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Matematický časopis 21 (1971), No. 2 

ON THE PRODUCT OF VECTOR MEASURES WITH VALUES 
IN SEMIORDERED SPACES 

BELOSLAV RIECAN, Bratislava 

There are several papers by M. D u c h o i i (resp. I. K l u v a n e k ) devoted 
to the study of the product of vector-valued measures (see [1], [2], [3], [4]). 
Here we should like only to present some ideas or concepts concerning this 
object. We study measures with values in linear lattices (especially the so-
called regular K-spaces) and we present two methods. 

A linear lattice X is called a regular if-space (see [5], [6]) if it is conditionally 
complete and if for any sequence {{^}?T=i}?li °f convergent (to an a1) sequences 
there is a comtiion regulator of convergence u, i. e. to any number d > 0 
and any i there is Nt such that |a^ — a*| <C du for any n> Ni. (A very simple 
example of a regular K-space is the space of all measurable functions on (a, by.) 

Finally some fixed notations: (8, Sf), (T, ST) are given measurable spaces, 
2 = {E x F : E G £f, F e J~}, and 0t, resp. Sf X ST', is the ring, resp. 
rr-ring, generated by Q. 

1 

Let X, Y, Z be linear lattices (If-lineals), n be a mapping n: X X Y ->Z 
satisfying the following conditions: 

J. n(a + b, c) == n(a, c) + n(b, c) for all a, b e X, c e Y, 

n(a, b + c) = n(a, b) + n(a, c) for all aeX,b,ce Y. 

2. If 0 ^ a, 0 ^ b, a e X, beY, then 0 ^ n(a, b). 

3. If 0 5g an / a, 0 ^ bn / b (resp. an \ a, b n \ b), an, a e X,bn,b e Y, 

then n(an, bn) / n(a, b) (resp. n(an, bn) \ n(a, b)). 

We shall have two positive measures a, /3 with values in X, resp. Y, oc : SP -> 
-> X, ft : S7~ -> Y. And we shall construct a measure y on Sf X ST such tha t 
y(E x F) = n((x(E), (3(F)) for any E eS?, F e ST. Sometimes we shall admit 
an ideal element oo as a possible value of oc, /3, y. In the case we shall write 
e .g. oc:Sf->X*. If a : Sf -> X (i.e. oc(E) * oo oc(E) e X for any EeSP), 
we say also that a is a finite measure. 
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Lemma 1. For any Ee£f, F e 2T put y(E x F) = JZ(OC(E), fi(F)). Then 
y : 3) -> .Z is an additive set function. 

n m 

Lemma 2. Let A = ( J Ai = ( J Bj, Ai, resp. Bj be pairwise disjoint, Ai e @, 
?;=i j = i 

Bj G 2. Then 

n m 

I y(At) = 2 y(Bj) • 
i= l j=l 

P r o o f s of Lemmas 1 and 2 can be obtained similarly as for scalar measures 
and therefore we omit them. Note only that Lemmas 1 and 2 hold even if X, Y 
and Z are arbitrary abelian groups and TZ:X X Y -> Z satisfies 1. 

Definition 1. For E x F e9 we define y(E x F) = n(oc(E), fi(F)). For A e 
m m 

e 01, A = ( J Ai, Ai e 2), Ai pairivise disjoint we define y(A) = V y(Ai). 

Now we must make some further assumptions concerning a and /?. 

Definition 2. Let S be a topological space, ^ be a system of compact subsets 
of 8, °ll be a system of open subsets of 8, & U °ll c: <f>. A function oc : Sf -> X 
is called regular if to any E e £f there is a non-decreasing sequence {Cn} of sets 
of & and a non-increasing sequence {Un} of sets of °ll such that 

<x(E) = lim <x(Cn) = lim <x(Un) . 

Theorem 1. If oc, /3 are regular finite positive measures and Z is a regular 
K-space then y is o-additive on Q). 

00 

Proof . Let A = ( J An, AEQ), Ane2), An pairwise disjoint, A = 
71=1 

= E X F, An = En X Fn. According to the regularity of a and /? there are 
sequences {Ci}, {A} belonging to corresponding systems of compact sets 
such tha t 

Ct / E,Dt/ F, oc(Ct) / «(E), p{Dt) / 0(F). 

Hence according to the axiom 3 

y(d X Dt) / y(E x F) . 

Similarly choose U™, Vn
{ such shat 

U»\En, V^\Fn,y(U^X Vn
i)\y(EnxFn) (i-> oo) . 

Let u be a common regulator of convergence of all the sequences {y(v" X 
X F ? ) } M . (» = 1 , 2 , . . . ) , {y(C X Di)}ti- Then to any number <5 > 0 
there is i0 such t ha t y(E X F) — y(Cu X DJ < (5/2 u. 
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Further there is i(n) such that 

ľ(Щ«) x V\n)) - y(En xFя)<—u. 

