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Matematicky €asopis 21 (1971), No. 2

ON THE PRODUCT OF VECTOR MEASURES WITH VALUES
IN SEMIORDERED SPACES

BELOSLAV RIECAN, Bratislava

There are several papers by M. Duchon (resp. I. Kluvanek) devoted
to the study of the product of vector-valued measures (see [1], [2], [3], [4]).
Here we should like only to present some ideas or concepts concerning this
object. We study measures with values in linear lattices (especially the so-
called regular K-spaces) and we present two methods.

A linear lattice X is called a regular K-space (see [5], [6]) if it is conditionally
complete and if for any sequence {{a’}> ,}7, of convergent (to an af) sequences
there is a comrhon regulator of convergence u, i.e. to any number 6 > 0
and any 4 there is N; such that |a!, — a’| < éu for any n > N;. (A very simple
example of a regular K-space is the space of all measurable functions on <{a, b).)

Finally some fixed notations: (8, &), (T, ") are given measurable spaces,
D={EXF:Eec¥, FeJ}, and X, resp. & X J, is the ring, resp.
o-ring, generated by 2.

Let X, Y, Z be linear lattices (K-lineals), # be a mapping n: X X Y > Z
satisfying the following conditions:

1. (e + D, ¢) = n(a, c) -+ a(b,c) forall a,be X, ce Y,
a(a, b + ¢) = a(a, b) + n(a,c) forall ae X, b,ce Y.
2. TO<La,0<b,acX,be Y, then O < n(a, b).
3. 0<ayn"a,0=<0b, /b (vesp. ar N\ a, by, N\ b), an, a€X,by,be Y,
then z(ay, bn) 7 #(a, b) (resp. w(an, by) X n(a, b)).

We shall have two positive measures o, f with values in X, resp. Y, o : & —
- X, f:7 — Y. And we shall construct a measure y on & X J such that
Y(E X F) = a(«(E), B(F)) for any E €&, FeJ . Sometimes we shall admit
an ideal element oo as a possible value of «, §, y. In the case we shall write

e.g. a: > X* If a:F—>X (i.e. a(E) + 0 a(f)e X for any E e &),
we say also that « is a finite measure.
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Lemma 1. For any Ee€, FeJ put y(B X F)= n(«(l), BF)). Then
y: D —> 7 is an additive set function.

m

Lemma 2. Let A = |J Ai = [ By, 4i, resp. B; be pairwise disjoint, Ai € 2,
i-1 j-1
Bye 9. Then

217(1‘11:) = ;V(Bf)-

Proofs of Lemmas 1 and 2 can be obtained similarly as for scalar measures
and therefore we omit them. Note only that Lemmas 1 and 2 hold even if X, ¥
and Z are arbitrary abelian groups and 7: X X Y — Z satisfies 1.

Deﬁnition 1. For EX FED we define y(B X F) = n(a(l), ﬁ(F)) For A €
ER, A= U A, A€ D, A; pawwzse disjoint we define y(4) = V > y(4i).

1=1 z 1
Now we must make some further assumptions concerning « and j.

Definition 2. Let S be a topological space, € be a system of compact subsets
of S, U be a system of open subsets of S, € YU < &. A function «:F - X
1s called regular if to any E € & there is a non-decreasing sequence {Cr} of sets
of € and a non-increasing sequence {Uy} of sets of U such that

o(E) = lim a(Cp) = lim «(Uy) .
Theorem 1. If «, f are regular finite positive measures and Z is a regular
K-space then y is g-additive on 9.
Proof. Let A =\J 4n, A€D, Arne 2P, A, pairwise disjoint, 4 =

n=1

=FE X F, Ay, = E, X Fy. According to the regularity of « and f there are
sequences {C;}, {D;} belonging to corresponding systems of compact sets
such that

Cie /1 B, Dy /' F, o(Ci) /' o(H), p(D1) /' B(F)
Hence according to the axiom 3
y(Ci X Dy) /' y(E X F).
Similarly choose U7, V7 such shat
USNCE,, VENCF,, p(UF X V)N (B, x F,) (i o).

