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Matematický časopis 18 (1968). No. 3 

ALGEBRAIC CONSIDERATIONS ON POWERS OF STOCHASTIC 
MATRICES 

STEFAN SCHWARZ, Bratislava 

Let A be a non-negative matrix. One of the problems in studying such 
matrices is the solution of the following algebraic (or better to say combina­
torial) problem: What can be said about the distribution of zeros and non-
zeros in the sequence 

(1) A, A*, A*,... . 

If A is, moreover, a stochastic matrix the question concerning the existence 
of lim Am arises. 

m=oo 

I t is the aim of this paper to show that in some cases algebraic criteria are 
sufficient to decide about the existence or non-existence of the limit just 
considered. 

Some of the results of this paper are not new in the sense that they are 
implicitly contained in various considerations concerning finite Markov chains. 
Our considerations culminate in a certain sense in Theorem 7 which does not 
appear in any form in the vast literature on stochastic matrices. 

For convenience of the reader we recall some notions introduced by the 
author in previous papers [1], [2], [3], [4], which we shall need in the following. 

1. Algebraical preliminaries. Let N = {I, 2, ..., n}. Consider the set of 
„n X n matrix units", i. e. the set of symbols {en\i,j e N} together with a zero 
0 adjoined: S = {0} U {e^\i, j e N}. Define in S a multiplication by 

( 0 for j 4= m, 
etieml = {euiovj = m, 

the zero having the usual properties of a multiplicative zero. The set S = Sn 

with this multiplication is a 0-simple semigroup. 
Let i b e a non-negative n X n matrix. By the support of A we shall mean 

the subset of S containing 0 and all those elements etj e S for which atj > 0. 
The support of A will be denoted by CA or (for typographical reasons) also 

•0(A). 
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Denote further by Qn the set of all subsets of S and define in Qn a multi­
plication as the multiplication of complexes. Then Qn is again a finite semi­
group. 

For any two n X n non-negative matrices A, B we always have CA+B = 
= CA U CB and CAB = CACB. In particular the supports of the elements 
of the sequence (1) are given by the sequence 

*(2) @A> @A> @A> •••> 

which clearly contains only a finite number of different elements (subsets of S). 
The following facts follow from the elements of the theory of finite semi­

groups. 
Let h = h(A) be the least integer such that CA = CA for some h > h. 

Let further h -f d (d ^ 1) be the least integer such that C\ = CA
+d holds. 

Then the sequence (2) is of the form 

cA, ...,ckz\cA, ...,cA
+d-1\ck

A, . . . .Cy*- 1 ! ... 

For any a ^ h and every ^ Owe have CA = CA
+^d. I t is well known that 

<5A = {CA,CA+1, ...,CA
+d-1} 

is a cyclic group of order d (subgroup of Qn). The unit element of the group 
(5A is CA with a suitably chosen o satisfying h ^ Q ^ h + d — 1. I t is easy 
to prove that d/o. Note that we may also write (5 A = {Ce

A, CQ
A

+1, . . . . C^'1}. 
Note further explicitly that the integers h = h(A), d = d(A), Q = Q(A) 

are defined for any non-negative matrix A (and they can be found in a finite 
number of steps). 

For further purposes we mention the following simple facts proved in [1]. 
F'or any non-negative n X n matrix A we always have CA

+1 <= CA U CA U 
U . . . U C J so that the set CA U CA U . . . U Q is always a subsemigroup 
of S = Sn. A non-negative matrix A is called reducible if there is a permuta­
tion matrix P such that P~XAP is of the form 

(Al °) 
Otherwise it is called irreducible. I t is called completely reducible if in any 
such form B is a zero matrix. An n x n non-negative matrix A is irreducible 
if and only if ^ U C ^ U . . . \JCn

A=S. 
This is the case if and only if 

CAUCA
+1KJ . . . u C f ' ^ S . 

