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ON THE CONNECTIONS ON THE PROLONGATIONS
OF PRINCIPAL FIBRE BUNDLES

ANTON DEKRET

The prolongations of a principal fibre bundle were studied from different
points of view by Koldt [5], Gollek [4], Virsik [7]. For our purpose the
approach by Koldr seems to be the most suitable. The non-holonomiec pro-
longation Wr(P) of a principal fibre bundle P(B, G) has the structure of
a principal fibre bundle of the symbol Wr(P) (B, G), n = dim B, and can be
identified with the fibre product Hr(B) @ Jr(P). The structure group G,
coincides with the semi-direct product Z7x7"(G) with respect to the jet-action
of I’ on T"(@). The canonical projection ji(s < r) of r-jets into the underlying
s-jets determines on Wr(P) the structure of a principal fibre bundle over
Ws(P). In the present paper we study the connections on the latter bundle.
The standard terminology and notations of the theory of jets, (see [3]), are
used throughout the paper. Our considerations are in the category C%.

1. 77(M) denotes the set of the all non-holonomic r-jets of R» into M
with the source 0 e R». Let 1 < s <r and Y eT®(M). Let ¢, denote the
translation of R* from 0 € R» into z € R». We put j(Y) = j5*(¥t;'). We have
an injection j:7%(M)->T7(M). We will dedenote by (7%(G))is! the sub-
manifold j(7%(2)).

Let us recall that G is the set of the all 1-jets of local isomorphisms
y: RnxG — Rrx@ with the source (0, ¢), where e denotes the unit of @, and
that G, = (G2).-%. It is well known that L! coincides with (Lf);®, 1 < s <7.
Then we can identify

L = Lrsx 7r0s (L2).
Let now e be the unit of Z7*. Denote by ¢ the mapping
it Ly > L, = Li°x T30, ig) = (e,4579) »
where g denotes the constant mapping R* —g € L. We have
i(g192) = (e, 55 °q1g2) = (&, (J5°91) - (45 °2)) = (e, 55°01) (& Jo *g2),

where the dot denotes the group composition on 77-%(L?) and thus ¢ is a group
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monomorphism. The subgroup #(Z2) C L will be denoted by (L’)ts1. It is

easy to see that (7(G))l# is a subgroup of 7"(@) and that j: 7%(G) - (T7(G))ts!
is an isomorphism. Let & e (L)), h = i(g) = (e, j5%9). Let u e (T%7(@))s),

u=j(Y) = ji*(Yt;"). Let uh denote the jet composition. It is obvious
h = j5*(Ygt;") € (T(G)P,
where Yg is the jet composition of g € L% and of ¥ € T%(G). According to this
jet action of (Z.)s1 on (T7(@))ls1 we put
(@)1 8 (Zn)six(T(@))s1 C @ = LxT(@) .

It is not difficult to see that
p = (,4): LxTs(@) - (G))

is an isomorphism of the groups G% and (GI)isl.
Lemma 1. The restriction of the homomorphism ji: G — G2 to the subgroup
(G2)1s 4s an isomorphism.

The proof is obvious.
Denote by *@’ the kernel of the homomorphism j%: G% — G:. The iso-

morphism y = (3, j) is a splitting of the exact sequence
0-G -G =G -0.
v

Now we can identify

(1)
If 1 <s < r— 1, then the group r1G", is a subgroup of sG",.
= kerj’"!, ~1G" is normal in G

Denote by (*G7)r-11 the group *G’ N (G7)ir-11. Then

G = (Gr)isix G .
Since r-1G! _

(G > GG
is an isomorphism. By the procedure used in (1) we get the identification
(2) oG, = (oG,)r-1 x 1G],

where on the right side of (2) there is the semi-direct product of the groups

with respect to the action %(g) = A~1gh of the group (sG;)i"~11 on the group

r—lg’

