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MATEMATICKO-FYZIKALNY CASOPIS SAV, 15, 4. 1965

" ON A PRODUCT OF SEMIGROUPS

BLANKA KOLIBIAROVA, Bratislava

To Professor A. D. Wallace on the occasion of his 60th birthday

The aim of the presented paper is to study the structure of semigroups
from Definition 1. Some special cases of semigroups of the studied type are
given in Theorems 26 —30. The direct product of semigroups is also a special
case (Remark 2).

Lemma 1. Let I' be a semigroup. To each element o of I we assign a semi-
group Py. Moreover let a set & of homomorphisms gjla, f € I') be given: ¢j s
a homomorphism of P into Pg. Let i e® iff o= 8, or there exists y el
with oy = f§ or yo. = f. Let the set & have the following properties: 1. For o € I'
¢ denotes the identical mapping of Py onto Py. 2. If for o, f, v € I' there exist
in & homomorphisms ¢, ¢, @7 then ¢lgf = ¢%. Blements of P will be denoted
by (x, @). Let P be a set-theoretical sum of all sets Po. Define a multiplication
on P as follows: (x.a) (x, f) = gilx, a)gislx, f). The set P with this multi-
plication s a semigroup.

The proof is easy.

Definition 1. T'he semigroup P from Lemma 1 will be called the product of sema-
groups Py over the semigroup I

Yemark 1. In case P, have idempotents, such a construction is always
possible. It suffices to take for ¢ that mapping under which the image P,
is an idempotent of Pg.

Yemark 2. A special case of the product from Definition 1 is the direct
product @ » I of the semigroups ¢ and I". This can be obtained by taking
(in Lemma 1) the semigroup @) for P, for all 2 € {"and the identical mapping @)
onto @ for the homomorphisms ¢7.

Remark 3. Evidently 7" must be a semigroup in order that the set 2 in
Lemma 1, with the multiplication as indicated, be a semigroup. On the other
hand, it is not necessary that Py he semigroups.

Example. Let I'= {«, f}, where oo = off = flo = i = ff. Let Py be
a groupoid, which is not a semigroup. Let Ps be a semigroup. Moreover,
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let there exist a homomorphism ¢j of P, into P;. Then P from Lemma 1
is a semigroup.

In what follows let I" be a semigroup of idempotent elements. The elements
of I" will be denoted by e (with indices, if needed). In this case, each semi-
group P, is a subsemigroup of P.

We shall obtain now some of the properties of P.

Theorem 1. Let .J be a left ideal of P. Then J N P, is a left ideal of P,. There-
fore, the ideal J is the union of left ideals (and thus of semigroups) of the semai-
groups P,.

Proof. We shall denote J N P, = J,. Since J, C P, and P, is a subsemi-
group of P, P.J, C P,. Since P,J, CJ, PoJ, CJ,. Hence J, is a left ideal
of P,.

Similar assertion holds for a right ideal of P.

Theorem 2. Let cach semigroup Pe have a unique idempotent (i, e). Let L be
a left wdeal of I'. Let J, be a left ideal of Pe(e € L), where J, is a finite semigroup.
Then we can construct at least one semigroup which is the product of P, over I,
where U J . is a left ideal.

ecel

Proof. Let ¢; € 1., then for e, € I" we have ege; = ¢, € L. We need to assume
@ty @ let these homomorphisms be ¢y (v, ¢;) = e,, ¢/ (y ¢,) = e,. Since J,
are finite, ¢; € ./, . 1t follows that P.J, C.J, . Hence U J, is a left ideal of P.

ee L
We shall now introduce convenient definitions for the principal ideals

and F'-classes.

Definition 2. 7'he sel (v, e), = P(x, e) U {(x, e)} is said to be the principal
left ideal of P, generated by (x, e).

Similarly we define the principal right ideal of P. »

The sct of all elements which generate the same principal ideal (left (z, e)z,
right (a, e)g) is called F-class (left Fp(x, e), right Fg(x, e)).

Hereafter analogous results as given for left ideals hold for right ideals.