Here the summands to the left are quasidisjoint, i. e. the intersection of any 
two of them is {0}. 
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2. Topological preliminaries. The product of two stochastic matrices is 
again a stochastic matrix. Hence the set of all stochastic matrices forms 
(with respect to the multiplication of matrices) a semigroup which will be 
denoted by Qn. 

Introduce in 3w a natural topology by the requirement P{n) = (pffl) -> 
-> P = (ptj) if and only if pffi -> ptj for every i, j . Since the multiplication 
of matrices in this topology is continuous in both factors, 3» clearly becomes 
a compact (Hausdorff) semigroup. 

We recall some elementary results concerning compact semigroups which 
we shall use in the following. 

Let 3 be a compact (Hausdorff) semigroup and a e 3 . Consider the cyclic 
semigroup $1 = {a, a2, a3, ...} and its closure 31. I t is well known that 3t 
contains a unique idempotent e. More precisely: If 3U = {ah, ah+1, ah+2, . . . } , 

00 

then pj 3I& = r(a) is a group and e is the unit element of F'(a). We shall say 
h = l 

that a belongs to the idempotent e. r(a) is the unique maximal subgroup con­
tained in the compact Abelian semigroup 31 = {a, a2, a3, . . . } . Further we 
have 

(3) %.e = e.% = %.e = eM= r(a). 

Recall also that to the idempotent e there exists a unique maximal sub­
group G(e) of 3 containing e as its unit element. Clearly r(a) <= G(e). 

Consider the sequence 

(4) a, a2, a3, . . . 

and suppose tha t it belongs to the idempotent e. If (4) converges, it converges, 
necessarily to e. This is the case if and only if r(a) reduces to the element e. 
With respect to the relation (3) we may formulate this as follows; Suppose 
that a e 3 belongs to the idempotent e. The necessary and sufficient condition 
for the convergence of the sequence (4) is the fulfilment of the relation ae = 
= ea = e. We then have lim am = e. 

m= oo 

For all these results see [2] and [3]. 

3. The relation between 1(A) and d(A). Let now A be a stochastic matrix 
and suppose that it belongs to the idempotent J. Denote 31 = {A, A2, A3,...}. 
Then — as remarked above — S&I = 731 = r(A). In [2] we have proved tha t 
r(A) is a finite cyclic group. Also the maximal group G(J) belonging to J 
is a finite group isomorphic to the symmetric group of s letters if J is of the 
rank s. 

Let I = 1(A) be the least integer such that (AJ)1 = J . Then 

r(A) = {AJ, A2J, ..., AU = J}. 
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This implies: The necessary and sufficient condition for the existence of 
lim Am is the fulfilment of the relation 1(A) = 1, i. e. A J = J A = J. 

m = oo 

Note that 1(A) is defined only for stochastic matrices, while d(A) is defined 
for any non-negative matrix. 

Our first aim is to find the relation between these two numbers. 

Theorem 1. For any stochastic matrix A we always have 1(A)jd(A). 
Proof . Consider the semigroup 

<SA = {CA,CA,...,CA+^} 

and the mapping 

Ch

A -> AhJ (h = 1, 2, ..., h + d - 1). 
Since 

Cl2 . Chi = Ch2+h> -> Ah*+h'J = AhiJ . Ah*J, 

this is a homomorphic mapping of QA onto the cyclic group r(A). (It is onto 
since every AXJ is the image of some CA.) In this mapping the group (5A = 
= {Ck

A, ..., C^'1} is mapped onto a subgroup of F(i). Clearly the image 
of CA [the unit elements of (5A] is J [the unit (5 element of T(A)]. To prove 
that (5A is mapped onto the group r(A) itself it is sufficient to show that 
every element AhJeT(A) is the image of some element CA E(5A> This is 
true since Ce

A

+h = CQ

A . CA is contained in (5A and its image is J . AhJ = 
= JAh. Since r(A) is a homomorphic image of (5A , we have Ijd. 

Theorem 2. // A is stochastic and d(A) = 1, then lim Am exists. 
m= oo 

Proof . In this case Ijd implies 1=1, which is the necessary and sufficient 
condition for the existence of the limit considered. 

