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MATEMATICKO-FYZIKÁLNY ČASOPIS SAV, 15, 4. 1965 

ON A PRODUCT OF SEMIGROUPS 

BLANKA KOLIBIAROVÁ, Bratislava 

To Professor A. D. Wallace on the occasion of his 60th birthday 

The aim of the presented paper is to study the structure of semigroups 
from Definition 1. Some special cases of semigroups of the studied type are 
given in Theorems 26 — 30. The direct product of semigroups is also a special 
case (Remark 2). 

Lemma 1. Let F be a semigroup. To each element a of F we assign a semi­
group Pa. Moreover let a set (5 of homomorphisms ^ ( a , ft e r) be given: qf^ is 
a homomorphism of Pa into P$. Let (p^ e (5 iff a — ft, or there exists y E T 
with ay = ft or ycc — ft. Let the set (5 have the following properties: I. For a e F 
<pl denotes the identical mapping of Pa onto Pa. 2. If for a, ft, y e F there exist 
in (5 homomorphisms cp^, <ppy, <p* then (pyq)^ = <p*. Elements of Pa will be denoted 
by (x, a). Let P be a set-theoretical sum of all sets Pa. Define a multiplication 
on P as follows: (x, a) (x, ft) = <p*p(x, cn)(plp(x, ft). The set P with this multi­
plication is a semigroup. 

The p r o o f is easy. 

Definition 1. The semigroup P from Lemma 1 will be called the product of semi­
groups Pa over the semigroup r. 

R e m a r k 1. In case Pa have idempotents, such a construction is always 
possible. I t suffices to take for <pp that mapping under which the image Pa 

is an idempotent of P # . 
R e m a r k 2. A special case of the product from .Definition 1 is the direct 

product Q X L of the semigroups Q and F. This can be obtained by taking 
(in Lemma 1) the semigroup Q for Pa for all a e / 'and the identical mapping Q 
onto 0 for the homomorphisms q?J{. 

R e m a r k 3. Evidently F must be a semigroup in order that the set P in 
Lemma 1. with the multiplication as indicated, be a semigroup. On the other 
hand, it is not necessary that Pa be semigroups. 

E x a m p l e . Let F = {a, ft}, where aa = a/3 = /?a = ftft = ft. Let Pa be 
a groupoid. which is not a semigroup. Let P# be a semigroup. Moreover, 
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let there exist a homomorphism qf^ of P a into Pp. Then P from Lemma 1 
is a semigroup. 

In what follows let F be a semigroup of idempotent elements. The elements 
of F will be denoted by e (with indices, if needed). In this case, each semi­
group Pe is a subsemigroup of P . 

We shall obtain now some of the properties of P . 

Theorem 1. Let J be a left ideal of P. Then J n Pe is a left ideal of Pe. There­
fore, the ideal J is the union of left ideals (and thus of semigroups) of the semi­
groups Pe. 

Proof . We shall denote J n Pe = Je. Since Je CPe and Pe is a subsemi­
group of P , PeJe C Pe. Since PeJe CJ, PeJe CJe. Hence Je is a left ideal 

Of P e . 
Similar assertion holds for a right ideal of P . 

Theorem 2. Let each semigroup Pe have a unique idempotent (i, e). Let L be 
a left ideal of F. Let Je be a left ideal of Pe(e e L), where Je is a finite semigroup. 
Then we can construct at least one semigroup which is the product of Pe over P, 
where \J Je is a left ideal. 

e e L 

Proof . Let e% e I, then for ek e F we have e^et = en e L. We need to assume 
qfe

l
n, qfe

k
n\ let these homomorphisms be qe

e[(x, e,) = en, qfe
k
n(y ek) = en. Since Je 

are finite, e{ e Jer I t follows that PJe. C Je.. Hence U Je i>s a ^ e ^ ideal of P . 
e e L 

We shall now introduce convenient definitions for the principal ideals 
and P-classes. 

