8

9 1 ^ s < r. 
Then we can identify 

Lr

n = Ln

s x Tr~8 (Ln). 

Let now e be the unit of Lr

n

s. Denote by i the mapping 

i:L'n-*Lu^ L'u-x Tffo), i(g) = (e, f0-g), 

where g denotes the constant mapping Rn -> g e Ln. We have 

i(gm) = (eJo'gm) = (c, (jo'sn) • (fo~%)) = (eJo'gi) (e>fo V2), 

where the dot denotes the group composition on Tr

n

8(Ls

n) and thus i is a group 
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monomorphism. The subgroup i(Ln) C Ln will be denoted by (L£)[g]. I t is 
easy to see that (Tr

n(G))M i s a subgroup of fr
n(G) and t h a t j : Tn(G) -> (fi(G))M 

is an isomorphism. Let h e (Lr
n)W, h = i(g) = (e,Jo~V)- Let u e (f [;r(G) )W, 

u =j(Y) = fo'^Yt^1). Let uh denote the jet composition. I t is obvious 

uh=jr,-*(Ygt-z
1)e(Tr

n(G))'s\ 

where Yg is the jet composition of g e Ln and of Y GTn(G). According to this 
jet action of (lr

n)W on (Tr
n(G))W we put 

(0;)M ^ ( Z y w x f t f f ) ) w C Qr
n = UnxTn(G) . 

I t is not difficult to see that 

f^(i,j):L^fn(G)^(Gr
n)W 

is an isomorphism of the groups Gn and (Gn)^. 

Lemma 1. The restriction of the homomorphism fs: 6r^-> Gn to the subgroup 
(Gn)^ is an isomorphism. 

T h e p r o o f is obvious. 
Denote by sQr

n the kernel of the homomorphism js
r'.Gn^Gn. The iso­

morphism ip = (i, j) is a splitting of the exact sequence 

0->*&r
n^Qn*±&n-+0. 

y> 

Now we can identify 

(i) &n=(8'n)Wxi&n. 

If 1 < s g r — 1, then the group r-1(3£ is a subgroup of s0n. Since r~10n — 
= kerjjr1, r"1o» is normal in s ^ . 

Denote by (sGrJr~» the group *Gr
n n (<3£)[r--]. Then 

jrl:«)['-i]^ir1(^) 
is an isomorphism. By the procedure used in (1) we get the identification 

(2) < = (*^)lr-» X r-lQn, 

where on the right side of (2) there is the semi-direct product of the groups 
with respect to the action h(g) = h~lgh of the group («<3£)-r-1- on the group 
r-lQr 

We shall denote by the #£, # £ « , (»#.D[r_11, r _ 1 # ; Lie-algebras of the 
groups Qr

n,(G
r
n)'

s\ (s&r
n)l>-1l,>~1Gn. I t follows immediately from (1) and (2) 

tha t 

(3) #; = (#;)[sl e (*§nyr-" ® »- i#;. 
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We shall use the identification 

(4) #;-x = <#;F ® e&w-u, 
which is induced by the isomorphism 

f'1 : ( 0 [ r " 1 ] X (Gr
n)M -E (QrJr~1]->Gr

n\ 

2. The space JVr(P) has the structure of the principal fibre bundle 
Wr(P)(Ws(P), sGr

n,f) with the base WS(P), with the structure group sGr
n 

and with the fibre projection j * . This structure will be denoted by Wr
s(P)( Wr(P)) 

always denotes the structure Wr(P)(B, Gn)). Let P be a connection on Wr
s(P), 

i.e. P is a ^ - i n v a r i a n t mapping Wr
s(P) -> J 1 Wr

s(P): r(wh) = r(w)h for any 
w e Wr

s(P) and h e sGn. Then the canonical decomposition 

(5) T(Wl(P)) = T0®T1@T2y 

where T0 or T\ at w e W\(P) denotes the tangent subspace of the orbit r^l(*r
n(w) 

or (sGr
nY

r~1](w), respectively, and T% is the horizontal tangent subspace 
determined by P(w)9 is given at any point w e Wr

s(P). 
Let g e Gr

n. Then g = j\0tefp9 where ip is such a local bundle isomorphism 
of i?» x #£ * that tp(o, e) = (0, q), e is the unit of Gn

1. Let X = f0y(t) e 
eT^RnXGl;1). Put 

(6) Qte)X=j1
oV{y{t))r1'}. 

