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FINITE VERTEX-TRANSITIVE PLANAR GRAPHS 
OF THE REGULARITY DEGREE FOUR OR FIVE 

BOHDAN ZELINKA 

This paper connects onto the study of finite vertex-transitive planar graphs 
begin in [1]. We shall consider only connected graphs; by the word graph 
is always meant a connected graph. We admit multiple edges, but not loops. 

A vertex-transitive graph is such a graph G tha t to any two vertices x and y 
of G there exists an automorphism cp of G such that cp(x) = y. 

A vertex-transitive graph is always regular, i. e. all of its vertices have the 
same degree, called the regularity degree of the graph. In [1] finite vertex-
transitive planar graphs of the regularity degree three were studied. Here 
we shall continue to study finite vertex-transitive planar graphs by investi­
gating the graphs of the regularity degree four or five. (A finite regular planar 
graph without multiple edges and loops cannot have a greater regularity 
degree than five.) As we study planar graphs, we may speak about the faces 
of a graph. 

1. Graphs with multiple edges 

In this item we shall state a theorem which will enable us to construct 
vertex-transitive graphs with multiple edges from vertex-transitive graphs 
of a smaller regularity degree. 

Theorem 1. Let H be a vertex-transitive graph without multiple edges, let 
there exist a decomposition of H into pairwise edge-disjoint regular factors 
Hi, H2, • • •, Hfc with the property that to any two vertices x, y of H there exists 
an automorphism <p of H such that (p(x) = y and (p(Ht) = Hi for i = 1, . . . , k. 
Let n be a one-to-one mapping of the number set {1, . . . , k} into the set of all 
positive integers. If to any edge of Hi we adjoin n(i) — 1 new edges joining the 
same vertices, we obtain a vertex-transitive graph G. Conversely, every vertex-
transitive graph G with multiple edges can be obtained by this method. 

Proof . Let cp be an automorphism of// such that <p(Hi) = Hi for i = 1 , . . . , k. 
For the sake of simplicity we consider cp only as a permutation of the vertex 
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set V of H. Any two vertices x, y of G are either non-adjacent, or joined by 
n(i) edges for some i, 1 ^ i ^ Tc. They are non-adjacent, if and only if they 
are non-adjacent in H. As cp is an automorphism of H, the vertices cp(x), cp(y) 
are non-adjacent in both G and H, if and only if x, y are non-adjacent in both 
G and H. The vertices x, y are joined by n(i) edges in G, if and only if they 
are joined in H by an edge belonging to Hi (i = 1, . . . , h). As cp(Hi) = Hi for 
i ==- 1, . . . , &, the vertices cp(x), <p(y) are joined in H by an edge belonging 
to Hi if and only if x, y are and thus they are joined in G by n(i) edges if and 
only if x, y are. We have proved that cp is an automorphism of G. As to any two 
vertices x, y of H there exists an automorphism cp of H such that cp(x) = y 
and cp(Hi) = Hi for i = 1, . . . , h, the graph G is vertex-transitive. 

Now let ffbea vertex-transitive graph containing multiple edges. Let V be 
its vertex set. Let P be the set of numbers p such that there exists a pair 
of vertices in G joined exactly by p edges. Let n be a one-to-one mapping 
of the number set { 1 , 2 , . . . , \P\} onto P. For i = 1, . . . , \P\ let Ht be the graph 
with the vertex set V in which two vertices are joined by an edge if and only 
if they are joined exactly by n(i) edges in G. Let H be the graph with the 
vertex set V in which two vertices are joined by an edge if and only if they 
are joined in G at least by one edge. The graph H is the union of the graphs Hi; 
the graphs Hi are pairwise edge-disjoint. Now let cp be an automorphism of G. 
If two vertices x, y are non-adjacent in G, they are non-adjacent also in H 
and the same holds for cp(x), <p(y). If the vertices x, y are joined in G by n(i) 
edges, they are joined in H by an edge belonging to Hi and the same holds 
for cp(x), cp(y). Therefore each automorphism of G is also an automorphism 
of H preserving each Hi. 

Note that the regularity degree of H is smaller than that of G. Thus we have 
obtained a method for constructing vertex-transitive graphs with multiple 
edges from vertex-transitive graphs of a smaller regularity degree. 

Here we shall not construct all possible finite planar vertex-transitive graphs 
of the regularity degree four or five with multiple edges. We shall show only 
some examples. In Fig. 1 we have some of these graphs with the regularity 
degree four. In Fig. la we see a graph obtained from a circuit by doubling all 
edges, in Fig. lb a graph obtained from a circuit of even length by tripling 
edges of one linear factor, in Figs, lc and Id we see graphs obtained from the 
graph of the cube by doubling the edges of one linear factor. 