Definition 2. The set (x, e)L — P(x, e) U {(x, e)} is said to be the principal 
left ideal of P, generated' by (x, e). 

Similarly we define the principal right ideal of P . 
The set of all elements which generate the same principal ideal (left (x, e)L, 

right (x, e)it) is called P-class (left FL(x, e), right FR(x, e)). 
Hereafter analogous results as given for left ideals hold for right ideals. 

Theorem 3. (x, e)L = \J (Peiq
e
e.(x, e) \J {(x, e)}), where a e (e)L of P . 

P r o o f According to Theorem 1 (x, e)L n Pet = Jf[ for e =£ e%, where Jet 

is a left ideal of Pe.. Since Je. C (x, e)L, for (y, ef) e Je. we have (y, e{) = 
— (z, ek) (x, e). Hence according to Lemma 1, (y, a) = qe

e
L

t(z, ek)q
e
Ci(x, e); 

this means that (y, e{) e Pe.q
e
e.{x, e). I t follows that (x, e)L n Pet — Peiq

e
ei(x, e). 

At the same time, according to Lemma 1, ^ —- e^e, hence e%e = ez-. This shows 
that Ci e (e)L of F. Since e4 e (e)L of F, ete = eA, thus Pei(x, e) = (qe.ePei) 
(q)e

ie(
x> e)) =" Petfie^', e)- However, since P€i(x, e) C (x, e)L, Peiq

e
ete(x, e) C 

C(x,e)L. This means that Pe.q
e. (x, e) C (x, e)L C\ Pei. By the result 

above, this gives (x, e)L n Pei = Peiq
e
e.(x. e), proving the assertion. 
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Definition 3. FL(x, a) < FL(x, e2) iff (x, e±)L E= (x, e2)L. (Similarly for 
FR-classes.) 

By analogy we shall introduce the relation <^ for FL- and FVcla-sses of J7. 
R e m a r k . The set of FL(^H)-classes is partially ordered with respect 

to the relation <L. 

Lemma 2. The ideal (x, e)L is the union of all FL(y, a) for which FL(y, e%) <l 
<, FL(x, e) is true. 

Proof . Let (//, e*) e (x, e)L. Then (y, e{)L C (x, e)L, therefore FL(y, et) C 
C(x,e)L, where FL(y, et) <lFL(x, e). Clearly for FL(j,e4) with FL(j,et)<: 
<l FL(x, e) we have FL(j, e() C (x, e)L. 

In the following, the assertions are valid if we replace (x, e)L by (x, e)R 
and FR(x: e) by FL(x, e). 

Theorem 4. a) Let (e2)L — (e\)L in r. Then for each (x, e\) there exists (x, e2) 
such that FL(x, e2) = FL(x, e2). b) Let FL(x, e2) <; FL(x, e{). Then (e2)L = (e\)L. 

Proof , a) We suppose (e2)L — (e\)L, then we have e2 = e^e\ for some e3; 
thus e^ei = e2. According to Lemma 1, for (z, e2) we have (z, e2) (x, ei) = 
= (x, e2) e (x, e\)L, whence (x, e2)L — (x, e\)L. Hy Definition 3 this means 
t\\&tFL(x, e) <^ FL(x, e\). b) According to Definition 3 and Lemma 1, e2e\ = e2, 
therefore (e<a)L = (e\)L. 

Theorem 5. (e2)L .= (ei)L iff (e\e2)L = (e2e\)L = (e2)L. 
Proof . For (e2)L = (e\)L we have e2e\ = e2, therefore eie2ei = e\e2. Hence 

(e\e2)L — (e2ei)L. Since F is a semigroup of idempotents, we have from the 
foregoing e2eic2 = e2eie2Ci = e^ei = e2, thus (e2ei)L — (eie2)L. This, together 
with (exe2)L — (e2e\)L proves tha t (eie2/L = (e2ex)L = (e2)L. 