Theorem 3. (v, ¢);, = U (P, ¢’ (x, e) U {(x, ¢)}), where ¢; € (¢), of T

Proof. According to Theorem 1 (x,¢), N P, = .J, for e+~ e¢;, where J,
is a left ideal of P, Since J, C(x,e),, for (y,¢)eJ, we have (y,e¢;) =
== (2, ¢;) (v, ¢). Hence according to Lemma 1, (v, e) = ¢ii(z, e,) (w, €);
this means that (y, ¢;) € P, ¢ (x, e). It follows that (x, ¢), N P, = P, ¢.(x, e).
At the same time, according to Lemma 1, ¢; = ¢ge, hence e;e = ¢;. This shows
that e; € (¢)r of I'. Since e¢; € (¢), of I', eie = ¢;, thus P,(x, e) = (¢, P,,)
(gro(x, €) = P,qs.(x,e). However, since P,(x,e) C (x,e)L, P,g,.(x,e) C
C (@, e),. This means that P,q¢; (v,e)C(x,e),NP,. By the result
above, this gives (2, ¢), N P, == P,q¢;(x e), proving the assertion.

305



Definition 3. Fp(x, e1) < Fr(@, e2) iff (v, e1)r = (2, e2). (Similarly for
Fr-classes.)

By analogy we shall introduce the relation = for ¥p- and Fg-classes of I

Remark. The set of Fr(Fg)-classes is partially ordered with respect
to the relation =.

Lemma 2. The ideal (x, e)r, 18 the union of all Fi(y, e;) for which Fr(y, e:) =
= Fi(x, e) is true.

Proof. Let (y,e) e (v, e)r. Then (y,e;) C (x,¢), therefore Fir(y,e;)C
C(x,e),, where Fi(y,e) = Fi(x,e). Clearly for Fp(j,e;) with Fr(j, e) =
=< Fi(z, e) we have F1(j, ¢;) C (x, e).

In the following, the assertions arve valid if we replace (a,e), by (v, e)r
and Fp(x, e) by Fr(a, e).

Theorem 4. a) Let (es), = (e1)r, in [ Then for each (x, e1) there exists (x, ez)
such that Fr(x, es) = Fr(x, e1). b) Let Fr(x, es) = Fir(x, e1). Then (e2)r = (e1)r.

Proof. a) We suppose (e2)r = (e1)r, then we have ey = ege; for some e3;
thus e.e; = es. According to Lemma 1, for (z, es) we have (z,e2) (2, 1) =
= (a, e2) € (¥, e1)r, whence (x,e) = (¢, e1)r,. By Definition 3 this means
that Fr(x, ¢) =< Fr(x, e1). b) According to Definition 3 and Lemma 1, eze1 = eg,
therefore (e0)r = (e1)L.

Theorem 5. (e2);, = (e1)r, ¢ff (ere2)r, = (e2e1)r, = (e2)r.

Proof. For (e2)r = (e1)r we have ese; = eg, thevefore ereseq = ejea. Hence
(e1e2)r, = (e2e1). Since [’ is a semigroup of idempotents, we have from the
foregoing ese1eo = egereae; = ege; = e, thus (ese1)r <= (ere2)r,. This, together
with (eleg)L &= (6261)[, proves that ((3162)L = ((3261)[, = (Gz)L.

The second part of the proof is evident.

As a consequence we have proved the following

Theorem 6. F'(¢;)-classes in I'(e; € M C I') form a chain wnder the relation =
off there exists in P a chain of Fi-classes with at least one Fi-class from each P, .

Theorem 7. Let (e1), = (e2)r, tn I'. Then for each (x1, e1) there exists a de-
sceding chain of Fr-classes ... Fr(xs, e1) = Fr(y2, e2) = Fi(x2, 1) = Fr(y1,
es) = Fr(x1, e1) in which the classes of P, and P, appear alternately. In case P,
and P, are the uniton of Fi-classes, this chain is infinite. In case the chain is
finite, for some (x, e1), (y, es) the relation Fr(x, e1) = Fi(y, e2) is true.

Proof. Since (e1)r = (e2)1, e1e2 = e1, e.e1 = eg. In a similar manner as in
the proof of Theorem 4, for (y,e:) we obtain (y, e2) (1, e1) = (y1, e2) €
€ (v, e)r.. Hence Fp(yi,e) < IFi(x1,e1) and further (x1,e) (y1,e) =
= (22, €1) € (41, €2). This implies Fr(zs, e1) =< Fr(y1, e2) = Fr(x1, ¢1). Con-
tinuing in this way, we obtain further elements of the chain. The last statcment
of the theorem is evident from Theorems 4 and 5.
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Theorem 8. Let (e1)r, = (e2)r in I'. Then P, and P, are isomorphic semi-
groups.