By definition of the number I the matrices J, AJ, ..., A1-1 J are all different. 
Our next goal is to prove that also their supports are different subsets of S. 
We use this occasion to prove a stronger assertion. 

Let U be an idempotent e 3 ^ and G(U) the maximal group of 3w belonging 
to U (i. e. having U as its unit element ). If P is any permutation matrix e 3w, 
then the maximal group belonging to the idempotent P _ 1 U P is P~1G( U)P. 
In [2] we have proved; Any idempotent stochastic matrix U (of rank s) can be 
written in the form P~XJP, where P is a permutation matrix and J is a matrix 
of the form 

(5) J = 

Qi 0 . .. 0 0 
0 02 . .. 0 0 

0 0 . .. Qs 0 

ғľ ғ2 . .- F8 
0 
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Here Qi is an r. X rt matrix (r. > 0) of the form 

Qi 

iui9ui9 . . ., 11̂  \ 

W*>%> • • •><°y 

and ^ ' -f u\ + . . . + u\ri) = 1. Denote / = n — (n + r2 + . . . + r,) ^ 0. 
Denote further by QW the following matrix having t identical rows 

Qf = 
fui9ui9 . . . , u^ 

\ui9ui9 . . . , uWl 

and by Z). the diagonal matrix D. = [&', p", . . . , Q(P], 0 ^ &(r) ^ 1. Then 

Ft is * of the form Fi=Dt. Qf, where J, ft = 2 ft" = • • • = 2 ft(/) = 1-
i i i 

Conversely, any matrix satisfying these conditions is an idempotent stochastic 
matrix of rank s and order n. 

After these remarks we shall prove the following 

Theorem 3. Let G(J) be the maximal group of 3« belonging to the idempo­
tent J G 3?& • Then any two different matrices contained in G(J) have different 
supports. 

Proof . With respect to the remark above we may restrict ourselves to the 
case that J is of the form (5). In [2] we have proved that G(J) contains exactly 
s\ different elements (stochastic matrices). Any element B e G(J) is of the 
form 

,CIIQ(:Ù, cvf£ù, • • • .euQìЧ o, 
C2lQ^\ cжQf\ . ... c2 so<4 о 

Б = ; 
\csiQ

(ľ\ CtìÑЦ'\ • ... cssQ(:-\ о 

V H<i, .., Hs, 0' 

where -ff* = ( 2 coaDa)Qi

) and (Cij) is a permutation matrix of order s. 
a=l 

Conversely, taking for (cy) all possible 5! permutation matrices of order s-
we obtain all elements e G(J). 

Now taking into account the fact that two different permutation matrices 
(c^j) have different distributions of zeros and ones we immediately see that 
two different permutation matrices lead to two matrices having different 
supports. This proves our statement. 

Our Theorem implies, in particular, that C(J)9 C(AJ)9 ..., C(Al~1J) all 
differ one from another. Hence we have the following 

222 



Corollary 3. If A belongs to the idempotent J and C(J) = C(AJ), then J = 
= JA= AJ. 

4. The relation between CA and Cj. We now ask: What can be said about 
Cj by knowning CA- Consider the sequence 

AQ, A*e, A*e, ... 

The support of each member of this sequence is the same semigroup CA = 
= CA

Q = CA
Q = ... We conclude that for any matrix M e {Ae, A^, A*e, ...} 

we have CM C C^. In particular, we have Cj c: CQ
A. This implies (for any 

integer h > 0) 

C(A*J) = C(A*)C(J) <= C(A*)C(AQ) = C(A*+*). 
Hence 

C(J) u C(JA) u . . . u C(JAi-!) c C{AQ) U C(A^) U . . . u C(AQ+^). 

More generally for any h ^ Q we have 

C(J) u C(JA) u . . . u C(JA*-i) a C(A^) u C(A*+i) u . . . u C(.4*+*-i).. 