P u t Un = Un

m, Vn = Vn

m, C = Cu, D = Dio. Then 

(1) CxD<zExF=\JE»xF»c:\Ju»xV», 
П = l П = l 

<5 
(2) y(E xF)-y(C X D) < ~ u , 

-w 

and 

d 
(3) y(Un X Vn)-y(En X Fn)< u, (n = 1,2,. . .) . 

2^+i 

Since C X D is compact, C7» X F» open (n = 1, 2, ...) we get from (1) tha t 

there is N with 

C X D a (j Un X Vn . 
n=l 

From the additivity of y the subadditivity follows, hence 

N 

(4) y(C X D)^2Y(Un X Vn). 

n=l 

Now recall another consequence of the additivity of y: 

00 

(5) y(E XF)^2 V(E* X Fn) . 
n=l 

According to (2), (3), (4) and with regard to (5) we have 

N 

d V d 

y(E X F) < y(C X D) + — « _= > y(*In X Yn) + — « < 
»-i 

JT -V 

<^yftxf„) + ( ^ ) « + { ^ 
n = l n=l 

co -У+l æ 

< \ y(En x F») + I N — U ší y У(̂ n X /») + ðм. 
n-Л n-1 n - 1 
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From the last inequality we obtain 

y(E x F) = 2 Y(E» X Fn) , 
n=l 

hence according to (5) also 

y(E XF) = f y(En X Fn) . 
w=l 

Theorem 2. If y is a-additive on Q) then y is a-additive on 2ft (Z being 
arbitrary). 

oo m 

Proof . Let A = ( J A(, At G 3ft, A e 3ft, At pairwise disjoint, A = ( J Bj, Bj 
i=i ' j=i 

ki 

disjoint, Bj e 3, At = \J An, An e Q), An disjoint. 
n= i 

Then 

m cc ki co m ki oo 

y(A) = 2 y(B}) = 2 2 2 v{Ai n BS) = 2 2 2 r^ln ^) = 2 vW • 
j=l i=l n=l i=l j=l n=l i=l 

Lemma 3. Let <£ (resp. °ll) be closed under countable intersections (resp. 
unions) and finite unions (resp. intersections). Let x be a positive finite measure 
ivith values in a regular K-space. If {En}n=1 is a monotone sequence of regular 
sets, then lim En is also regular. 

Proof . We prove the assertion for descending sequences. If En / E, 
En are regular (n = 1, 2, . . . ) , then there are C™ compact, Un open such tha t 
CI c= C™+\ u: c U^1 (m = 1, 2, ...) and x(En) = lim x(C^) = lim x(U%). 

Let u be a common regulator of convergence of all {x(Cn)}™=1, all {x(Un)}™=1 

and {x(En)}™=1. Then to any positive integer k there is such an n = n(k) 
tha t x(E) — x(En) < (l/k)u and to the n there is such an m tha t x(En) — 

- T ( G ? ) < (ljk)u. Now if we denote the set C™ by Ck and put Dj = \J C{ 
i= l 

(j = 1, 2, . . . ) , we obtain a sequence {Dk}™=1 of compact sets such that D% <= 
c J5<+i (i = 1,2, . . .) and T ( # ) = lim x(Dk). 

On the other hand choose Un = Un such that x(Un) — x(En) < (62~n)u. 

Then c 7 = Q ^ n 3 U ^ = ^ a n d <u) ~ T(E) = f (T(^) ~ T(^)) = du-
n = l n = l w = l 

Theorem 3. Let oc, /? fee regular finite positive measures, Zbe a regular K-space. 
Then there is just one positive measure y\ 5P X £F -> Z such that 

Y(E xF) = TZ(OC(E), 0(F)) 

for any E e £f, F e &~. If &\ ST are a-algebras, and <€ (resp. °li) is closed under 
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countable intersections (resp. unions) and finite unions (resp. intersections), 
then the measure y is regular. 

Proof . Let y be the function y : 01->Z defined in Definition 1, Then y 
is a measure according to Theorem 1 and Theorem 2. According to [7], Theo­
rem 11, there is just one extension (denote it by the same letter y) of y to 
S? X iF, which is a measure. Hence the existence is proved. 

If T is another measure on SP X ST, identical with y on 3) (i. e. T(E X F) = 
— y(E x F) = n((x(E), p(F)), then evidently x = y on 01 and therefore 
r = y according to [7J, Theorem 11. 

Finally we prove that y is regular assuming Sf, ST algebras, y is evidently 
regular on 0t. Denote by JT the family of all regular sets. Then JT ID 01 
and J f is a monotone family according so Lemma 3. Hence C/f ZD if X ST. 

E x a m p l e s : 1. X = Y = Z = (-co, oo), TZ(X, y) = xy. 2. X, Y any regular 
Zi-spaces, Z = X x Y, (x, y) ^ (u, v) o x ^ u and y ^ v\ n(x, y) = (x, y). 

Theorem 4. Every finite, positive vector-valued Baire measure y in a locally 
compact Hausdorff space is regular. 

