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M A T E M A T I C K Y ČASOPIS 
ROČNÍK 21 1971 ČÍSLO 3 

DIMENSIONS OF DISTRIBUTIVE LATTICES 

MARTIN GAVALEC, Kosico 

I n this paper the notions of lattice dimension and local dimension for 
distributive lattices are introduced by a modification of the notion of the 
dimension of ordered sets. The relations between these three notions are 
studied. The main result is Theorem 4.1. 

• 
0 . Notation and terminology 

The set-theoretical join and meet are denoted u , n , the lattice ones V? A-
By \jA we denote the join of all elements of the set A, analogically for n , V ? A • 
If X is a set, then P(-X) denotes the set of all subsets of X. An ordered pair 
of elements x, y is denoted (xyy, a relation is a set of ordered pairs. 

I n a lattice, [xy] denotes an interval, i. e. the set {z : x ^ z ^ y}, [#) is the 
set {y : x ^ y}, dually (x]. The interval [xx] is called trivial. The denotation 
x -< y means that [xy] consists just of two elements, then [xy] is called a prime 
interval. In a lattice L, the set {y : y e L & x -< y} we denote N L ( # ) or N(x). 
If a; = y /\ u,y V u = v, we write [xy] ~ [uv]. The intervals i, j are transposes 
if either i ~ j or j ~ i. The intervals i, j are projective if there are intervals 
io, ii, ...,in, n ^ 0 such t h a t ifc-i, ik are transposes for k = 1, .. ., n and 
i = in, j = in- The lattice L is locally finite if any interval [xy] in L is finite. 
For distributive lattices the local finiteness is equivalent to the locally finite 
length. I f L is a lattice, x e L, b c= L and (V y, z e b)[y >x&(y^z=>x = 
= y A z)]> then we say that b is an independent system over x in L. If the 
dual condition holds, we say t h a t b is an independent system under x in L. 
The notions used in this paper and not explained here are defined in [1] and [6]. 

1. Dimensions 

1.0. If an ordered set P can be isomorphically embedded into a product 
of i chains (i being a cardinal number),but cannot be embedded into a product 
of less than f chains, then the dimension of P is said to be I, denoted dim P = 
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= J. In the case of a lattice we can ask the embedding to be realized by 
a lattice isomorphism into and we get the notion of the lattice dimension, 
denoted ldim. I t can be easily shown that , if a lattice L is a subdirect product 
of i chains, then 

(a) L is distributive, 
(b) every independent system b over x in L is of a power less than or equal 

to f, 
(b') every independent system b under a; in I is of a power less than or 

equal to I. 
On the other side, by the well-known theorem of B i rkhof f , any distri­

butive lattice is a subdirect product of (two-element) chains. Therefore the 
notion of the lattice dimension is defined just for distributive lattices and 
the question arises, whether the conditions (a), (b), (b') imply that the lattice 
L can be embedded into the product of I chains by a lattice isomorphism. For 
another formulation let us define: 

1.1. Definition. The local dimension of an element x in a lattice L, denoted 
lodimL^, is the cardinal number sup{card b : b is an independent system, over 
or under x in L}. The local dimension of the lattice L, denoted lodim L, is 
sup{lodimi,a;: x e L}. 

Thus the above problem stands as follows: does the local dimension of 
a (distributive) lattice coincide with its lattice dimension? 

In general the answer is not positive, but we shall prove tha t for locally 
finite lattices both dimensions are equal. 

First we prove two simple statements on the conditions (b) and (b'). 

1.2. Lemma. If i is a finite cardinal, then in a distributive lattice L the 
conditions (b) and (b') are equivalent. 

Proof . Let b be an independent system over x in L, card & < No- Then 
let us denote x' = \ / b and for y eb let us set y' = \J (b — {y}). Then for 
any y eb the intervals [xy], [y'x'] are transposes and therefore y' =# x'. For 
y 4= z, y eb, zeb we get y' \J z' = x' and y' =# z'. Thus b' = {y' : y e b} is 
an independent system under x' and card b' = card b. The converse impli­
cation is proved dually. 

