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RADICALS IN QUASI-COMMUTATIVE SEMIGROUPS 

HARBANS LAL 

A semigroup S is called quasi-commutative [3] if to every a,b eS there is 
a positive integer r = r(a, b) such t h a t ab = bra. A commutative semigroup 
is clearly quasi-commutative. J . B o s a k [1; p. 209] and R. S u l k a [4; p. 221] 
proved that if S is a commutative semigroup and J any ideal of S, then the 
Clifford, McCoy, Sevrin, Schwarz, and Luh radicals with respect to J denoted 
by B*(S), Mj(S), Lj(S), Bj(S), and Cj(S), respectively are equal to Nj(S), 
the set of all nilpotent elements of S with resj)ect to J. For their definitions, 
we refer to [1] and [4]. Further, J . E. K u c z k o w s k i [2] proved that if S 
is a CVsemigroup, then Mj(S) = Lj(S) = B*(S) = Nj(S) = Cj(S) for any 
ideal J of S. The purpose of this note is to extend the results of [1] and [4] 
to the class of quasi-commutative semigroups. 

Let x be any element of a semigroup S. The principal ideal of S generated 
by x will be denoted by J(x). Before coming to the main result we first prove 
two lemmas. 

Lemma 1. Let Sbea quasi-commutative semigroup. Then an ideal of S is prime 
if and only if it is completely prime [1]. 

Proof . Clearly it suffices to prove that any prime ideal of S is completely 
prime. Let P be any prime ideal and ab e P (a,b e S). Let x be any element 
of S. Then ax = xr. a, for some positive integer r > 1, since S is quasi-com­
mutative. Now axb = xr . ab e P, for all x e S. Hence aSb ^ P so t h a t 
J(a)J(b) ^ P9 and as P is a prime ideal, we get a e P or b e P, proving that P is 
a completely prime ideal. 

Corollary. Let S be a quasi-commutative semigroup and J any ideal of S. 
Then Mj(S) = Cj(S). 

Lemma 2. Let S be a quasi-commutative semigroup. Then for any x, y in S, 
J(x) . J(y) = J(xy). 

Proof . Clearly J(xy) c J(x) . J(y). Let aeJ(x) and b e J(y). Then 
a is one of x, sx, xt or sxt and b is one of y, s'y, yt' or s'yt', where s, s', t, t' e S. 
Using the fact that S is quasi-commutative, we obtain ab e J(xy) in every 
case; so that J(x) . J(y) c J(xy). Hence the lemma follows. 
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Theorem. If S is a quasi-commutative semigroup and J any ideal of S, then 
Bj(S) = Mj(S) = Lj(S) = B*(S) = Nj(S) = Cj(S). 

Proof . J . B o s a k [1; Theorem 2] proved that 

(1) Bj(S) c Mj(S) c Lj(S) c B*(S) c N,,(£) c Oj(S) 

for any semigroup £ and any ideal J of #. Now Mj(S) = Oj(#) by the above 
corollary. We next show that B*(S) ^ Bj(S). Let a e B*(S); then a™eJ 
for some positive integer m. By Lemma 2, [J(a)]m = J(am) s J , whence 
J(a) is a nilpotent ideal with respect to J and hence a e Bj(S). Combining 
î *(/Sf) c Bj(S) with ifJ(AS) = Cj(S), we get equality everywhere in (1). 
This completes the proof of the theorem. 
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