The second part of the proof is evident. 
As a consequence we have proved the following 

Theorem 6. FL(ei)-classes in F (ei e M C F) form a chain under the relation <l 
iff there exists in P a chain of FL-classes with at least one FL-class from each Per 

Theorem 7. Let (e\)L = (e2)L in P. Then for each (x\, e\) there exists a de­
seeding chain of FL-classes ... FL(x3, e{) <lFL(y2, e2) <lFL(x2, e±) <l FL(yi, 
e2) ^ FL(x\, ei) in which the classes of Pei and Pe2 appear alternately. In case Pei 

and Pe% are the union of FL-classes> this chain is infinite. In case the chain is 
finite, for some (x, e\), (y, e^) the relation FL(x, e\) = î L(;y, e2) is true. 

Proof . Since (ei)L = (e2)L, e\e2 = e i ? e^ei = e2. In a similar manner as in 
the proof of Theorem 4, for (y, e2) we obtain (y, e2) (x\, ex) = (yi, e2) e 
e (x\, e{)L. Hence FL(y\, e2) <Z FL(x\, e{) and further (x\, e{) (yx, eh) = 
= (x2, ei) e (yi, e2)L. This implies FL(x2, ex) <Z FL(yu e2) <L FL(x], e{). Con­
tinuing in this way, we obtain further elements of the chain. The last statement 
of the theorem is evident from Theorems 4 and 5. 
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Theorem 8. Let (e\)L =- (e2)L in F. Then Pei and Pe2 are isomorphic semi­
groups. 

Proof . By (ef)L = (e2)L we have eie2 =- e\, e2e\ = e2. On the other hand, 
by Lemma 1 there exist homomorphisras qfe\ and q>e

e\ and so for (z, ef) we 
have (z, ef) = qfe\(z, ef) = qfe\qfe\(z, ef). Hence qfei is a homomorphism of PC2 

onto Pei. In the same way we can prove that (pe
e\ is a homomorphism of Pei 

onto P€2. I t follows tha t Pei and P(>2 are isomorphic semigroups. 

Theorem 9. Let FL(x, e2) n 7 \ ^ 0. Then (e2)L = (e\)L. 
Proof . By hypothesis, for (x, ef) eFL(x,e2) and for some (x, e%) we have 

(x, e2) --- (x, e%) (x, ef). Similarly we obtain (x, e\) = (x, e$) (x, e2) for some 
(x, e<\). Hence, according to Lemma 1, e^e\ = e2, e^e2 = c\, that is (e2)L .= 
^ (^i)L, (e\)L .= (e2)L, thus (e\)L = (e2)L. 

Theorem 10. qfe\FL(x, e2) C FLqf'e\(x, e2). 
Proof . Let (y, e2) EFL(X, e2), that is (y, e2)L = (x, e2)L. We wish to show 

that (q>e\(y, e2))L = (qfe\(x, e2))L. By hypothesis, for some (x,ek) we have 
(x, e2) = (x, ek) (y, e2), where eke2 = e2. Then q(

e\(x, e2) = <pe
e\[q>e

e
k
ke2(x, ek) qfe\(y, e2)] = 

= q>7x(x> ()k)qrfMh^f), whence qfe\(x,e^ e (qfe\(y, e2))L, therefore (qfe\(x, e2))LC 
C (qQ(y, e.9.))L. In a similar manner we can prove (qff^y, e2))L C 
C (q^(x, e2))L and so (qf^y, e2))L = (q%(x, e2))L. Hence <p«FL(x, e2) C 
CFLq%(x,e2). 

Theorem 11. Let (e,\)L = (e2)L. Then qfe\FL(x, e2) = FL(qc
e\(x, e2)). 

Proof . After considering Theorem 10 there remains to be shown that: 
if (y, e.f) G FLq',\(x, ef) then (//, ej) = qf£(z, e2), where (z, ef) eFL(x, e2). Using 
the proof of Theorem 10 we can see that (z, e2) = (qfe\(y, ef))L = ( ^ ^ ( ^ e2))L = 
= (x, e2)L. 