1.3. Lemma. In a locally finite lattice L the conditions (b) and 
(b") for any xeL, card NL(#) ^ I 

are equivalent. 
Proof . For xeL the set N L ( # ) is an independent system over x in L, so 

tha t (b) implies (b"). Let (b") hold, let b be an independent system over x 
in L. Then for any y eb there is an element y' less than or equal to y and 
covering x. For y eb, zeb,y =# z we have x = y/\z = y'f\z' and so y' + z'. 
Thus card b ̂  card NL;(a;) ^ I and the lemma is proved. 
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1.4. N o t e . The original definition of dimension, given b y B . D u s h n i k and 
E. W. Mi l l e r [2], was a little different from ours. V. N o v a k [5] showed tha t 
this difference is not substantial. 

We have mentioned already that for a distributive lattice L lodim L ^ 
^ ldim L holds. Evidently also dim L ^ ldim L is true. 

Under some conditions on L we can show tha t lodim L ^ dim L. Namely, 
if b is an independent system over x in a distributive lattice L and card b = f, 
then all joins of a finite number of elements of b form a sublattice, which is 
isomorph to the lattice P'(f) of all finite subsets of I. If L is also complemented 
(i. e. if L is a Boolean algebra), then analogously L contains a sublattice 
isomorph to the Boolean algebra P"(I) of all finite subsets of I and their com­
plements. In these cases, of course, dim L ^ dim P'(I) , dim P"(I) respectively. 
By the method of H. K o m m [4] it is easy to show tha t dim P(f) = dim P"(f) = 
= f. Hence if lodim L ^ No (using P(I) = P'(f) for f finite) or if L is a Boolean 
algebra, we have lodim L ^ dim L. If L is moreover locally finite, all three 
dimensions are equal because Theorem 4.1 gives lodim L = ldim L. 

If L is not distributive, then the situation dim L = 2, lodim X = f can 
occur. We show here an example of such a lattice, which will be even modular 
and of finite length. L is the lattice given by the following order S on I + 2 : I 
Soc, ocS I + 1 for any oc e I. Let L\ be i + 1 with the usual ordering of ordinals 
and let L2 be I + 1 dually ordered. Then we define /(f) = <0f>, / ( I + 1) == 
= <(f0> and f(oc) = <a + 1, a + 1). I t is easy to see that / is an order iso 
morphism of L into L\ x L<i. 

1.5. If the local dimension of a distributive lattice L is finite, then the local 
dimension of any lattice homomorphic image of L is ^ lodim L. 

P r o of. Let / b e a lattice homomorphism of L onto Z/.Then there is a mapping 
g of U into L such that f(g(x)) = x for any x e L'. Now let M c L' be a finite 
independent system over x eU. For any yeM we define y = V {giz)'> z^ 
e M & y + z} and x = V {g(z)\ z e M}. For y, z e M, y =# z we have y /\ z = x, 
therefore g(y) /\ g(z) ef-^x). Thus g(y) A y = V {fl̂ (y) A 0(z); zeM &y * 
4= z} G / _ 1 ( ^ ) . On the other hand g(i/) /\z = g(y) ^f-x(x) for y 3= z, y, ze M. 
Therefore y = z implies y = z and M = {y; y e ill} is an independent system 
under x of the same cardinality as M. By Lemma 1.2 the proof is finished. 

1.6. N o t e . If lodim L ^ Xo, then the local dimension of a lattice homo­
morphic image of L can be > lodim L (even for L distributive), as the fol­
lowing example shows. Let L be the Boolean algebra of all subsets of a countable 
set S, let J be the ideal of all finite subsets of S. I t is well-known tha t there 
is an uncountable system F of infinite subsets of 8 such tha t x C\y is finite 
for x,y eF, X =# y. The canonical homomorphism / of L onto L\J maps F 
onto uncountable independent system in LI J, i. e. lodim Li J > X o , although 
lodim L = No • 
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2. Independent systems 

2.0. In this section we give some lemmas on transposed and projective 
intervals and independent systems in distributive lattices. 