Proof. By (e1)r = (e2)r, we have ejez = e1, ese; = e3. On the other hand,
by Lemma 1 there exist homomorphisms ¢;! and ¢ and so for (z, e;) we
have (z, e1) = ¢;!(z, e1) = @*g;(z, e1). Hence ¢ is a homomorphism of P,
onto P, . In the same way we can prove that ¢;! is a homomorphism of P,
onto P, . It follows that P, and P, arc isomorphic semigroups.

Theorem 9. Let Fp(x, es) N P, +# 0. T/Len (e2)r, = (e

Proof. By hypothesis, for (c e1) € Fr(z, e2) and
(x, e2) == (a, e3) (x, e1). Similarly we obtain (x, ;) =
(@, es). Hence, according to Lemma 1, eger = ez, eqep == ¢1, that is (es)r =
== (ﬂl)L, (01)1, = (Gz)L, thus (QI)L = ((’g)L.

1)z
for some (x, es) we have
= (x, e4) (x, e2) for some

Theorem 10. ¢2/7; (x, e2) C F) ¢2(x, e2).

Proof. Let (y, e2) € Fr(x, e2), that is (y, e2)r = (x, es),. We wish to show
that (¢2(y, e2)), == (¢22(w, e2)),. By hypothesis, for some (x,¢;) we have
(Jc e2) == (;v, ex) (, e2), where egea = eg. Then ¢pi(x, e2) == ¢ [ gik,, (@, k) gy, e2)] =

= @i (, )g{'f(vz/, e2), whence ¢(x, ex) € (¢)2(y, e2))r, therefore (@5 (x, e2))r C

C(go(y, e2))r,.  In a  similar manner we can prove (¢ (y, e2))r C

CgP(r,e2)), and  so  (@p2(y, e2))r = (¢(x, e2))r..  Hence @pl(x, e2) C
C g (w, es).

Theorem 11. Let (e1)r, = (e2)r,. Then @?F (v, e2) = F (¢33 (2, e2)).

Proof. After considering Theorem 10 there remains to be shown that:
if (y,e,) € F (v, ez) then (y, e1) = ¢}*(2, e2), where (2, e2) € Fi(x, e2). Using
the proof of Theorem 10 we can see that (2, e2) = (@il (7, €1))r = (gor@i(w, €))L =
= (.l,‘, (,’2)[1

Yemark. Clearly, if (e)r = (c2)r, the ideal (a,e1), is isomorphic to
(7o(x, €1))r, (which follows from Theorem 8 as well).

Theorem 12. a) Let the Fi(e)-class in I consist of a unique element. Then P,
18 the union of I'y-classes in P. b) Let I' be a commutative semigroup. Then P,
are the union of Iy, classes in P.

Proof. a) Let IFp(x, e) N P, 0, then, acccrding to Theorem 9, (¢)r =
= (e;)r, — a contradiction. b) Suppose that (e1)r = (e2)r in ['; hence e; =: €.
Then a) implies b).

Theorem 13. Let Fi(v, es) NP, # (11 then Fgr(x,e) NP, =0 for all
(% es).

Proof. Let (y, e1) € Fi(x, e2). Then for some (z,e3) we have (x,e) =
(2, e3) (7, e1) and according to Lemma 1, ege; = ez, that is e.e; = e2. On the
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other hand, let (v, e;) € Fr'w, e2). Similarly we can show that ese; = e;.
Finally we have e; = es (clearly, we consider only e; = es).

Theorem 14. Let Fi(x, e2) = Fir(y, e1) for e1 5= ea. Then cither Fp(x, e) =
= Fr(y, e1), or Fr(x, e2), Fr(y, e1) are incomparable.

Proof. By hypothesis, for some (x, e3) we get (x,es) = (x, e3) (9, 1), then
esey = e2, that is ese; = ea. Let Fgp(y, e1) = Fpr(x, ¢2). Similarly we obtain
ese; = e1. Finally we have e¢; = e2 — a contradiction.

Theorem 15. Let (e1), = (e2)r, e1 7 e2. Then Fpg(x, e1), Fr(v, e2) are in-
comparable.

Proof. Theorem 4 for Fy classes may now be applied to show that Fg(x, e2) <
< Fgr(a, e1) implies (e2)p < (e1)r, which is to say that ejes = ez. Since (e1);, =
= (e2)r, eie2 = e;. Iinally we have e; = ez — a contradiction. In a similar
manner it can be shown that Fg(x, 1) = Fr(x, ¢2) does not hold.

Remark. Theorem 15 (according to Lemma 2) may be interpreted as

follows: if (e1)r, = (e2)r, (e1 5 e2) then (x, e1)gr N Peg =4 0 for all (x, e1).