We shall denote by the G, g8l (sgnir-1, r-1g"  Lije-algebras of the
groups Gr, (Gr)isl, (sGr)ir-11, r-1G" . It follows immediately from (1) and (2)
that
(3) G = () @ (57,)r-11 @ r-1g!
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We shall use the identification
@) Gt = (F @ (G,
which is induced by the isomorphism

G (G X (@ = (@)rn > G

2. The space W7(P) has the structure of the principal fibre bundle
Wr(P) (Ws(P), sG', %) with the base Ws(P), with the structure group G"
and with the fibre projection j¢. This structure will be denoted by W’(P)(W(P))
always denotes the structure Wr(P)(B, G7)). Let I" be a connection on W(P),
ie. I' is a sG]-invariant mapping W(P) - JIW'(P): I'(wh) = I'(w)h for any
w e W(P) and h € 5G". Then the canonical decomposition

(5) TWyP)=To @71 7T,

where T'g or T'; at w € W(P) denotes the tangent subspace of the orbit r-1G" (w)
or (sGr)r1(w), respectively, and T is the horizontal tangent subspace
determined by I'(w), is given at any point w € W(P).

Let g € G.. Then g = j(lo,e)zp, where p is such a local bundle isomorphism
of R,x@,*that (o, e) = (0,q),e is the unit of . Let X = jly(t)e
ET(o,e)(Rn X g;—l). Put

(6) o)X = jo p(y®)g ™.

o is a representation of @7 on B" ® 4! (see [5]). ¢ induces the following
bilinear mapping g. f X e R» ® &7 and Y € &', ¥ = jp(t), then

(7 2V X = jaoly®)X .

Let Or be the canonical form on W(P) (see [5] or [2]). Let us recall that
Or is a 1-form on W!(P) with values in R* @ &' "' and that Or(To) = 0,
O'R,.(X) = 0(g7)0"(X), X e T(Wr(P)), g€ Gi. Let U € (s@,)r1). Let ¥ =
— 0+ U+0e(Z)@ (54711 @ 14" = 4" . Let Y be the fundamental
vector field on W’(P) determined by Y. It follows from the definition of @~
that according to (4)

(6) O"(Y) =040+ UeR*® ()@ (sG%)r-11.

If Y1, Y2 are fundamental vector fields determined by Ui, Us € (5&")r-11,
then the field [Y:, Y2] is determined by [Ui, Uz] and thus (6) yields

O [Y1, Ys] = [Us, Us].

Let p;: T(W'(P)) - T; be the natural projection, ¢ = 0, 1, 2. Then
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9, = 0rp,

is a 1-form on W'(P) with values in 0 ® 0 ® (*¢")r-1 CR" ® 4, L.
Remark 1. If & ¢ are (°G")ir-11-fundamental vector fields on W(P), then

dor (&, &) = dO;(,0) .

Let o be a 1-form on a manifold M with values in a vector space V. Let y be
a 1-form on M with values in the vector space of the linear transformations
of V. We shall denote by [y A\ ®] a 2-form on M with values in V defined by

[y A 0] (X, ¥) = p(X)o(Y) — p(Y)o(X) .

As we recalled above, g(X), (X € 4), is a linear transformation of R ® .
Let ¢ be the canonical form of a connection I" on W(P). Let X e T(W'(P)).
Then g(p(X)) is a linear transformation of R" @ &7 '. We shall write
P(X)07(Y) instead of g(p(X))Or(Y).

Theorem 1. (The structure equations of the connection I'.) Let ¢ be the form
of the conmection I" on Wi(P), 1 < s < r. Then

(8) dor = —[p A\ (67 — 0})] — 1/2 [6], 6] + DOr

(9) dop = —1/2[p, 9] + P,

where DOT = dOTp;y and D is the curvature form of I

Proof. The equation (9) is known from the theory of connection. To prove (8)
we use the standard procedure. Denote by X or Y a fundamental vector field
on W!(P) determined by an element of Lie algebra 1! or (s&")ir-11 re-
spectively; further the letter Z will denote a horizontal sG!-invariant vector
field on W7(P). Our problem is local. There is locally on W’(P) such a basis
of T(W'(P)) determined by the vector fields of the types X, ¥, Z that (Y, Z] =
=0, [X,Z] = 0. It is sufficient to prove (8) for the elements of this basis.
The definition of d@r yields

dor(&, {) = £0r(0) — LO7(§) — OE, 1] .