He m a r k . Clearly, if (e\)L = (e2)L, the ideal (x, e\)L is isomorphic to 
((pe

e[(x, e\))L (which follows from Theorem 8 as well). 

Theorem 12. a) LM the FL(e)-class in r consist of a unique element. Then Pe 

is the union of FL-classes in P. b) Let r be a commutative semigroup. Then Pe 

are the union of FL classes in P. 
Proof , a) Let FL(x, e) n Pe -f-: 0, then, according to Theorem 9, (e)L = 

= (CI)L — a contradiction, b) Suppose that (ef)L = (e2)L in F; hence e\ = e2. 
Then a) implies b). 

Theorem 13. Let FL(x, e2) n Pei =£ 0; then FR(x, e2) n Pei = 0 for all 
(x. e2). 

Proof . Let (y, e\) e FL(x, e2). Then for some (z, e^) we have (x,e2) = 
(z, 63) (y, e\) and according to Lemma 1, e^e\ — e2, that is e^ei = e2. On the 
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other hand, let (v, e\) EFR{X, e2). Similarly we can show tha t e2e\ = e\. 
Finally we have e\ = e2 (clearly, we consider only e\ 7^ e2). 

Theorem 14. LM FL(X, e2) ^ FL(y, e\) for e\ -/= e2. Then either FR(x, e2) ^ 
_=S FR(y, e\), or FR(x, 62), FR{y, e±) are incomparable. 

Proof . By hypothesis, for some (x, €3) we get (x, e2) = (x, 63) (y, ei), then 
e<se\ = €2, that is e2e,\ = e2. Let FR(y, e\) ^FR(x, e2). Similarly we obtain 
e2e\ = e\. Finally we have e\ = e2 — a contradiction. 

Theorem 15. Let (e\)L = (e2)L, e\^-e2. Then FR(x,e,\), FR(x,e2) are in­
comparable. 

Proof . Theorem 4 for FR classes may now be applied to show tha t FR(x, e2) ^ 
^ FR(x, e.\) implies (e2)R - (e\)R, which is to say tha t e\e2 = e2. Since (e\)L = 
= (g2)L, e\e2 = e\. Finally we have e\ = e2 — a contradiction. In a similar 
manner it can be shown that FR(x, e\) ^ FR(x, e2) does not hold. 

R e m a r k . Theorem 15 (according to Lemma 2) may be interpreted as 
follows: if (e\)L = (e2)L (z\ -^ e2) then (x, e\)R n Pe2 ~L- 0 for all (x, e\). 

Theorem 16. Let (i, e) be an idempotent of P. Then a left ideal L has the right 
identity (i, e) iff L = (i, e)L. 

Proof . Let L be a left ideal in P and (i, e) its right identity, which means 
(x, e) (i, e) = (x, e) for (x, e) e L, whence L C (i, e)L. Since (i, e) e L (is its 
right identity), (i, e)L C L. According to the foregoing result [i, C)L ^ L. 

Theorem 17. Let (i, e) be an idempotent. Then (x, e) (i, e) = (x, e) holds for 
(x, e) eFL(i, e). 

Proof . The statement is clear, since (x, e) = (y, e) (i, e) (because (x, e)L = 

= (i, e)L). 
R e m a r k . For (x, e) eFR(i, e) we have (x, e) =- (i? e) (x, e). 

Theorem 18. Let Pei, Pez have the unique idempotents (i,e\), (i,e2). Let 
(x, e\)L = (x, e2)L. Then (i, e\)L — (i, e2)L. 

Proof . By hypothesis and Theorem 9 we have (e\)L ~ ((^)L- Using Theorem 
11 we can prove our assertion. 

Theorem 19. Let Pei, Pe2 have the unique idempotents (i,c\), (i, e2). Then 

{i, e\)L = (i, e2)L iff (^i)L = ( ^ ) L -

Proof . Let (i, e\)L = (i,e2)L. Using Theorem 9 we can see that (e\)L = 
= (e2)L. Let (e^)L = (e2)L; from Theorem 11 it follows (i, ei)L = (i,e2)L. 