Q is a representation of Gn on Pw © #^_1 (see [5]). £ induces the following 
bilinear mapping ' . If X e Rn ® # ; _ 1 and Y e §r

n, Y = j£y(0, then 

(7) - ( Y ) Z = j 1 o ( 7 ( 0 ) X . 

Let 0r be the canonical form on Wr
s(P) (see [5] or [2]). Let us recall tha t 

Qr is a 1-form on Wr
s(P) with values in Rn ® §r

n
x and that 0 r(Po) = 0, 

GrRg*(X) = Q(g-i)6r(X), XeT(Wr(P)), geGr
n. Let U e (s§r

nf
r^]. Let 7 = 

- 0 + U + Oe (§r
nY

s] ® (s§n)
[r~1] ® ^ # ; = # ; . Let 7 be the fundamental 

vector field on Wr
s(P) determined by Y. I t follows from the definition of 0 r 

that according to (4) 

(6) 0r(Y) = O + O + U eRn ® (#;)-«- © (s§r
nY

r~1] . 

If Yi, F 2 are fundamental vector fields determined by U±, ?72 e (s@r
n)

[r~1], 
then the field [Y i , Y2] is determined by [U±9 c72] and thus (6) yields 

0r [7l9 Y2] = [U1,U2]. 

Let pt: T( Wr
s(P)) -» T% be the natural projection, i = 0, 1, 2. Then 
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0[ = 6rpi 

is a 1-form on Wr
s(P) with values in 0 0 0 0 (•#;)-f-1- CRn © #;-1 . 

R e m a r k 1. If f, £ are (5C^)lr-il-fundamental vector fields on TVr(P), then 

rf©r(f,f) = d©I(f,C). 

Let co be a 1-form on a manifold ilF with values in a vector space V. Let ip be 
a 1-form on iW with values in the vector space of the linear transformations 
of V. We shall denote by [ip /\ co] a 2-form on M with values in V defined by 

[y A co] (X9 Y) = y(X)co(7) - tp(Y)o>(X) . 

As we recalled above, Q(X)9 (X e #JJ, is a linear transformation of Rn © #r
l"

1. 
Let <p be the canonical form of a connection P on Wr

s(P). Let X e T(JV£(P))-
Then q(<p(X)) is a linear transformation of Rn © # r _ 1 . We shall write 
<p(X)<9r(7) instead of Q(<p(X))0r(Y). 

Theorem 1. (The structure equations of the connection P.) Let cp be the form 
of the connection P on Wr

s(P)9 1 < s < r. Then 

(8) d&r = -[cp A (6r - 0[)] - 1/2 [01 0[] + D0r 

(9) d<p=-ll2[<p,<p] + 09 

where D0r = d0rp2 and 0 is the curvature form of P . 
Proof . The equation (9) is known from the theory of connection. To prove (8) 

we use the standard procedure. Denote by X or 7 a fundamental vector field 
on IVg(P) determined by an element of Lie algebra r _ 1 # ^ or (s#^)[r-1^ re­
spectively; further the letter Z will denote a horizontal s6r^-invariant vector 
field on lVr(P). Our problem is local. There is locally on Wr

s(P) such a basis 
of T( Wr

s(P)) determined by the vector fields of the types X, 7 , Z that ( 7 , Z] = 
= 0, [X9 Z] = 0. I t is sufficient to prove (8) for the elements of this basis. 
The definition of d0r yields 

d0r(£, C) = £&r(0 - £&r{£) - # r [ f > C] • 

Denote by Q the form on the right-hand side of (8). There are the following 
cases: 

a. | = Zx, f = Z2. Then d0r(Z1, Z2) = D0r(Z±, Z2) = Q(Z±, Z2). 
b. | = 7 , f = Z. Then [ 7 , Z] = 0 and 0 r( 7) is constant and thus X0r( 7 ) = 

= 0. Therefore d0r(Y9Z) = Y0r(Z). Let 7 be generated by 7 e ( ^ f - ^ 
Since Z is ^ - i n v a r i a n t , Lemma 3 of [1] (p. H I ) yields 

Y0r(Z) = -e(Y)0r(Z) = -<p(Y)0r(Z) . 