Further 
C(J) = O(J^;) <= #(.4*+*), 
O(J) = O(J^^) c 0(4*+---), 

e t c , imply 

C(J) <= Q n O^+z n O^+2Z n ...n CQ
A

+d~l. 

Analogously we have 

C(AJ) <= OJ+1 n C^+ z + 1 n ...n CQ
A

+d~l+1, 

C(A*-iJ) c O^-1 n C^+a"1 n ... n O^"1. 

We summarize: 

Lemma 1. If A belongs to the idempotent J and d, Q, I have the meaning in­
troduced above, then for h = 0, 1, ..., I — 1 we have 

C(A*J) c CQ+h n CQ+h+l n ...n CQ+h+d~l. 

The following special cases are of some interest: 

Lemma 2. / / Cj = CQ
A, then d = I. 

Proof . Cj = CQ
A implies C(JA*) = C(A*+*)9 i. e. CQ

A = CQ+l, hence d ^ I. 
By Theorem 1 we have I = d. 

223 



R e m a r k . The converse is not true. For the matrix A = I ^ ] we have 

чř = I = 1, but Cj g CA = C[ <Q 
A ' 

Lemma 3. If CA <= Cj, then Cj = CQ
A (hence d = I). 

Proof . CA CZ CJ implies CA c Cj, i. e. C\ c: Cj. Analogously CQ
A c Cj. 

Since Cj c: C^ always holds, we have Cj = CA (hence by Lemma 2 cZ — /). 
We now give a necessary and sufficient condition in order t h a t d = I holds. 

Theorem 4. 1(A) = d(A) holds if and only if r = d is the least integer T ^ 1 
such that C(J) c C(Ae+T). 

Proof, a) Suppose t h a t 1(A) = d(A) and we have C(l) c C(A^lT) for some 
T ^ 1. Multiplying by C(J) we get C(J) cz C{Ae+rJ). Since d/g, and therefore 
IJQ, we have ^4^J = A1 J = J so t h a t C(J) c C(ATJ). This implies 

C(J) c C(^rJ) c: C(^2rJ) c . . . c C(-4**J) = (7(J)? 

whence C(J) = C(ATJ). By Corollary 3 ATJ = J, hence l\x and therefore 
djr. The least such integer T ^ 1 is T = rf and it satisfies our condition since 
C(Ae+*) = C{AQ) Z> C(J). 

b) Suppose on the other hand t h a t T --= d is the least integer T ^ 1 satisfying 
C(J) cz C(^4e+7). We then necessarily have I = d. For, if there were I < d, 
we would have by Lemma 1 

C(J) c C{Ae) n O^e+O n ... n C(.4-?+-*--). 

In particular there would be C(J) c: C(Je^) (with I < d), which contradicts 
our assumption. 

This result can be stated also in the following manner: 

Corollary 4. Let be d ^ 2. Then d = I if and only if Cj c: CQ
A but none of the 

sets CQ/\ CQ
A~, ..., C0/*1'1 contains Cj. 

5. The case of an irreducible matrix. More precise results can be obtained 
in the case when A is irreducible. 

Theorem 5. Let A be an irreducible stochastic matrix belonging to the idem/potent 
J. Then: 

a) A J is irreducible; 
b) I = d; 
c) The set C(AhJ) for any h ^ 1 is exactly one element e (5A • Conversely, any 

element e (5A can be obtained in this manner by choosing suitably h. 
Proof , a) Since A is irreducible, we have CA U CA U ...uCA=S. 

Multiply this relation by Cj. Since J has in each row at least one element 4= 0, 
we have CjS = S. Hence 
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C(JA) u o(JA2) u ... u C(JA*) = Я. 

This says that J A is irreducible. 

b) Consider next the equality 

Ch

A vCk

A

+1v . . . u C f " 1 = S 

and multiply it again by C(J). We have 

(6) C(A*J) U C ^ ^ J ) U . . . u C(A*+*-iJ) = S. 