Theorem 20. Ljet Pe have a unique idempotent (i, e). Let FL(i, e) = FR(i, e). 
Then FL(i, e) is the maximal subgroup of P. 

Proof . According to Theorem 17 (i, e) is an identity in FL(i, e). Moreover 
(y, e)L = (x, e)L = (i, e)L implies ((x, e) (y, e))L = ((i, e) (y, e))L = (y, e)L. 
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Hence FL(i, e) is a semigroup- We shall prove now that (x, e)L = (i, e)& 
implies the existence of (z, e) with (z, e) (x, e) = (i, e). Because (x, t)R = 
= (i, e)u, for some (#, e) we have (a;, e) = (i, e) (v, e), whence (z, e) (x, e) = 
= (z, e) (i, e) (v, e), therefore (i, e)# C ((z, e) (i, e))R. Similarly we can prove 
((z, e) (i, e))R C (i, e)R\ thus (i, e)R -=- ((2, e) (i, e))^. Hence (z, e) (i, e) eFR(i, e) = 
= FL(i, e). Thus [(z, e) (i, e)](x, e) = (z, e)[(i, e) (a;, e)] = (z, e) (a, e) = (i, e) 
as required. This shows that ¥L(i, e) is a group. 

I t is evident tha t the elements of the group generate the same principal 
left (right) ideal. Therefore FL(i, e) is a maximal subgroup of P. 

We derive next (Theorem 21 — 25) some of the properties of semigroups 
with identity (hypogroup). 

Theorem 21. Let the semigroup P he the product of semigroups Pa over the 
semigroup r. In this case P will be a hypogroup iff F and Pa are hypogroups 
(where F is a semigroup of idempotents). Moreover, if e is the identity in F and 
(j, e) the identity in Pe, then (j, e) is the identity in P. 

Proof . Let P be the product of hypogroups over the hypogroup of idem­
potents F. Since F is isomorphic to the semigroup of identity elements in Pe 

(e e r) (because the image of identity is an identity), we can see, using Lemma 1, 
that P is a hypogroup. 

Let P be the hypogroup which is the product of the semigroups Pa over 
the semigroup F. Let (j, e) be the identity in P. Since (j, e) is an idempotent, 
according to Lemma 1, e e F is an idempotent as Avell. In P we have (x, e%) 
(j, e) = (j, e) (x, e%) = (x, et), this means (by Lemma 1) ê e = ee* = et and 
so e is an identity in F. Hence F is a hypogroup. Moreover, according to 
Lemma 1, it follows that wei(j,e) is an idempotent in Pe., therefore e% is 
an idempotent in F. As for each e% e F we have eê  = e%, F is a hypogroup 
of idemj)otents. But since the image of identity is an identity, qfei(j, e) is the 
identity in Pe.. This means that Pet is a hypogroup. This completes the proof. 

Theorem 22. The necessary and sufficient condition for hypogroup P to be 
the product of semigroups over the semigroup F is that there exist on P a con­
gruence, the classes of which are hypogroups, while their identity elements form 
a subsemigroup of P. 

Proof. We denote the classes of the congruence by Se. (i --- 1, 2, . . . ) . (j, a) 
is the identity in Ser I t follows that (x, ei) (y, e*) e SeiC2. We shall show that 
the mapping (x, e\) -> (x, e{) (j, e2) is a homomorphism of Sei into Sei62 and 
(y, e2) -> (j, ei) (j, e2) is a homomorphism of Se2 into SeiC2. The following holds: 
((xi, ei) (j, e2)) ((.*;2, ei) (j, e2)) = ((xl9 a) (j, ei) (j, e2)) (x2, ei) (j, e2) = (xh ei) 
( ( j^ i ) (j, e2) (-i-2,ei)(j, e2)) == (^'i,ei) (x2, a) (j, e2) (because (x2, ei) (j, e2) e 
e SClC2, hence ((j, ei) (j, e2)) ((x2, ei) (j, e2)) — (x2, ei) (j, e2) as required. Simi-
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larly it can be shown that (//, e2) —> (j, e?) (y, e2) is a homomorphism of S(>2 