On the other hand Q(Y9Z) = -<p(Y)0r(Z). 
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c. I = X, ? = Z. Now [X, Z] = 0 and 0r(X) = 0. Further as in the case b. 
d. f = 7 i , f = r a . Then ©'(Fi), or(r2) are constant and Y^Yi) = 0, 

rio>-(r2) = 0. Now d0r(Y1,Y2) = -0r[Y1,Y2] = -[0r(Y1),0
r(Y2)] = 

= - [©[(Yi),©I(ra)]. On the other hand Q(YU Y2) = 1/2[0J, 0JJ (Y i , Y2) = 
= - [©KYi), o!r(r2)]. 

e. | = X, f = 7. Then or(X) = 0 and 0r(Y) is constant. Because »-i#; 
is an ideal in §r

n, [X, Y]eT0 and 0r[X, Y] = 0. Therefore d0r(X, Y) = 0. 
Since 0r(Y) = 0[(Y), we have Q(X, Y) = 0. 
/ . I = Xi , f = X2 . In this case, the values of the forms on the left and right-
hand sides of (8) are 0 . QED. 

Remark 2. Let g e *-i&r
n and Y e # r-1 . Then (6) yields 

Q(g)Y=Y. 

Therefore Q(X)(Y) = 0 for any l e ' - 1 ? ; . Let X, Y e {*§r
n)

rf-». I t follows 
from (7) that 

e(X)(Y) = adX(Y) = [X,Y]. 

Now one can prove easily the following relation 

[<pf\0r
1] = [0r

l,0[]. 

Then the structure equation can be modified as follows 

(8') dGr =-[<p/\0r]+ l/2[©;, 6[] + D0r. 

Remark 3. We can extend our considerations to the case s = 0, r = 2, 3, ... 
putting 

(<%)[0] = {*}* °G C Lr
n xTr

n(G) = &n , 

o&n = kerj?, 

where e is the unit of Ln, °G = {f0g : g e G, g : B" -> g} and j " is a group homo-
morphism Gr

n->G = {(0, g) eBnxG :geG}. Wr
0(P) is a principal fibre bundle 

of the symbol 

wr
0(P)(P9oGr

n,yr). 

It is not difficult to see that (8), (9) are the structure equations of a connection 
r on Wr

0(P). 

Remark 4. In the case of the principal fibre bundle TVr(P) fc 

^ - ( ^ D ^ x - 1 ^ . 

Let r be a connection on Wr(P). Then T± at w e Wr(P) in the decomposition 
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(5) is the tangent subspace of the orbit (&n)[r-i](w) and the notations of To, T<i 
do not change. Using 

- * ; = ( ^ ; ) [ r - i ] © ' - i # : . 

C"1 = (Of-11 

instead of (3), (4) and replacing (sGnY
r~1\ by (G^)[r~1] w e c a n repeat any 

of our considerations in Theorem 1 and Remark 2. Therefore (8) (or (8')) 
and (9) are the structure equations of a connection P on JVr(P). 

Consider now a connection P on lVy_1(P), r ^ 1. Since (r~1Gr
nY

r-1\ = 
= r-ify n (GrJr~^ = e, then Vi = 0 and 0J = 0. We obtain for (8) 

d0r = — [<p A ©r] + P>0r . 