Theorem 16. Let (i, ¢) be an idempotent of P. Then a left ideal L has the right
wdentity (i.e) off L = (i, ).

Proof. Let L be a left ideal in P and (¢, ) its right identity, which means
(%, e) (i, e) = (x, e) for (x,e) e L, whence L C (¢, e)r. Since (i, e) e L (is its
right identity), (i, e)r C L. According to the foregoing result (7, e), == L.

Theorem 17. Let (i, ) be an idempotent. Then (x,e) (i, €) = (x, ¢) holds for
(z, €) € Fi(i, e).

= (7’7 e)L)'

Remark. For (z, €) € Fg(t, ¢) we have (x, ¢) = (¢, ¢) (2, e).

Theorem 18. Let P, , P, huve the unique idempotents (i, e1), (¢, e2). Let
(@, e1)r. = (2, e2)r.. Then (i, er)r, == (i, e2)1,.

Proof. By hypothesis and Theorem 9 we have (e1)r = (e2)r,. Using Theorem
11 we can prove our assertion.

Theorem 19. Let P, , P, have the unique idempotents (i, e1), (i, e2). Then
(¢, e1)r = (¢, e2)r, iff (e1)r = (e2)r.

Proof. Let (¢, e1)r = (7, e2),. Using Theorem 9 we can see that (e1);, =
= (e2)r. Let (e1)r = (e2)r; from Theorem 11 it follows (4, e1)r = (7, e2)r,.

Theorem 20. Let P, have a unique idempotent (¢, e). Let I')(z, e) = I'p(t, e).
Then F(i, e) s the maximal subgroup of P.

Proof. According to Theorem 17 (3, ¢) is an identity in I7;(z, ). Morcover
(¥, e) = (x, e)r, = (i, ¢)r, implies ((x, ¢) (y, ) = ((i, ¢) (¥, €)). = (y, ).
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Hence Fi(i,e) is a semigroup. We shall prove now that (w,e), = (4, e},
implies the existence of (z,¢) with (z,€) (x, ) == (i, e). Because (z,¢)r =
= (1, e)g, for some (v, e) we have (x,e) = (i, ) (v, ¢), whence (z, ) (z, €) =
= (2, €) (i, ¢) (v, ¢), therefore (i,e)r C ((2,€) (i, ¢))g. Similarly we can prove
((z, €) (7, €))r C (¢, €)r; thus (i, ¢)r = ((2, €) (¢, €))r. Hence (2, ¢) (¢, €) € Fp(i, e) =
= Fy(i, e). Thus [(z,e) (i, e)|(x, €) = (2, O)[(¢, ¢) (2, )] = (2, ¢) (x,€) = (3,€)
as required. This shows that 19.(¢, €) is a group.

It is evident that the elements of the group generate the same principal
left (right) ideal. Therefore Fy(z, ¢) is a maximal subgroup of P.

We derive next (Theorem 21--25) some of the properties of semigroups
with identity (hypogroup).

Theorem 21. Let the semigroup P be the product of semigroups Py over the
semagroup I'. In this case P will be a hypogrowp iff I" and Py are hypogroups
(where I is a semigroup of idenipotents). Moreover, if e is the identity in I" and
(J, e) the identity in P, then (j, ) ts the identity in P.

Proof. Let P be the product of hypogroups over the hypogroup of idem-
potents I". Since /" is isomorphic to the semigroup of identity elements in P,
(e € I') (because the image of identity is an identity), we can see, using Lemma 1,
that P is a hypogroap.

Let P be the hypogroup which is the product of the semigroups Py over
the semigroup 7. Let (j, ¢) be the identity in P. Since (3, e) is an idempotent,
according to Lemma 1, e € [ is an idempotent as well. In P we have (z, ¢;)
(j. e) = (j.e) (v, ;) = (o, ), this means (by Lemma 1) ee = ee; = ¢; and
$0 e is an identity in I Hence I" is a hypogroup. Moreover, according to
Lemma 1, it follows that «(j, ¢) is an idempotent in 2P, , therefore e; is
an jidempotent in I. As for cach e; € I' we have ee; = ¢;, ['is a hypogroup
of idempotents. But since the image of identity is an identity, ¢/ (7, €) is the
identity in P, . This means that P, is a hypogroup. This completes the proof.

Theorem 22. The necessary and sufficient condition for hypogroup P to be
the product of semigroups over the semigroup I is that there exist on P a con-
gruence, the classes of which are hypogroups, while their identity elements form
a subsemigroup of P.