2.1. Lemma. In a distributive lattice the following statements are equivalent: 

(i) [xiyi] ~ [xi V X2,2/1 V 2/2] & N2/2] ~ [xi V x2,2/1 V 2/2], 
(ii) [xi Ax2,yi A 2/2] ~ [xiyi] & [xi Ax2,yi A 2/2] ~ N2/2], 

(hi) [0:1 Ax2,yi A2/2] - [xiyi\ & [^2/1] - [a;i V x2,2/1 V 2/2], 
(iv) #1 A #2 = xi A 2/2 = 2/i A #2 & 2/1 V 2/2 = #i V 2/2 = 2/i V ^2. 

Proof . Let (i) hold. Then xi V 2/2 = (2/1 A (a* V «2)) V 2/2 = (2/1 V 2/2) A 
A (fci V x2) V 2/2) = (2/1 V 2/2), analogously yi\J x2 = yi\J y2. Now we have 
*i V (2/1 A 2/2) = (»i V 2/1) A 0*rV 2/2) = 2/i A (2/1 V 2/2) = 2/i and ar A 
A (2/1 A 2/2) = {xi A 2/1) A 2/2 = «i A 2/2 = (&i A (*i V x2)) A 2/2 = *i A 
A ((#i V #2) A 2/2) = « i A « 2 , i . e. [a* A x2, 2/1 A 2/2] ~ L^i2/i]- % dual and 
analogous considerations we see tha t (i) => (ii) & (iii) & (iv), (ii) => (i) & (iii) & 
& (iv). 

Let (iii) hold. Then xi A 2/2 = {xi A yi) A 2/2 = xi A (2/1 A 2/2) = #1 A x2 

and #i A ^2 = (2/1 A {xi V #2)) A x2 = 2/1 A (0*T V ^2) A x2) = 2/1 A ^2, i. e. 
using duality we have (iii) => (iv). 

At last let us assume (iv). Then 2/1 A (#1 V x2) = (2/1 A x{) \J (2/1 A x2) = 
= xi V (#i A ^2) = xi,yi V (a* V ^2) = (2/1 V a*) V x2 = in V a2 = 2/1 V 2/2, 
thus (iv) => (i). 

2.2. Lemma. In a distributive lattice the intervals [xiyi\, [x2y2\ are projective 

iff [xiyi] ~ [xi V x2,2/1 V 2/2] and [̂ 22/2] ~ [̂ 1 V x2,2/1 V 2/2]-
Proof . One of the implications is trivial. The proof of the other will be done 

by induction. Let us suppose that [xiyi] ~ [xi \J x, 2/1 V 2/L [xy] ~ [xi V x, 
2/i V y] and that [xy], [x2y2] are transposes. We shall show then tha t [xiyi] ~ 
~ [xi V x2,2/1 V 2/2], Nt/2] - [a?i V x2,yi V 2/2]- Let [x2y2] ~ [a#] hold. We 
have x2 ^ #, #1 ^ xi V ^2 < xi V # and #1 = 2/1 A #1 < 2/1 A (#1 V ^2) < 
< 2/i A (#1 V #) = ^ 1 5 thus 2/1 A {xi V #2) = xi. Further we have 2/1 V {xi V 
V x2) = (2/1 V a*) V x2 = 2/1 V X2 = 2/1 V (2/2 A a) = (2/1 V 2/2) A (2/1 V ») = 
= (2/1 V 2/2) A (2/1 V 2/) = 2/i V 2/2; (a* V afe) A 2/2 = (a* V a2) A (a* V «) A 
A 2/2 = (a* V #2) A{xiWx)AyAy2 = {xi V a*) A a A 2/2 = (a* V a:2) A 
A^2 = a;2; (a* V x2) V 2/2 = xi V 2/2 = (2/1 A (a* V a;)) V 2/2 = (2/1 V 2/2) A 
A (#1 V £ V 2/2) = (2/1 V2/2) A {xi V 2/) = (2/1 V 2/2) A (2/1 V y) = 2/1 V 2/2. 
In the case [#2/] ~ [̂ 22/2] the proof goes dually according to Lemma 2.1. 