Denote by 2 the form on the right-hand side of (8). There are the following
cases:

a. £ =271, = Zs. Then dO"(Z1, Z2) = DO"(Z1, Z3) = NZ1, Z2).

b. £= Y, =Z.Then[Y,Z] = 0and O7(Y) is constant and thus XO"(Y) =
= 0. Therefore dO7(Y, Z) = Y@r(Z). Let Y be generated by Y e (s@)ir-1.
Since Z is sG-invariant, Lemma 3 of [1] (p. 111) yields

YOr(Z) = —g(Y)0r(Z) = —(Y)0"(Z) .
On the other hand Q(Y, Z) = —¢(Y)@"(2).
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c. §{=X,{=2. Now [X,Z] = 0 and O7(X) = 0. Further as in the case .

d. £ =Y1,{ = Yz. Then Or(Y,), O7(Y3) are constant and Y:07(Y;) = 0,
Y107(Y3) = 0. Now dO7(Y1, Y3) = —0Or[Y1, Yo] = — [07(Y1), O7(Y3)] =
= — [01(Y1), O1(Y2)]. On the other hand (Y1, Y2) = 1/2[0], O07] (Y1, ¥;5)=
= — [01(Y1), O1(Y2)].

e. £= X, {= Y. Then O7(X) = 0 and 07(Y) is constant. Because r-1g"
is an ideal in &}, [X, Y] €Ty and O7[X, Y] = 0. Therefore dO7(X,Y) = 0.
Since O7(Y) = O{(Y), we have (X, Y) = 0.

f. § = X1,{ = X,. In this case, the values of the forms on the left and right-
hand sides of (8) are 0. QED.

Remark 2. Let g € -1G7 and Y € g7-1. Then (6) yields
e@)¥Y =Y.

Therefore (X)(Y) = 0 for any X e 14", Let X, Y € (5&7)r-11. It follows
from (7) that

o(X)(Y) = adX(Y) = [X, Y].
Now one can prove easily the following relation
[p A O] =10, 07].
Then the structure equation can be modified as follows
(8" dOr = — [p A\ O] + 1/2[0], O7] 4 DO".
Remark 3. We can extend our considerations to the cases = 0,r = 2,3, ...

putting

(@) = (& oG C I xT7(Q) = &,

o, = ker j?,

where e is the unit of I, oG = {j’g : g € G, g : R" - g} and j? is a group homo-
morphism G", > G = {(0, g) € B"xG : g € G}. W}(P) is a principal fibre bundle
of the symbol

WyP) (P, oG, j7) -

It is not difficult to see that (8), (9) are the structure equations of a connection
I' on Wi(P).

Remark 4. In the case of the principal fibre bundle W7(P)
&, — (@yr-nx .
Let I" be a connection on Wr(P). Then 7'y at w € Wr(P) in the decomposition
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(5) is the tangent subspace of the orbit (GT)ir-11(w) and the notations of T, T's
do not change. Using
= (@yrne md;,

gyt = (g)r-

instead of (3), (4) and replacing (*G7)l"-1 by (G7)l"-11 we can repeat any
of our considerations in Theorem 1 and Remark 2. Therefore (8) (or (8'))
and (9) are the structure equations of a connection I" on Wr(P).

Consider now a connection I' on W! (P), r = 1. Since (1G)r-11 =
= 1G" N (G1)r-11 = ¢, then Vi = 0 and @] = 0. We obtain for (8)

dOr = — [p A\ O7] + DO’ .