Proof. We denote the classes of the congraence by S, (¢ = 1,2, ...). (4, &)
is the identity in S, . It follows that (x, e1) (y, es) € S,,,, - We shall show that
the mapping (v, e ) (x, e1) (J, e2) is a homomorphism of S, into §,, and
(7, e2) = (4, e1) (j, e2) is a homomorphism of S,, into S,,,. The following holds:
((v1, e1) (j, €2)) ((v2, e1) (j, e2)) = ((a1, e1) (J. e1) (j, e2)) (@2, €1) (4, €2) = (21, ex)
((J, e1) (J, e2) (w2, e1) (4, e2)) == (21, e1) (w2, 1) (J, es) (because (xa,e1)(j,ee) €
€ 8e,> hence ((J, e1) (4, e2)) (22, @) (J, e2)) == (22, e1) (j, €2) as required. Simi-
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larly it can be shown that (y, es) = (J, e1) (y, €2) is @ homomorphism of S,
into S,,,. We denote these homomorphisms by P12,¢5s. Clearly ¢l2gl, = ¢l.
Using such homomorphisms we can construct the product of the semigroups
S,, over the semigroup [I". where I"is a semigroup isomorphic to the semigroup
of identity elements in P; in this way we obtain exactly P.

The necessary condition is evident by considering that the image of iden-
tity is identity.

The following holds for hypogroups of Theorem 21 (hereafter the identity
in P, is denoted by (4, €)).

Lemma 3. For each (x, ¢) the relation F (v, e) = Fr(j, e) ts true.

Theorem 23. Let (j, e))r, 7 (j, e2)r.. If Fr(x, e1) = Fi(y, e2) for some (x, e1),
(y, e2), then: a) Fr(j.e1) = Fi(j, e2), b) Fr(z, e2) = Fy(j, e1) is not true for
any (z, e2).

Proof. a) By hypothesis, there exists such an clement (z, e3) that (v, e1) =
= (z, e3) (y, e2) and so (x, e1) = (z, e3) (¥, €2) (J, e2) = (2, €1) (J, e2). According
to Lemma 1 (j,e1) (j, e2) = (4, e1) which is to say that (j, ). = (4, co)r.
b) Let I'i(z, e2) = Fr(j, e1) for some (z,e2). According to a), Fi(j,e)
< F1(j. e1). On the other hand, by hypothesis and by a) we have F1(j, e1)
= Fi(j, e2); thus we obtain (j, e1)r, = (j. e2)r, — a contradiction.

A “»'!,/\ N

Theorem 24. For F(j, e) and Fg(j, ¢) the following are true: a) Fi(j,e) and
Fr(j, e) are semigrouns. b) For each (x1, ) € I'1(j, ¢) there exists (s2, ¢) € FR(1, e)
such that (s2, e) (x1, €) = (4, e). Similarly for each (a2, e) € Ir(j, ¢)
there exists (si1,e) € Fi(j, e) such that (x2,e) (s1,e€) = (j, e). ¢) Kach element
(s,€) €Fi(j, e) U Fgr(j,e) can be written in the form (s, e) = (2, ¢) (21, ¢€)
where (21, ¢) e Fr(j, e), (22, €) € Fr(j, €) for (21, e) or (z2, €) given before.

Proof. a) Let (j,e)r = (j, e1)r = (x, e)r. = (a, e1)r,. Then ((x, e) (v, &1))r =
= ((J, &1) (v, 1)) = (@, e1)r. Similarly ((, e1) (v, €))r. = (2, e)r. b) (1, €)r =

= (j, e)r implies (s, &) (x1,e) = (4, e) for some (s, ¢;). According to Lemma 1,
eie = e. We denote ¢)(s, ¢;) = (s, ). Evidently (s2, e) € (. ¢)g. But (j, ¢) =
= (82, €) (21, ¢), therefore (74, €) € (s2, €)r, hence (J, e)r = (s2, €)r, thus (sz, €) €
€ Fr(j, e). The second assertion can be proved in the same way. ¢) Let (s1, ¢) €
elr(j,e) and let (22, e) € Fg(j, ). Then according to b) for some (ur,e)e
eFi(j,e) we have (j,e) = (22.¢) (u1, ¢), hence (s1, e) = (22, €) (u1, €) (51, e),
whence according to a) (u;,¢€)(s1,¢€) = (21,¢) € FL(j,e), thus (s1,¢) =
= (22, €) (21, €). Similarly the sccond part of the assertion can be proved,

Theorem 25. The left ideal L has the identity (4, e) iff L = (j, ) and (e)L
has an identity.
Proof. Let L = (j, e);,. Since eey = e (because e is the identity in (e)r,
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Poe(ds €) = (j, ex), hence (4, e) (I, ex) = (I, ex) for (I, ex) € L. Thus (j, €) is the
identity in L.