2.3. Lemma. In a distributive lattice let the intervals [xiyi], [.r2y2] 6e jpro-
jective. 

(i) If #1 = X2, then the intervals are equal. 
(ii) If 2/1 < X2, then the intervals are trivial. 
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Proof . From x± = x2 we get yi = x\ \J yx = x2 \J y\ = x\ \J y2 = x2 \f y2 = 
= y2, using Lemma 2.1, 2.2. 

From y\ ^ x2 we get yi = x\ \J y\ ^ x± \J x2. By the previous lemma we 
have xi = y\ f\ (x\ \J X2) = yi, q. e. d. 

2.4. Lemma. / / , in a distributive lattice, a, b are independent systems over 
x, y respectively, than there exist independent systems c, d over x f\ y, x \J y 
respectively, such that card a -f- card b = card c -f- card d. 

Proof . Let us set ai = {2 :2 e a & (x \J y) f\ 2 > x}, 
bi = {z:zeb&(x\J y) f\z>y}. 

As for 2 e a (x \J y) J\ 2 = x \f (y A z) ^ x holds, it is 
a2 = a — ai = {2 : 2 e a & (x \J y) f\ 2 = x} and analogously 
b2 = b — bi = {z : z e b & (x \J y) f\ z = y}. 
We define â  = {y f\ z : 2 G ai}, 6X = {x A 2 : 2 e 61}, 

az = {y V z : z E az}> b'2 = {x \J z : ze b2}, 
a'2 = {z : z ea'2& (V t)[t eb2 => z f\ t = x \f y]}, 
b"2 = {z : z G b'2 & ( V t)[t e a'2 => z f\ t = x \J y]}, 
c0 = {z f\ t : z e a2 &> t G b2 & (y \J z) A (x \J t) > x \J y}, 
d0 = {(y \J z) A (x \f t) : z e a2 & t e b2 & z J\ t s Co } , 
c = Co u a[\j b[, d = do Kja"2 u b'2. 

If 2 G a i , then x < x \J (y f\ z) and from [x f\y, y f\ z] ~ [x, x \J (y f\ 2)] 
as well as x f\ y < y f\ 2 follows. 
Analogously we get x f\ y < x f\ 2 for 2 e 61. 

IizEa2, then [xy] ~ [x \J y, y \J z] and again we have x \] y < y \J z and 
analogously x \J y < x \J z ior z Eb2. 

If z ea2, t Eb2, u = (y \/ z) f\(x \J t) > x \J y, then let us denote z' = 
= z J\ u, tr = t f\ u. We have then 
(x v y) A z' = {x V y) A z A u = x f\ u = x, 
(x V y) \J z' = y \J (z A u) = (y \J z) /\ (y\J u) = (y \J z) f, u = u. 
So [xz] ~ [x \J y, u] and analogously [xt'] ~ [x \J y, u]. As z' \f t' = {z f\ 
Au)\J (t f\u) = (2 V 0 Au = u and 2 A t = (2 A u) A (t A u) = 2 A 
AtAu = zAtA{yyz)/\{xyt) = zf\t holds, by Lemma 
2.1 we get [x A y> ^ A ^ Vxz'], therefore [x A y> z A ]̂> [^ V ?/? u\ are 
projective and x A y < z A t- Using Lemma 2.3 we can see that card Co = 
= card do. 