In the following we shall study only graphs without multiple edges. 

2. The regularity degree four 

Let G be a finite vertex-transitive planar graph of the regularity degree four. 
Let v be a vertex of G. The vertex v is incident with four faces of G. By the 
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degree of a face we mean the number of edges belonging to the boundary 
of this face. Denote the degrees of the faces incident with v by d i , d%, d%, d^. 
These values are evidently the same at each vertex. 

Fig. la Fig. lb 

Fig. lo Fig. ld 

Lemma 1. Let G be a finite vertex-transitive planar graph of the regularity 
degree four, let n be the number of its vertices. Let any of its vertices be incident with 
the faces of the degrees d\,d^,dz, d±. Then 

n = 2l(d~1
1 + d? + d? + dl1 - 1) . 

Proof. If di, d2, ds, d± are pairwise different, then each vertex is incident 
exactly with one face of the degree dt for 1 ^ i ^ 4. Therefore the number 
of the faces of the degree dt is njdt and the number of all faces is ^(dj1 + 
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+ d'1 + d~x + d'1). If d± 7-= c?2 ¥=• dz = e^ =?-= d\, then each vertex is incident 
exactly with one face of the degree d\, one face of the degree d2 and two faces 
of the degree d$. Then the number of the faces of the degree d± (or d2) is n\di 
(or n\d2 respectively), the number of the faces of the degree d% is 2n\d$ = 
= n\ds + n\d±. The number of all faces is again n(d~x + d'1 + dg1 + d4

1). 

Fig. 2a 

Analogously in all other cases we can prove tha t the number of all faces is 
equal to this expression. The number of edges of G is 2n, because G has the 
regularity degree 4. Substituting into Euler's formula for planar graphs we 
obtain 

(i) n Щd? + d? + d;1 + d1 - 1). 

This lemma implies that in our study it is sufficient to restrict our consi­
derations to the values of d±9 d2id%, d± for which the expression (1) equals 
a positive integer. As we study only graphs without multiple edges, we take 
dt ^ 3 for i = 1, . . . , 4 . 

Without a loss of generality we may distinguish five possible cases: 

(a) d± = d2 = d% = d&. 
((}) d\ 7-= d2 = ds = d\. 
(y) di = ds -7-= d2 = d±. 

Fig. 2b 

274 



Fig. 2c Fig. 2d 

(d) d\ -7-- d2 # ^3 = d* 7^ d i . 
(e) d\,dz,dz, d± are pairwise different. 

In the case of (a) evidently all faces of G have equal degrees. I t is well 
known that there exists only one finite graph of the regularity degree four 
without multiple edges satisfying this, namely the graph of the regular octa­
hedron (Fig. 2a). In this case d\ = 3 and this is also the unique value of d\ 
in the case of (a) for which the expression (1) equals a positive integer. 

In the case of (/?) we have two possibilities: 

(a) d\ arbitrary, d2 = 3; 
(b) d\ = 3, d2 = 4. 

In the case of (a) we have n = 2di; we obtain infinitely many graphs and 
their construction is evident from the examples in Fig. 2b for values of d\ equal 
to 4, 5, 6. In the case of (b) we have n = 24; the corresponding graph is in 
Fig. 2c. In these cases, as well as in the following ones, we start the construction 
from one face and each moment we know the degrees of faces incident with 
each vertex and their cyclic order; thus the constructed graphs are uniquely 
possible. The proof of the vertex-transitivity can be made by finding cor­
responding automorphisms for all pairs of vertices; as the drawing has a high 
degree of symmetry, it is not too difficult. 

In the case (y) we have again two possibilities: 

(a) d\ = 3, d2 = 4; 
(b) d\ = 3, d2 = 5. 