Proof . Denote by G the family of all regular sets, by <€ the family of all 
compact G# sets. Evidently # c G. The fact that G is a ring follows from 
the following property: If C c £ c JJ, D <= F c: V, then 

C u . D c £ u f c UuV, ( L 7 U V) - (EuF) c (U'-E)u (V — F), 

(E u F) - (C u D) c (j£ - C) u (F1 - 7)) 

and 

C _ f c £ - f c [ 7 - I), (U - D)-(E -F) <^ (U -E)\J(F -D), 

(E - F ) - (C - V) ^ (E -C)KJ(V -F). 

Finally G is a or-ring according to Lemma 3. Hence G contains all Baire sets. 

Now we shall write n(x, y) = xy and we shall explicitely assume only tha t 
n : X x Y -> Z. Pet (S, Sf) be a measurable space oc : Sf' -> X be a vector-
valued measure. We shall assume to have ,,a convenient integration theory", 
i. e. a set SF of integrable functions / : £-.> Y and an integral J(f) = J / d a 
for / e SF, fulfilling some properties. 

Definition 3. Let SF be a family of functions f: S -> Y and J be a function 
J : <F ->Z satisfying the following conditions: 

n n 
1. If f is simple, f = 2<5tfa, thenfe^, J{f) = 2 Cix(Et). 

i-l i . l 
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2. Iff^O,feST,thenJ(f)^0. 

3. Iffn ^ 0,fn e J f ( n = l , 2 , . . . ) a/id/„ / / (resp.fn \ f) {J(fn)} is bounded, 
thenfe^ and J(fn)-> J(f). 

4. J(/ + j7) = J(/) + J(g) for any figeP. 

Under these assumptions we can construct a product of any two vector-
valued measures a : ST -> X, ft \ ST -> Y as a measure with values in Z. We shall 
write also J(f) = jfdoc = jf(x) da(x-). 

Theorem 5. Let (S, ST), (T, ST) be measurable spaces, ST be a o-algebra, 
oc, j3 be positive vector-valued measures, oc\ Sf ^ X, ft \ 3~ -> Y, /3 be finite. Then 
there is just one vector-valued measure y \ Sf X 3~ -> Z such that y(E x F) = 
= <z(E)f}(F) for allEGSf,Fe 3t'. 

Proof . For A e ST x ST and x e S put Ax = {y : (x, y) e A) and fA(x) = 
= P(A*). Evident ly /^ : £ -> Y. First we prove t h a s / 4 G ^ . Pu t 

JT = {AeST x $~\fAe&}. 

If A =E X F, EeS?, Fe^, then fA = XEP(F) and fAe&. If i e 0t, 
A = U Ai, Ate@, At disjoint, fA = ^fAi e ST. Hence we see that 0t <= X. 
j f is a monotone system according to the Axiom 3, hence jf' >̂ ST x ST. 

Now we can define a function y \ ST x ST -> Z by the equality 

y(A)= $fl{A*)Mx) (=J(fA)). 

y is a measure by the axioms 3 and 4. Further for E e ST, F e ST we obtain 

y(# X i7) - //?((# X FY) da(s) = J^jS(^) da = a ^ ) / ? ^ ) . 

Let T be any vector-valued measure % \ ST X ST' -> Z such tha t T(E X F) = 
= oc(E)p(F), i. e. r(A) = y(A)ior A e 9. Then also x(A) = y(A)fovA e ^2. The 
family S£ = {A e ST x ST \ y(A) = r(A)} is monotone, hence y = x on 
Jt(3t) = &(&) = ST x F. 

Now we shall present an example of a ,,convenient integration theory". 

Theorem 6. Let X be a regular K-space, (S, Sf), (T, ST) be measurable spaces 
ST, Sf be a-algebras. Let oc \ ST -> X be a positive finite vector-valued measure, 
ft : ^~ -> R a positive real-valued measure. Then there is just one measure y \ Sf X 
X 3~ -> X such that y(E X F) = p(F) oc(E) for every EeSf,Fe^. 

Proof . We want to apply Theorem 5. Here Z = X, Y = R. We must only 
construct a family 3F of real-valued functions defined on S and an operator 
J : j F - > X 

n n 
For a simple function / = 2 C * £ E I ( ^ disjoint) put Jo(f) = ^CiOc(Et) e X. 

ui u\ 
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Evidently, J 0 (/) + Jo{g) = Jo{f + g) and / ^ 0 implies J 0 (/) ^ 0. Moreover, 
we prove that fn \ 0 implies Jo{fn) \ 0. 

Let 6 be a positive real number, Gn = {x :fn{x) ^ d}, M = m a x / i . Then 
00 

Gn =5 Crn+i {n = I, 2, . . . ) , p j 6rw = 0, hence a(C7w) \ 0. Further, we have 
n= l 

<W») - Jo{fnXaJ + MLXs-aJ = -tfa^n) + dcc{8) . 

Now according to Theorem 9 of [7] there is a set & including all simple 
functions and an extension J of Jo satisfying conditions 2,3 and 4. J fulfills 
evidently also condision 1. 
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