Now Ave have proved ZEC=>xAy<z a u d zEd=>x\Jy<z. 
If 2 G a i , t E a i , 2 + *, then (y A 2) A (y A 0 = y A (z A *) = x A y. 
If 2 e a i , * e 61, then (y A 2) A {x A t) = (x A z) A (y f\ t) = x A y. 
If SE ax, zEa2,tEb2, then (y A 8) A (z A 0 = (5 A 2) A (y A t) = a; A y. 
If u Ea2,zEa2, u 4= z, v Eb2,tEb2, then (w A 0) A (2 A 0 = {u A z) A 
V (v A t) = a; A v A t = x A (» V 2/) A v A t = x A y A t = x A y-

The last four implications togehter with three analogous ones prove tha t c 
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is an independent system over x ,\ y and that card ai = card a[, card bi = 
= b[, a'± nb[ = a[ n Co = b[ n Co = 0. 

If z e a2, t e a2, z =f= t, then (y V z) /\ (y \J t) = y \J (z /\t) = x \/ y. 
If zea2, t eb2, y \/ zea"2, then (y \J z) /\ (x \J t) = x \J y. 
If s ea2, y \J sea"2, zea2, t eb2, z /\ t ec0, then y \J z$a"2, s #= z and -

(yV8) A-((y V 2) A (» V 0) = ((2/ V 8) A {y V «)) A ( « V ' ) = ( y V (* A 
A ^)) A (* V 0 = (x V 2/) A (* V t) = x v y. 

If u e a2, z e a2, u 4= z, v e b2, t e b2, u /\ v e Co, z /\ t eco, then ((?/ V u) A 
A (* V v)) A ((2/ V z) A (* V *)) = {{y V w) A {y V *)) A ((* V v) A (* V 
V 0) = (y V (u A *)) A (a? V (v A *)) = (x V 2/) A (* V (v A 0) = * V y. 

These four implications together with four analogous ones show tha t d is 
an independent system over x \J y and that card a2 = card a2, card 62 = 
= card b'2, a2 n &£ = ag n do — b"2 n do = 0, card c?o = card (a2 — ag) = 
= card (&£ — 62)-

Now we have card a = card ai + card a2 = card a{ + card a'2 = card a[ + 
+ card ag + card (a'2 — a2), analogously for card b, and then card a + 
+ card b = card a[ + card b[ + card (a'2 — a"2) + card a£ + card b2 + 
+ card (b2 — 60) = c a r d c + card d. The proof is complete. 

2.5. N o t e . Although in this paper Lemma 2.4 will be used only for covering 
systems N(#), N(y) and the proof in the special case would be simpler, it is 
formulated more generally because it may be useful for other purposes, e. g. 
for the eventual generalizing of Theorem 3.18 (see also Note 4.4). 

3. Finite case 

3.0. In this section f is a fixed finite non-zero cardinal number and L is a locally 
finite distributive lattice with lodim L = f, i. e. L is a locally finite lattice sa­
tisfying the conditions (a), (b"). Then the following statement holds: 

3.1. Theorem. There exist congruences R, Q in L such that 
(i) lodim L/R = 1, 

(ii) lodim L/Q < f, 
(hi) R, Q are orthogonal, i. e. R C\Q is the identity on L. 

The proof on Theorem 3.1 is given in several steps. 

3.2. Definition. Let us define an equivalence R' in L2 as follows: (xiyi)R' 
<\X2y2y iff [xiyi], [x2y2] are projective prime intervals in L. 

N o t e . If (xiyi)R'(x2y2), then by Lemma 2.2 all the conditions in 2.1 are 
fulfilled and by Lemma 2.3 we have yi ^ x2, y2 ^ xi. 

For x, y eL we shall denote A(x, y) = {(xiyi) : (xiyi)R'(xy)], A' = 
= {A(x, y) : [xy] is a prime interval in L}. 

