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INVOLUTORY PAIRS OF VERTICES IN TRANSITIVE GRAPHS 

BOHDAN ZELINKA 

A transitive graph is such a graph G tha t for any two vertices u,v of G 
an automorphism a of G exists so that oc(u) = v. An involutory pair of vertices 
in a graph G is such a pair u, v tha t u =£ v and there exists an automorphism 
a of G for which oc(u) = v, oc(v) = u. 

V. G. V i z i n g [3] has set the problem of characterizing transitive graphs 
which any pair of distinct vertices is involutory. Here this problem will not 
be solved completely, but we shall give a sufficient condition for such a graph. 

Before proving the theorem we wish to make some remarks concerning 
the terminology. We use the term "transitive graph", b u t various authors 
use other terms for this concept. V. G. V i z i n g uses the Russian term "pra-
vilnyi" which means "regular", but the term "regular graph" in English 
means something else —- a graph in which all the vertices have equal degrees. 
L. L o v a s z uses the term "symmetric graph", but this can lead to misunder
standings, because this term is used by other authors for other concepts. 
(For example, by this term P . E r d o s denotes a graph with at least one 
nonidentical automorphism, i. e. a much weaker concept.) 

Theorem. Let G be a transitive undirected graph, let 91(6?) be its automorphism 
group. Let there exist an Abelian subgroup 9Io(G) of %(G) such that for any two 
vertices u, v of G there exists an automorphism oc e 5Io(#) such that oc(u) = v. 
Then any pair of vertices in G is involutory. 

Proof . Let u be a vertex of G. Then any vertex of (?can be expressed 
as oc(u), where oce<H0(G). Obviously it may happen that oc(u) = P(u) for 
a G 2Io(G), P e 9t0(G), a -^ p. We shall prove that then also oc^u) = P^(u). 
As oc(u) = p(u), we have p-^u) = p~xp(u) = u. As 3lo(G) is Abelian, u = 
= ocp-1^). Therefore also oc^u) = oc^ocp-1^) = ^(u). As (oc-1)-1 = oc, (p'1)'1 = 
= p we can also prove that if oc(u) -^ fi(u), then a^(u) -^ /3_1(^). Now let u, v 
be two arbitrary distinct vertices of G. For any vertex x of G let fix be such 
an automorphism of G that px e 9Io(G), px(u) = x. Now let y be the mapping 
of the vertex set of G such t h a t y(x) = pvpx\u). First we shall prove that y is 
a bijection. Ify(x) = y(y) for some vertices x, y of G, then pvpx\u) = pvPyHu), 
i. e. p~x(u) = p'y\u) and px(u) = py(u), which means x = y; the mapping y is 
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injective. Assume that there exists a vertex y of G for which V ~£ yix) for 
any x. We have y -^ ^x

x(u), this means fi~\y) ^~ Px~(u), because /5;1 is 
a bijection. But if we denote z = ^~(y), then z = fiz(u) and we have (iz(u) =£ 
-?-= fix\u) for any a;. Let w = fS~z~(u); we have w = /M^) -= P~-(u), therefore 
/ ^ V ) = 0Z(M) = z = £ ; % ) . This means 1/ =- fivpw\u) = y(w), which is a con
tradiction with the assumption y -/-= y(a;) for any a;. Thus y is a bijection. Now 
we shall prove that y e 31(G). Let two vertices x, y be joined (or not joined) 
by an edge. We have x = fix(u), y = fiy(u). Then u, (3x~Py(u) are joined (or not 
joined respectively) by an edge and, as /J"1/^ = fiyfc1 also Px~(u), (3~-(u) are 
joined (or not joined, respectively) by an edge. Since also f}v is an automorphism, 
y(x) = pvpx~(u), y(y) = PvPy-(u) are joined (or not joined, respectively) by 
an edge and y is an automorphism of G. We have y(u) = Pvfi~u~(u) = fiv(u) = v, 
y(v) = pvp'1^) = u and u, v form an involutory pair of vertices. As u, v were 
chosen arbitrarily, any pair of vertices in G is involutory. 

For directed graphs this theorem does not hold. Let G be a cycle (directed 
> 

circuit) of the odd length r, let u\, ..., ur be its vertices, let utui+i for i — 1, . . . , 
> 

r —- 1, uru± be its edges. The automorphism group of G is a cyclic group of the 
order r, therefore it is Abelian. I t is generated by the mapping a such that 
OL(UI) = ut+i for i = 1, . . . , r — 1, oc(ur) = u±. For any two vertices u\, uj 
there exists exactly one automorphism of G which maps ui onto Uj, namely a^~K 
But OLI-^UJ) = u^-i, where the subscript 2j — i is taken modulo r. If u2j-t = 
= ut, this means that 2j — i == i (mod r), i. e. j = £ (mod r)9 which means 
j = i. Thus no pair of distinct vertices in G is involutory. 

The result of the Theorem is a generalization of the results in [1] and [2]. 
In [1] and [2] a proof is given tha t if the automorphism group of a transitive 
graph is Abelian, then it is isomorphic to the direct product of h copies of 
a cyclic group of the order 2, where H s a positive integer different from 2, 3, 4. 
As each non-unit element of such a group has the order 2, any two vertices 
of such a graph are involutory. 
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