Now by Lemma 1 

(7) C(A*J) c C(.4e+*), 
C(.4*+1J) cz C(A^+*+1), 

C(A*^~1J) c C(.4-?+*+*-1). 

Since the sets to the right are quasidisjoint, the supports C(AkJ), . . . 

..., C(Ak+d~1J) are all different. Moreover the matrices AkJ, . . ., Ak+d~1J 

are all different. Hence I = d. 

c) Since by (6) the union of all elements on both sides of (7) is S, we have 

C(A*J) = C(Ao+k), C(A*+1J) = C(Ae+*+i), . . . This concludes the proof of 

our Theorem. 

Theorem 6. If A is an irreducible stochastic matrix, then lim Am exists if and 
m=oo 

only if d(A) = \. In this case we have C(J) = S. 
Proof , a) The first half of the statement follows from the foregoing Theo­

rem 5 and the fact t h a t lim Am exists if and only if / = 1. 

b) If lim Am exists, then A J = J implies Cj = CjCA = C3C\ = . . . = 

= GjGn

A. Hence Gj(CA U CAV . . . U CJ) = Gj, i. e. Cj = CjS. Since Cj 

contains in each row at least one non-zero element we have Cj = S. 

E x a m p l e . The following example shows that the result of Theorem 6 need 

not hold if A is reducible. 

Let 

0 

0 

Then 

(en 0 0 ] fen 0 0 
GA = le21 0 e23 , C«-=c 2 i e22 OJ, CA = CA, 

\ez\ e32 0 J (e3i 0 e33j 

so that d = 2. But lim Am exists and it is equal to the matrix 
m-oo 
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Hence 1=1. This shows that lim Am may exist even if d(A) > 1. [Note — 
m=oo 

for the purposes of the following section — that in this case the sets CA, 
CA are not quasidisjoint. As a matter of fact we have CA n CA = {0, e\\> 
<?2i, e3i}.] 

6. A criterium for the existence of lim Am. The following Theorem may be 
m=oo 

sometimes very useful. 

Theorem 7. Suppose that A belongs to the idempotent J and d(A) ^ 2. Then 
lim Am exists if and only if 

(8) Cj c ck
A n C*+1 n . . . n Ck

A
+d-\ 

R e m a r k . With respect to Theorem 2 the case d = 1 is not interesting. 
Proof . Denote 

Ck
A n O*+1 n ... n O^"1 = TA. 

For any integer a ^ 1 we have 

Ck
A

+« n ck
A

+1+x n ...n ck
A

+d-1+0C = TA 

(since the factors to the left periodically repeat themselves) . 
In particular we have 

TACA = (Ck
A n O*+1 n ... n C^^CA c O*+1 n Ck+2 n ...r\ Ck+d = TA. 

Hence TACA c J7^. 
a) Suppose that lim _4m exists, i. e. I = 1. Then by Lemma 1 

W=oo 

Cj a ce
An CQ+1 r\ ...n C6/^1 = TA. 

b) Suppose conversely that Cj ^ TA. Then C(JA) = CjCA c 2UCU c 2 ^ 
and by the same argument C(A2J) <= T^, O(^4*-i J ) c J7^. Therefore 

C(J) u C(.4J) u ... u C(A^~1J) czTA = Ck
Ar\ Ck+1 n ...n C*^"1. 

Multiply this relation by C j . The left hand side does not change. On the right 
hand side we have 

TACj = (CA n ... n C^-^Cj c C ( ^ J ) n O(^+iJ) r\ ...n C(Ak^~1J). 
Now since Z/d, the matrices AkJ, Ak+1J, . . . , Ak+d~1J are (up to the ordering) 
identical with the matrices AJ, A2J, ..., A1 J = J, so that we obtain 

C(J) u C(JA) u ... u C(JA*-i) c O(J) n C(J^) n ... n C(JA^). 
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This implies C(J) = C(JA) = ... = C(JA^). By Corollary 3 we have J = 
= J A. Hence lim Am exists. 