Let « be a.common regulator of convergence of all the sequences {y(U} x
X VIle:,, m=1,2,...), {»(C X Dy}>,. Then to any number ¢> 0
there is i such that (B X F) — y(C;, X D;) < 6/2 u.
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Further there is ¢(n) such that

YWimy X Viw) — v(By X F,) <

u.
on+1

Put U, = Uﬁn), Vo= V?(n), C=0,,D= D,,. Then
(1) CXDcEXF=UE,XxFn<cJUnX Va,

n=1 n=1

)
(2) y(EXF)—y(CXD)<‘2—u,
and
)

Since C' x D is compact, U, X V, open (n = 1,2, ...) we get from (1) that
there is N with

N :
CxD<cJUnX V.
n=1
From the additivity of y the subadditivity follows, hence '

N

n=1

Now recall another consequence of the additivity of y:
(5) yE X F) =3 y(Ba X Fa) .
n=1

According to (2), (3), (4) and with regard to (5) we have

N
b b
(B X F) < y(C x D) +?u§§yU X Vn)+—2u<
n=1

N N
b b)
<S‘7(En X Fn) + (z 2n+l)u +?u§
A

n=1 n=1
o N+1 0
~ 0
ézy(En X Fp) + (z“)—n)u ézy(En X Fa) -+ ou.
n=1 n=1 - n=1



From the last inequality we obtain

M8

y(E X F)< > p(BEn X Fa),

=
[
-

hence according to (5) also

NMs

YE X F)=> y(En X Fy) .

3
i
=

Theorem 2. If y is o-additive on 2 then y is o-additive on R (Z being
arbitrary ).

m

Proof. Let 4 = U Ai, Aie R, A € R, A; pairwise disjoint, 4 = U B;, B

i=1

disjoint, B;e &, 4; = U Az, A" € @, A? disjoint.

n=1
Then
m  © ki o m ki ©
= > y(By) = ZZZ (4} N B)) EZZ (A* N B)) = %y(A,.).

Lemma 3. Let € (resp. %) be closed under countable intersections (resp.
untons) and finite unions (resp. intersections). Let T be a positive finite measure
with values in a reqular K-space. If {E,}7 | is a monotone sequence of regular
sets, then lim E, is also regular.

Proof. We prove the assertion for descending sequences. If K, 7 K,
E, are regular (n = 1, 2, ...), then there are C)' compact, U, open such that
Cr c Ol Unc UMt (m=1,2,...) and ©(H,) = lim t(C}) = lim «(U}).

Let u be a common regulator of convergence of all {z(C})},._;, all {z(U;")}m 1
and {t(&,)}r,. Then to any positive integer k there is such an n = n(k)
that ©(E) — v(E,) < (1/k)u and to the n there is such an m that =(#,) —

j
— 7(C}) < (1/k)u. Now if we denote the set O by Cy and put D, = |J C;
i=1

(j=1,2,...), we obtain a sequence {D,};_; of compact sets such that D; <
< Dy (1=1,2,...) and (&) = lim ©(Dy).
On the other hand choose U, = Uy such that t(U,) — t(lin) < (627")u.

Then U = UUn:;UE’n__E'andT(U—r gZ(tUn——rEn))géu.

n=1

Theorem 3. Let «, f§ be regular finite positive measures, Z be a regular K-space.
Then there is Just one positive measure y: S X I — Z such that

VB X F) = a((E), p(F))
foranyEe S, FeT.If &, T are o-algebras, and € (resp. U ) is closed under
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countable intersections (resp. unions) and finite unions (resp. intersections),
then the measure y is regqular.

Proof. Let y be the function y: #— Z defined in Definition 1. Then y
is a measure according to Theorem 1 and Theorem 2. According to [7], Theo-
rem 11, there is just one extension (denote it by the same letter y) of » to
& x 7, which is a measure. Hence the existence is proved.

1If ris anothm measure on & X 7, identical withy on 2 (i.e. 7(F X F) =
= y(B X F) == a(a(F), f(F')), then ev1dent1y T=19 on % and therefore
T = y according to [7], Theorem 11.

Finally we prove that v is regular assuming &, .7 algebras. y is evidently
regular on Z. Denote by ¢ the family of all regular sets. Then " > %
and & is a monotone family according so Lemma 3. Hence # 5 & X J.

Examples: 1. X =Y =27 = (—o0, ©), #(x, y) = xy. 2. X, Y any regular

K-spaces, Z=X X Y, (x,y) < (u,v)<= 2z =u and y < v; a(z, y) = (x, y).

Theorem 4. Fvery finite, positive vector-valued Baire measure y in a locally
compact Hausdorff space is reqular.