That is the well-known equation from the theory of the linear connections.
The connection I" on W’_,(P) will be said to be the r-linear connection on P.
The form D@7 will be called the torsion form of the r-linear connection 7
The group r-1G, is the set of all 1-jets of the local isomorphisms of the space
R"xG"-* with the source and the target (0, e). Let dim 7' = k. We can identify
locally R"xG"™ with R™* and then r-1G" is a subgroup of L,.. It follows
from the definition of W7(P) that Wr(P) can be considered in the sense of the
local identification R"xG; ' = R™* as a reduction of HY(Wr1(P)) to the
subgroup r1G" C L},,. Now, well-known the result from the theory of linear
connections yields.

Assertion. T'he r-linear connection I' is without torsion if and only if [(Wr(P)) C
C HX(WrY(P)).

3. We first recall a construction by Kolai (see [6]). Let M(N, G, n) and
N(B, H, p) be two principal fibre bundles. Assume

a) H acts as a homomorphism on the right on G: (g, &) - gh,

b) H acts on the right on M through (U, k)— Uk in such a way that
a(Uh) = (=U)h,

c) (Ug)h = (Uk) (gh) for every Ue M, g @G, he H.
Let HzG be the semi-direct product with multiplication

(b1, g1) (h2, g2) = (h1h2, (g1h2)g2) .

The action U(h, g) = (Uh)g of HzG on M and the projection pem impart
to M a structure of a principal fibre bundle over B with structure group
Hz@. Denote this structure by M. We are going to study some properties
of connections on N, M and AI.

Let Iy be a connection on N and [z be a connection on M(N, G, n). Let

UeM, u=aU. Let I(w) = jly1(y), I'2(U) = jly.. We can define
Iy 0 I'(U) = Gzy2(r1(y)) -
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We obtain a global cross-section Iz 0 /[ : M — Jl(ﬂ ), which is G = ezG-
invariant because of

Iy 0 I'(Ug) = jily2(ni(y)lg = [0 I(U)lg, ge€@.

Definition. The connection I's will be called H-conjugate with the connection
I’y if the cross-section I'y o I'y is (HZze)-invariant.

Remark 5. If a connection I's on M is H-invariant, i.e.
Is(Uhk) = Iy (U)k,

then I'; is H-conjugate with any connection I, on N.

Lemma 2. The connection I's on M is H-conjugate with a connection I'y on N
if and only if I's 0 I'y is a connection on M.

The proof is obvious.

Let @1 or @s be the connection form of I'; or I'y, respectively. Let # or ¥
be the Lie algebra of H or @, respectively. Then s# @ ¥ is the Lie algebra
of H x G. Denote by ¢ and j the following injections

i: H—> HxG, i(h) = (b, e2),
j:G > HxG, jlg) = (e1,9),

where e; or ez is the unit of H or G, respectively.
Denote by

¢1 == i* . ﬂ*(pl, i.e.
if X € Ty (M) then ¢1 (X) = iy @1 (74 (X)).
Lemma 3. The form ¢1 is a m-horizontal (HXez)-equivariant vector 1-form
on M with values in ¥ ®0 CH# @ 9.

Proof. Let X € Ty(My). Then 7, (X) = 0 and thus @ is m-horizontal.
Further, being commutative, the diagram

hy

T(N) -> T(N)

22t V91

Adh 1)
H - — - H
induces the commutability of the diagram
— (h,e2) —
M)y —— T(M)

Ly Ad(h,e) R4

* H D0 —

> D0, heH.
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But it means that ¢ is (HZes)-equivariant.
The cross-section I’z 0 I'y determines on M a distribution of n-dimensional
tangent subspaces V2. We have the decomposition

) =Vo®Vi® Vs,

where Vo or Vi at U € M is the tangent subspace of the orbit (e;2G)(U) or
(HZez)(U), respectively. It is obvious that

71(Va) =0, @3(V2) =0, ¢1(Vo)=0.