In both these cases d\ = 3. Therefore each vertex of G must be incident 
exactly with two triangular faces. We shall prove that these two faces cannot 
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Fig. 2 

have a common edge. Let T\,Tt be two triangular faces incident with 
a vertex u; let them have a common edge uv. Let w be the vertex of T\ different 
from u and v. There exists an automorphism of G mapping w onto u, therefore w 
must be also an end vertex of an edge belonging to two triangular faces. 
As w cannot be incident with more than two triangular faces, this edge must 
be either uw, or vw. If it is uw (or vw), then u (or v respectively) is incident 
\7ith three triangular faces, which is impossible. Therefore no two triangular 
faces have a common edge. Let us construct a graph F(G) whose vertices are 
the triangular faces of G and in which two vertices are joined by an edge 
if and only if the corresponding faces have a common vertex in G. The graph 
F(G) is planar and regular of the degree three and all of its faces have the 
degree d% (i. e. 4 in (a) or 5 in (b)). In the case of (a) the graph F(G) must be 
the graph of the cube, in the case of (b) the graph of the regular dodecahedron. 
We go from F(G) back to G constructing the line graph of F(G). We obtain 
the graphs in Figs. 2d and 2e. 

Now consider the case of (d). First we prove that the case of d$ = 3 is 
impossible. Analogously to the case of (y) we prove that no two triangular 
faces have a common edge. Now let J7 be a triangular face of such a graph 
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Fig. 2f 

with the vertices u, v, w. The edge uv is the common edge of T and some non-
triangular face of G; let the degree of this face be d± (without a loss of generality). 
The edge uw is the common edge of T and some other non-triangular face. 
The degree of this face cannot be d\, because in that case the vertex u would 
be incident with two faces of the degree d\. Thus it is d%. But the edge vw 
is also a common edge of T and some non-triangular face. The degree of this 
face cannot be d\, because the vertex v would be incident with two faces 
of the degree d\, and it cannot be cZ2, because the vertex w would be incident 
with two faces of the degree d%. We have obtained a contradiction. Thus 
dz -^ 3. In the unique case in which the expression (1) equals a positive integer 
we have d\ = 3, d% = 5, d% = 4 (without a loss of generality). We can prove 
t h a t in a graph corresponding to this case no two tetragonal faces have a com­
mon edge. If it were so, then by omitting all edges which belong to two 
tetragonal faces we would obtain a disconnected regular graph of the degree 
three in which two connected components would contain one face of the degree 
equal to the number of vertices of this component and other faces of the degree 
three and five, and no two faces of the same degree have a common edge. 
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This is not possible. (The detailed proof is left to the reader.) Therefore two 
tetragonal faces can have at most one vertex in common. If by F(G) we denote 
the graph whose vertices are tetragonal faces of G and in which two vertices 
are joined by an edge if and only if the corresponding tetragonal faces have 
a vertex in common, then F(G) is a regular graph of the degree four and its 
faces have degrees three and five (it is obviously planar); each edge is incident 

Fig. Зa 

with one face of the degree three and one face of the degree five. Therefore F(G) 
is isomorphic to the graph in Fig. 2e. If we go back to the graph G, we obtain 
the graph in Fig. 2f. 

I n the case of (e), if all of the numbers d±, d%, dz, d& are greater than or 
equal to three, the expression (1) is never equal to a positive integer. Thus 
this case is impossible. 

We have obtained a theorem. 

Theorem 2. Fig. 2 gives a complete list of finite connected vertex-transitive 
planar graphs of the regularity degree four without multiple edges. 

3. The regularity degree five 

For this case a lemma analogous to Lemma 1 holds. 

Lemma 2. Let G be a finite vertex-transitive planar graph of the regularity 
degree five, let n be the number of its vertices. Let any of its vertices be incident 
with the faces of the degrees d\, dz, d$, d±,d$. Then 
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Fig. Зb 

Fig. Зc 
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n=2j U1 + d1 + di1 + d,1 + d1 - 1 

The proof is analogous to the proof of Lemma 1. 

Again we restrict our considerations to graphs without multiple edges; 

therefore dt ^ 3 for i = 1, ..., 5. There are three possible cases: 

(a) d± = c?2 = dz = dz = d$ = 3; 

(b) d\ = dz = dz = d* = 3, d$ = 4; 

(c) d\ = d% = c?3 = ^4 = 3, d$ = 5. 

I n the case of (a) we have n = 12; the required graph is the graph of the 
regular icosahedron (Fig. 3a). I n the case of (b) we have n = 24, in the case 
of (c) we have n = 60. The corresponding graphs are in Figs. 3b, 3c. For their 
vertex-transitivity and uniqueness see a remark in § 2, case of (/S). Thus we 
have a theorem. 

Theorem 3. The Fig. 3 gives a complete list of finite connected vertex-transitive 

planar graphs of the regularity degree five without multiple edges. 

Finite vertex-transitive planar graphs of the regularity degree greater than 
five must contain multiple edges; thus they are obtained by the method de­
scribed in Theorem 1. 
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