Proof. Denote by @ the family of all regular sets, by ¢ the family of all
compact (f5 sets. Evidently ¢ < @. The fact that ¢ is a ring follows from
the following property: If C <« E <« U, D < F < V, then

CUD<cEUF<cUUV,(UuV)—(EUF)< (U—E)u(V—F)),
HEUF)—(CuD)c (B—C)ul— D)
and
C—V<cE—-—F<U—-D,(U—-D)— ¥ —F)<(U—E)u(F —D),
E—F) —(C—-V)cs(E—-CuU((V—F).
Finally 0 is a ¢-ring according to Lemma 3. Hence @ contains all Baire sets.
2

Now we shall write n(x, y) = 2y and we shall explicitely assume only that
wn:X X Y—>Z. Pet (S, &) be a measurable space «:% - X be a vector-
valued measure. We shall assume to have ,,a convenient integration theory*,

i.e. a set F of integrable functions f:S— Y and an integral J(f) = [fd«
for f e &, fulfilling some properties.

Definition 3. Let & be a family of functions f: S— Y and J be a function
J + F - Z satisfying the following conditions:

L. If fis simple, f = 3 c;yg,, then fe F, J(f) = > cia(ly).
i=1 0=
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2. Iff=0, feF, then J(f) = 0.

3. Iffn = O,fn Ef(’n =1,2, ...)andfn/’f(resp.fn \f) {J(fn)} 28 bounded)
then fe F and J(fn) > J(f).

4. J(f+9) = J(f) + J(9) for any f,ge F

Under these assumptions we can construct a product of any two vector-
valued measures « : & — X, : .7 — Y as a measure with values in Z. We shall

write also J(f) = [fda = [f(x) da(z)

Theorem 5. Let (S, %), (T, ) be measurable spaces, I be a o-algebra,
a, B be positive vector-valued measures, o1 S - X, f: T - Y, f be finite. Then
there is just one vector-valued measure y : & X I — Z such that y(B x F) =
= «(E)p(F) foral Ec ¥, FeT.

Proof. For 4 €% X J and xe 8 put A% = {y: (x, J € A} and fa(z) =
= B(4%). Evidently f4 : 8 — Y. First we prove thas f4 € &#. Put

={AdeS X T :facF}.

If A=EXF, Eec¢¥, Fe7, then fa= ygf(F') and faeF. If AR,

Ad=vAd;, Aie D, A; disjoint, f, = > f, € F. Hence we see that # < 4.

X" is a monotone system according to the Axiom 3, hence ¥ 5 & x 7.
Now we can define a function y : & X J — Z by the equality

_[ﬂ Ax dot fA
y is a measure by the axioms 3 and 4. Further for £ € &, F € .7 we obtain
E X F) = [B(E x F)) = [xeB(F) da = o(E)B(F) .

Let 7 be any vector-valued measure v : & X J — Z such that 7(F X F) =
= a(E)B(F), i.e. 1(4) = y(A)for A € . Thenalsor(4) = y(A)for 4 € #.The
family ¥ ={4e¥ x J :y(4) = t(4)} is monotone, hence y =7 on
MA) = S (R) =S X T

Now we shall present an example of a ,,convenient integration theory‘.

Theorem 6. Let X be a regular K-space, (S, ), (T, T) be measurable spaces
I, S be c-algebras. Let a:F — X be a positive finite vector-valued measure,
B : 7 - R a positive real-valued measure. Then there is just one measure y : & X

T — X such that y(E X F) = B(F) a(E) for every l e &, F e T

Proof. We want to apply Theorem 5. Here Z = X, Y = R. We must only
construct a family & of real-valued functions defined on § and an operator
J: F > X,

For a simple function f= 3 c;xz (E; disjoint) put Jo(f) = > cix(H) € X.
i=1

i=1
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Evidently, Jo(f) + Jo(g) = Jo(f + g) and f = 0 implies Jo(f) = 0. Moreover,
we prove that f, 0 implies Jo(fs) X 0.

Let 6 be a positive real number, ¢, = {x : fo(x) = 6}, M = max fi. Then
Gn > Guir (n=1,2,..)), [} Gu = 0, hence a(Gyr) \ 0. Further, we have

n=1

Jo(fn) = Jo(an(.',.) + Jo(anS-G,.) < Ma(Gy) + 0x(8S) .

Now according to Theorem 9 of [7] there is a set & including all simple

functions and an extension J of Jy satisfying conditions 2,3 and 4. J fulfills
evidently also condision 1.
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