Denote by @ the form jupspo, Where po is the natural projection Vo @
®V1i® Va— TV, ie. if X eTy(M), then

72(X) = ju(p2(po(X))) e 0O G CHA D .
Then the form
P = @2+ ¢1
is a 1-form on M with values in J# @ 9.
Lemma 4. Let X be a fundamental vector field on I generated by X e # ® 7.
Then
o(Xy) =X forany Uell.

Proof. It is sufficient to consider t_wo cases:
a. Xy e Vo CTy(J) for any UeM, ie. X€0@® Y. Then ¢(Xu) =

= §2(Xy) = X. _ _
b. XyeVy CTy(M) for any UeM, ie. XeHX ®0. Now, ¢Xy)=
= ¢1(XU) =X.

Corollary. If X € Vo @ V1, then ¢(¢+X) = Ad(q7?) (p(X)) for any q € HxQ.

Lemma 5. The form ¢ is G-equivariant, i.e. p(g4(X)) = Ad(g1)p(X) for any
ge 61}—(G and X GTU(M).

Proof. According to the Corollary of Lemma 4 it is sufficient to consider
X € V3. Let g €eizG. Then X and g,X are I'?-horizontal and ¢(X) = 0,
®2(94(X)) = 0. Since 7, (X) and 7, (94(X)) are I'i-horizontal on N, $1(g4(X)) =
= 0, @1(X) = 0. It proves our assertion.

Theorem 2. If the connection I's is H-conjugate with the connection Iy, then
the form @ is the form of the connection I's o0 I'y.

Proof. It is obvious that ¢ is C-differentiable. Lemma 7 proves that ¢ is
(e1x@)-equivariant. We shall prove that ¢ is (Hxez)-equivariant. This assertion
is correct by the Corollary of Lemma 6 for X € Vo @ V;. Let X € V2 and
h € Hxez. Since I'; 0 I'y is a connection on J, the distribution of the tangent
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subspaces V3 is (Hxez)-invariant. Therefore §1(X) = 0, @2(X) = 0, F1(heX) =
= 0, pa(hX) = 0 (that immediately yields ¢(V3) = 0). It proves that ¢ is
(Hxez)-equivariant. Then ¢ is (Hx@)-equivariant. The assertion of Lemma 4
completes the proof of Theorem 2.

Remark 6. Let M (B, F, u) and N(B, H, p) be two principal fibre bundles
over B. Let w : M — N be a surjection and y; : F — H be a such epimorphism
of the structure groups F and H that

a(uf) = w(wyi(f)
for any v € M and f e F. Define a group G by

¥

(10) 0>G-»>F - H—->0.

Then M has the principal fibre bundle structure of the symbol M(N, G, n).
Let ws: H—>F be a splitting of (10). Then identifying y2(h)g = (h, g) we
have F = Hx@ with respect to the action gh = [ya(h)]-1gy2(h). Define the
action of H on J by

uh = uys(h) .

Then u(h, g) = uyz(h)g = (uh)g. Now it is easy to show that M(B,F, u)
follows from M (N, G, n) and N(B, H, p) by the Koldf construction.

The principal fibre bundles W7(P), W5P) (0 < s > r) together with the
jet projections j2: Wr(P) — W5(P), §%: G, - G? and the splitting y = (3,7): G% =
= L:xT%(@) - L'zT"(G) of the sequence

8

r
>G>0
Y

0->G" > G &

naturally satisfy our above assumptions and thus one gets W7(P) from W,
and W#(P). Then Theorem 2 can be used for the construction of the con-
nection form of I" on Wr(P) determined by the connections I'; and I'; on
W’ and on Ws(P), where I'; is (G7)ls] = G%-conjugate with I'y. This con-
struction can also be used in the case of the connection on W7(P) introduced
by Gollek [4].
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