That is the well-known equation from the theory of the linear connections. 
The connection P on Wr

r_t(P) will be said to be the r-linear connection on P . 
The form D0r will be called the torsion form of the r-linear connection P . 
The group r_1O^ is the set of all 1-jets of the local isomorphisms of the space 
Pnx6?^-1 with the source and the target (0, e). Let dim G^1 = k. We can identify 
locally R^Gl;1 with Rn+k and then r-ify is a subgroup of L\+k. I t follows 
from the definition of Wr(P) that Wr(P) can be considered in the sense of the 
local identification RnxGr{x = Rn+k as a reduction of H^W^P)) to the 
subgroup r - 1 ^ C Ln+k. Now, well-known the result from the theory of linear 
connections yields. 

Assertion. The r-linear connection T is without torsion if and only ifT(Wr(P)) C 

3. We first recall a construction by K o l a f (see [6]). Let M(N, G, n) and 
N(B, H, p) be two principal fibre bundles. Assume 

a) H acts as a homomorphism on the right on G: (g, h) -> gh, 
b) H acts on the right on M through (U, A)-> Uh in such a way that 

n(Uh) = (nU)h, 
c) (Ug)h = (Uh) (gh) for every U eM, geG, heH. 

Let HxG be the semi-direct product with multiplication 

(hi, gi) (h2, g2) = (h\h2, (gji2)g2) . 

The action U(h, g) = (Uh)g of HxG on M and the projection p^n impart 
to M a structure of a principal fibre bundle over B with structure group 
HxG. Denote this structure by M. We are going to study some properties 
of connections on N, M and M. 

Let P i be a connection on N and P2 be a connection on M(N, G, n). Let 
U eM, u = nU. Let Pi(^) = jlyi(y), r2(U) =jly2. We can define 

r2or1(U)=j1
xy2(y1(y)). 
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We obtain a global cross-section F2 o I\ : M -> J*(M), which is G == exG-
invariant because of 

A o ri{Ug) = Jl[Y2(Yi(y))]g = [A o ̂ (U^g, geG. 

Definition. The connection F2 will be called H-conjugate with the connection 
Fi if the cross-section r2 o Fi is (Hxe)-invariant. 

R e m a r k 5. If a connection F2 on M is H-invariant, i.e. 

r2(Uh) = r2(U)K, 

then r2 is H-conjugate with any connection Fi on N. 

Lemma 2. The connection F2 on M is H-conjugate with a connection F\ on N 
if and only if r2 o Fi is a connection on M. 

T h e p r o o f is obvious. 
Let q>i or cp2 be the connection form of F\ or F2, respectively. Let £#* or ^ 

be the Lie algebra of H or G, respectively. Then - ^ © ^ is the Lie algebra 
of H x G. Denote by i and j the following injections 

i:H->HxG, i(h) = (h,e2), 

j:G->HxG, j(g) = (ei,g), 

where ei or e2 is the unit of H or G, respectively. 
Denote by 

yi =E i^ . n*(pi, i.e. 

if X G Tv (M) then yi (X) = i* (pi (TT* (X)). 

Lemma 3. The form (pi is a n-horizontal (Hxe2)-equivariant vector l-form 
on M with values in 2/F ® 0 C J? ® <S. 

Proof . Let X eTu(Mnu). Then n*(X) = 0 and thus cpi is ^-horizontal. 
Further, being commutative, the diagram 

T(N) — - T(N) 
\(pi \(pi 

Ad(h !) 

induces the commutability of the diagram 

_ (h,e2) _ 

T(M) T(M) 

^ i Ad(k,eyi ^ 

• #e®o ^ yf®o, heH. 
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But it means that <pi is (I7#e2)-equivariant. 
The cross-section A o Fi determines on I f a distribution of ^-dimensional 

tangent subspaces F 2 . We have the decomposition 

T(M) = Vo ® Vi ® V2 , 

where Vo or Vi at U e M is the tangent subspace of the orbit (eixG)(U) or 
(Hxe2)(U), respectively. I t is obvious that 

(p1(V2) = 0, ?2(V2) = 0, ^ ( V 0 ) = 0 . 