into Seieo. We denote these homomorphisms by (p]2,<Pi2* Clearly (pl2y]2 = yl-
Using such homomorphisms we can construct the product of the semigroups 
Se. over the semigroup F, where F is a semigroup isomorphic to the semigroup 
of identity elements in P; in this way Ave obtain exactly P. 

The necessary condition is evident by considering that the image of iden­
ti ty is identity. 

The following holds for hypogroups of Theorem 21 (hereafter the identity 
in Pe is denoted by (j, e)). 

Lemma 3. For each (x, e) the relation FL(x, e) 5C FL(j, e) is true. 

Theorem 23. Let (j, ex)L ^ (j, e2)L. If FL(x, e{) ^ FL(y, e2) for some (x, e4), 
(y,e2), then: a) FL(j,ei) <LFL(j,e2), b) FL(z, e2) <: FL(j, ex) is not true for 
any (z, e2). 

Proof, a) By hypothesis, there exists such an element (z, e%) tha t (x, ei) = 
= (z, e3) (y, e2) and so (x, ei) = (z, e3) (y, e2) (j, e2) = (x, e{) (j, e2). According 
to Lemma 1 (j, e\) (j, e2) = (j, e±) which is to say that (j, e±)L — (j, e2)L. 
b) Let FL(z, e2) ^FL(j, C}) for some (z,e2). According to a), FL(j,e2)^ 
^ FL(j, ei). On the other hand, by hypothesis and by a) we have FL(j, ei) fS 
^ FL(j, e2); thus we obtain (j, ei)L = (j, e2)L — a contradiction. 

Theorem 24. For FL(j, e) and FR(j, e) the following are true: a) FL(j, e) and 
FR(j, e) are semigroups, b) For each (xi, e) e FL(j, e) there exists (s2, e) e FR(j, e) 
such that (82, e) (x\, e) = (j, e). Similarly for each (x2, e) e FR(j, e) 
there exists (si, e) eFL(j, e) such that (x2, e) (8i, e) = (j, e). c) Each element 
(s, e) eFL(j, e) U FR(j, e) can be written in the form (s, e) = (z2, e) (zi, e) 
where (z\, e) eFL(j, e), (z2, e) sFR(j, e) for (zi, e) or (z2, e) given before. 

Proof, a) Let (j, e)L = (j, ex)L = (x, e)L = (x, ei)L. Then ((x, e) (x, ex))L = 
= ((j, ei) (x, e{))L = (x, ei)L. Similarly ((x, ei) (x, e))L = (x, e)L. b) (x\, e)L = 
= (j, e)L implies (8, e4) (xi, e) = (j, e) for some (8, e^). According to Lemma 1, 
ete = e. We denote q%(s, et) = (s2, e). Evidently (82, e) G (j, e)R. But (j, e) = 
= (82; e) (xi, e), therefore (j, e) e (82, e)R, hence (j, e)R = (82, e)R, thus (82, e) G 
G FR(j, e), The second assertion can be proved in the same way. c) Let (8i, e) G 
eFL(j,e) and let (z2, e) eFR(j, e). Then according to b) for some (^i,e)G 
£FL(j, e) we have (j, e) = (z2, e) (m, e), hence (8i, e) = (z2, e) (m, e) (8i, e), 
whence according to a) (m, e) (s±, e) = (z\, e) G FL(j, e), thus (8i, e) = 
= (z2,e) (z\,e). Similarly the second part of the assertion can be proved. 