m=oo 

Theorem 7 is completely proved. 
From the ,,practical" point of view the condition (8) does not give informa­

tions about the existence of the limit in the positive sense (since we do not 
know J in advance). But it can be used to deduce criteria for the non-existence 
of lim Am. 

m=co 

I t is clear what we shall mean by the i-th row of CA and by the i-th row 
of TA . Since J is stochastic we have 

Corollary 7,1. // TA has a zero row, then lim Am does not exist. 
m=<x> 

Corollary 7,2. IfCk

A,C
k

A

+1, . .., C ^ * " 1 (d ^ 2) are quasidisjoint, then lim Am 

m=co 
does not exist. In this case we have moreover I = d. 

Proof . The first part follows from Corollary 7,1. For the second part note 
that we have proved C(J) <z C(Ae), C(JA) <=: C(Ae+1), ... Hence also the 
sets C(J), C(JA), ... C(JAd~1) are quasidisjoint. Therefore the matrices 
J, J A, ..., JAd~x are all different, i. e. I ^ d. Since we always have l/d, this-
implies I = d. 

R e m a r k . In the proof of Theorem 7 we have used the relation TACA C 

<= TA (or CATA C TA). We first show that here the equality need not hold. 
Take e. g. the matrix 

0 1 0\ /- 0 ô  
1 0 0 1 . Then A2 = ° 1 0 
h ł 0/ \ ł ł o, 

and A* = A. We have TA = CA n CA = {0, e31, e32}- Now 

CATA = {0, ei 2, c 2i, f-si, e32}{0, e31, e32} = {0}, 
while 

TACA = {0, e3i, e32}{0, e12, e21i e31, e22} = TA. 

Note also the following. The relation TA Z> TACA implies TA z? TACA Z> 
ZD TACA z> . . . Since this chain can contain only a finite number of different 
members there is an integer h such that TACA = TACA

+1 = ... Now since 
C\ = CA

k = ..., it is clear that we certainly have TAC\ = TACA

+1 = ..., 
and Ck

ATA = Ck

A

+1TA = ... 
Note finally t h a t TA is always a semigroup since TATA C TACA <Z TA. 

Also TAC
S

A (for any s *> 1) is a semigroup since 

V ^ o l = TA(CATA)CA cz TATACA <= TAGA. 
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7. The case of a doubly stochastic matrix. The following special case is of 
some importance. If A is a doubly stochastic matrix, then it belongs to a 
doubly stochastic idempotent J . In [4] we have proved that a doubly sto­
chastic matrix is either irreducible or completely reducible into irreducible 
doubly stochastic matrices. If A = P - 1 . diag[^4i, A2, . . . Ar]. P, then it is 
easy to show that d(A) = least common multiple [d(A±), d(A2), . . . , d(Ar)]. 
If d(A) = 1, then lim Am exists by Theorem 2. If lim Am exists, then lim Af 

m=oo m=x> m=oo 

exists and by Theorem 5 d(At) = 1. Hence d(A) = 1. We have proved; 
Theorem 8. / / A is a doubly stochastic matrix, then lim Am exists if and 

m=oo 

only if d(A) = 1. 

REFERENCES 

[1] S c h w a r z S., A semigroup treatment of some theorems on non-negative matrices, Czechosl. 
Math. J . 15(90) (1965), 212—229. 

[2] Schwarz §., On the structure of the semigroup of stochastic matrices, Magyar tud. 
akad. Mat. kutato int. kozl. 9 (1964), 297—311. 

[3] IIIBap^ III., K meopuu xaycdopcfioeux 6uKOMnaKmuux nojiyzpynn, Hexocn. MaT. >K. 
5(80) (1955), 2—23. 

[4] Schwa rz §., A note on the structure of the semigroup of doubly stochastic matrices, 
Mat. casop. 17 (1967), 308—316. 

Heceived January 27, 1967. Matematicky ustav 
Slovenskej akademie vied, 

Bratislava 

228 


		webmaster@dml.cz
	2012-07-31T16:48:34+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