Let L possess the identity (j, e). Clearly, the semigroup of elements (j, &) € L
is the left ideal in the subsemigroup of all identity elements of P, and is iso-
morphic to the subsemigroup of ', which is, therefore, a left ideal in I". This
ideal evidently possesses the identity e. 1t is therefore (e);. According to
Theorem 16, L = (j, e),,.

Remark. From the hypothesis of the theorem stating that (e)r has an
identity, it follows that F1(j, ¢) N P, = ( for ¢; # e.

Finally, we mention some examples of semigroups which are the product
of semigroups over a semigroup, the properties of which have already been
studied.

From [1] it follows:

The semigroup S is said to admit relative inverses if to each a € § there
exists an element e € S such that ae = ea = a and an element @’ € S such
that ¢'a = aa’ = e. Then following holds:

Theorem 26. Fach semigroup admitting relative inverses in which every pair
of tdempotents commaudte is a product of groups over a semigroup of idempotents.
Ifrom [2] and [3] we have:

Theorem 27. Hach finite simple semigroup S without zero, having at least
one nmunimal left ideal and at least one mintmal right ideal, while the idempotents
Jorm a semigroup in S, is the product of tsomurphic groups over the simple semsi-
group without zero.

From [4] can be deduced:

In a periodic semigroup let the set of elements x with a» = e (for some n
and for the idempotent e) be called K-class belonging to e.

Theorem 28. The product of commutative periodic semigroups P, over the
commutative semigroup of tdempotents (semailattice) is a commutative periodic
semigroup in which the K-classes are exactly P.. Moreover each commutative
periodic semigroup, the K-classes of which are groups, is the product of commu-
tative periodic groups over a semilattice.

We shall say that the periodic semigroup § is partially commutative if for
each ¢ € § and each w € 8, ve = ex is true.

From [5] it follows:

Theorem 29. T'he product of partially commutative periodic semigroups having
a unique tdempotent over a commutative semigroup of idempotents (semilattice)
18 a partially commutative semigroup, the K-classes of which are exactly P,.
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Theorem 30. (according to [6]). Let each principal left ideal in the semigroup P
contain an identity. Then P is the product of groups over the commutative semi-
group of idempotents (semilattice) iff for each e € I, (4, ), = (j, e)r where (3, e)
18 the identity in P,.
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OBL O/THOM MPOU3BEOEHUU IIOJYTPVIIII
bBnauka Hoandnapona
Pesiome

[Iycte I' — moayrpynma U InycTh BCAKOMY dJIeMEHTY o u3 I' TIOCTABIIeHA B COOTBCTCTBIE
noayrpynna Pu. Ilycrs pano muoskecrso & romomopdusmon ¢f («, f € I'), tae ¢f romo-
mopduoe orobpasmenne Po B Pg. Ilycrs mpu stom @f € ® Torja 1 TOALKO TOrjA, KO
o« = f unu cywecrsyer y € I' nusa kotoporo oy = f# niau yoe = f. Ilycrs muosecrso &
ynomiaerBopsier yeaopuam: 1. Ilaa o € I' ¢} ABAACTCA TOMAECTBEHHBIM oToOpasscHuemM Py
na Po. 2. Bean gaist o, B, y € I' cymecryior B & romoMophusmn ¢, (pg, @5, TOrna (pf(p}} = @,.
OfGo3nauny aaeMentsl Muoskeersa Py uepes (x, a). Ilyern P — Teopernucciio-MHOMKECTBENIOR
obne;iniienne MHomecets Pa(e € I'). Onpepesiuv B 17 ymposkenue caepyoumm oGpaszom:
(xz, o)(x, B) = @llz, o:)gp’;/,(m, f). Muosmecrso P ¢ HTUM yMHOMCHUCM SIBJIACTCS MONYrpyH-
noit. Hazsosem ee mpounsejenem nogayrpynn o nagg 17,

B nacrosmeit cratbe H:yUa0TCs HEKOTOPLIC CBOMCTBA DTUX IPOUBBE/LCHWIA.
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