Theorem 25. The left ideal L has the identity (j, e) iff L = (j, e)L and (e)L 

has an identity. 
Proof . Let L = (j, e)L. Since ee^ ==- e^ (because e is the identity in (e)L, 
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9vU0"> e) = (j> ek)> hence (j, e) (I, ek) == (Z, e*) for (Z, ek) e L. Thus (j, e) is the 
identity in L. 

Let L possess the identity (j, e). Clearly, the semigroup of elements (j, ej) e L 
is the left ideal in the subsemigroup of all identity elements of P, and is iso­
morphic to the subsemigroup of F, which is, therefore, a left ideal in F. This 
ideal evidently possesses the identity e. I t is therefore (e)r,. According to 
Theorem 16, L = (j, e)L. 

R e m a r k . From the hypothesis of the theorem stating tha t (e)L has an 
identity, it follows that FL(j, e) n Pei = 0 for e% ^ e. 

Finally, we mention some examples of semigroups which are the product 
of semigroups over a semigroup, the properties of which have already been 
studied. 

From [1] it follows: 
The semigroup S is said to admit relative inverses if to each a e S there 

exists an element e e S such that ae = ea = a and an element a! e S such 
tha t a'a = aa' = e. Then following holds: 

Theorem 26. Kach semigroup admitting relative inverses in which every pair 
of idempotents commute is a product of groups over a semigroup of idempotents. 

From [2] and [3] we have: 

Theorem 27. Kach finite simple semigroup S without zero, having at least 
one minimal left ideal and at least one minimal right ideal, while the idempotents 
form a semigroup in S, is the product of isomorphic groups over the simple semi­
group without zero. 

From [4] can be deduced: 

In a periodic semigroup let the set of elements x with xn = e (for some n 

and for the idempotent e) be called /{"-class belonging to e. 

Theorem 28. The product of commutative periodic semigroups Pe over the 
commutative semigroup of idempotents (semilattice) is a commutative periodic 
semigroup in which the K-classes are exactly Pe. Moreover each commutative 
periodic semigroup, the K-classes of which are groups, is the product of commu­
tative periodic groups o^er a semilattice. 

We shall say tha t the periodic semigroup S is partially commutative if for 
each e e S and each x e S, xe = ex is true. 

From [5] it follows: 

Theorem 29. The product of partially commutative periodic semigroups having 
a unique idempotent over a commutative semigroup of idempotents (semilattice) 
is a partially commutative semigroup, the K-classes of which are exactly Pe. 
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Theorem 30. (according to [6]). Let each principal Itft ideal in the semigroup P 
contain an identity. Then P is the product of groups over the commutative semi­
group of idempotents (semilattice) iff for each e e F, (j, e)h = (J, e)R where (j, e) 
is the identity in Pe. 
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О Б О Д Н О М П Р О И З В Е Д Е Н И И П О Л У Г Р У П П 

Б л а н к а К о л и б и а р о в а 

Резюме 

Пусть Г — полугруппа и пусть всякому элементу а из Г поставлена в соответствие 

полугруппа Р а . Пусть дано множество (5 гомоморфизмов ^ (а, /5 е Г ) , где ^ гомо­

морфное отображение Ра в Рр. Пусть при этом ^ е (3 тогда и только тогда, когда 

а = р или существует у е Г для которого ау = /3 или усе = р. Пусть множество Ш 

удовлетворяет условиям: 1. Д л я а е Г <р* я в л я е т с я тождественным отображением Ра 

на Ра. 2. Если для а, /?, у е Г существуют в (5 гомоморфизмы <р^ , цРу, у* тогда < р ^ = <р*. 

Обозначим элементы множества Ра через (х, а ) . Пусть Р—-теоретическо-множествешюе 

объединение множеств 1\((хеГ). Определим в Р умножение следующим образом: 

(х, ос)(х, (1) = (рУ

хр{х, <х)<Рхр{х, Р) • Множество Р с этим умножением я в л я е т с я полугруп­

пой. Назовем ее произведением полугрупп Ра над Г. 

В настоящей статье изучаются некоторые свойства этих произведений. 
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