Denote by <p2 the form j*<p2Po, where po is the natural projection Vo ® 
® Vi ® F 2 -> Vo, i.e. if XeTu(M), then 

<p2(X) =j*(<p2(Po(X))) e0®& CJf®&. 

Then the form 

<P = <f>2 + Cpl 

is a 1-form on M with values in J^ ® @. 

Lemma 4. Let X be a fundamental vector field on M generated by X e Jf ® <S. 
Then 

<p(Xv) = X for any U eM. 

Proof . I t is sufficient to consider two cases: 
a. Xu e Vo CTV(M) for any U eM, i.e. XeO®&. Then <p(Xu) = 

= <p2(Xu) = X.^ _ _ 
b. Xu e Vi CTV(M) for any U eM, i.e. l 6 / © 0 . Now, <p(Xu) = 

= cpi(Xu) = X. 

Corollary. If X e V0 ® Vi, then <p(q*X) = Ad(q^) (<p(X)) for any q e HxG. 

Lemma 5. The form <p is G-equivariant, i.e. <p(g%(X)) = Ad(g^1)cp(X) for any 
g e eixG and X e Tu(M). 

Proof . According to the Corollary of Lemma 4 it is sufficient to consider 
X e V2. Let geeixG. Then X and g%X are /^-horizontal and <p2(X) = 0, 
<p2(g*(X)) = 0. Since n*(X) and n*(g*{X)) are A-horizontal on N, cpi(g*(X)) = 
= 0, <pi(X) = 0. I t proves our assertion. 

Theorem 2. / / the connection A is H-conjugate with the connection A , then 
the form <p is the form of the connection J"̂  o r±. 

Proof . I t is obvious that cp is O°°-differentiable. Lemma 7 proves tha t op is 
(eixCr)-equivariant. We shall prove that <p is (Hxe2)-equivariant. This assertion 
is correct by the Corollary of Lemma 6 for X e Vo ® Vi. Le t X e V2 and 
h e Hxe2. Since r2 o f i i s a connection on M, the distribution of the tangent 
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subspaces V2 is (iIxe2)-invariant. Therefore ^i(X) = 0, <p2(X) = 0, (pi(h%X) = 
= 0, <p2(h%X) = 0 (that immediately yields <p(V2) = 0). I t proves tha t cp is 
(Hxe2)-equivariant. Then cp is (HxG)-equivariant. The assertion of Lemma 4 
completes the proof of Theorem 2. 

R e m a r k 6. Let M(B,F, pi) and N(B, H,p) be two principal fibre bundles 
over B. Let n : M -> N be a surjection and ipi: F -> F? be a such epimorphism 
of the structure groups F7 and II tha t 

7r(i//) = n(u)ipi(f) 

for any u e M and feF. Define a group C? by 

(10) 0->G->F-^—-> H->0. 

Then M has the principal fibre bundle structure of the symbol M(N, G, n). 
Let \p2 :H->F be a splitting of (10). Then identifying ip2(h)g = (h,g) we 
have F = HxG with respect to the action gh = [y^W]""1??^^). Define the 
action of H on M by 

uh = uy)2(h) . 

Then u(h, g) = u\p2(h)g = (w%)<7- Now it is easy to show tha t M(B, F, ju) 
follows from M(N, G, n) and N(B, H, p) by the Kolaf construction. 

The principal fibre bundles \Vr(P), WS(P) (o ^ s > r) together with the 
jet projections j * : Wr(P) -> ff*(P)J8

r: &r
n -> &n and the splitting ip = (i,j): &8

n = 
= L*nxf*n(G) ->Lnxfn(G) of the sequence 

o->*&n->Gn+=-»Q°n-+o 

naturally satisfy our above assumptions and thus one gets Wr(P) from W8 

and W8(P). Then Theorem 2 can be used for the construction of the con­
nection form of r on Wr(P) determined by the connections r2 and Fi on 
Wr

8 and on WS(P), where A is (<3£)M E= ^-conjugate with A . This con­
struction can also be used in the case of the connection on Wr(P) introduced 
by G o l l e k [4]. 
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