For A eA' let us denote A0 = {x : (3y)[(x?j) e A]}, A1 = {y : (3x)[(xy) e 
eA]}. 
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The structure of A(x, y) is described by 

3.3. Lemma. If A eA', then 
(i) -40 n A1 = 0, 

(ii) A0, A1 are convex sublattices in L, 
(iii) A is a lattice isomorphism of A0 onto A1, 
(iv) lodim A0 = lodim A1 < f. 

Proof . From the definitions and the note in 3.2 we immediately get (i). By 
the Lemmas 2.1, 2.2, A0, A1 are sublattices in L. For the proof of the convexity 
of-4° let x\ ^ X2 < xz, x\, x% e A0. Hence there exists y\ such tha t (x\y\) e A. 
The assumption y\ ^ X2 gives y\ ^ X3, which is impossible by Note 3.2. From 
y\ <L X2 we get y\ J\ x2 = x\ and [x\y\] ~ [x2, y\ V #2]. Therefore (x2, y\ \J 
V ^2> e A and x2 e A0. The convexity of A1 is proved dually. 

From Lemma 2.3 we can see that A is a one-to-one mapping of A0 onto A1, 
preserving the lattice operations by Lemma 2.1. Thus (iii) has been checked. 
At last (iv) follows from (i), (ii), (iii) and Lemma 1.3. 

The extent of A(x, y) in L is shown by the following 

3.4. Lemma. If A eA', zeL, then 
(i) x e A0, x -< z implies (xz) e A or ze A0, 

(ii) there exist x e A0, y e A1 s^lch that z ^ x or z ^ y. 
Proof . From xe AQ, (xy) e A for some y e L follows. If x •< z 4= y, then 

[xy] ~ [z,y V z] a u d z e A0. 
For the proof of (ii) let (xy) e A. We denote w = (z \J x) J\ y = (z J\ y) \J x. 

There is x ^ ^v ^ y, thus x = w or w = y. If x = w holds, then [xy] ~ 
~ [x \J z, y \J z] and x \J z e A0. I n the case w = y we have analogously 
y A zeA1. 

3.5. Definition. Let ^is define the relations P', P" in A' as follows: For A, 
B G A' we set (AB) e P' if and only if 
(i) A1 n B" =# 0, 

(ii) A»r\Bl = 0. 
Fur ther we denote as AB the convex hull of A1 \j B° and set (AB) e P" 

if and only if (ABy e P' and 
(iii) lodim AB < I 

We examine some properties of P': 

3.6. Lemma. If (AB) e P', then 

(i) -4 * B, 
(ii) A" n J5° = A1 n B1 = 0, 

(Hi) for any y e A1 there is xe B° such that y ^ x, 
(iv) (xyy e A, (uv) e B implies x^. u, y $: v, 
(v) if x ^ y, x e B°, y e A1, then x, y e A1 n B°. 
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Proof . From 3.3(i), 3.5(i) we easily get (i). 
Let be x e A0 n B°, then (xyy e A, (xzy e B for some y, z e L. By (i) we 

have y =f= z, therefore by 3.4(i) we have zeA°, which contradicts 3.5(ii). 
Analogously we prove A1 n B1 = 0. 

Let y G A1, by 3.5(i) there is v G A1 n JB°, <t;w> G _B. Let us denote x = y \J v. 
By 3.3(ii) we have x e i 1 and so the assumption w ^ x would give by 3.3(h) 
we A1, which is a contradiction to (ii). Thus w ^ x and [vw] ~ [x, w \J x], 
x G BO. 

If y G A1, v G B1, then (iii) gives us z e B° such that z ^ y. Accordingly, by 
the note in 3.2 we have y $: v. 

At last let x ^ y, x e B°, y e A1, then (xzy G B for some ze L. By (iv) we 
have z % y, hence [xz] ~ [y, z \J y] and y G 5 ° . Analogously x G .41. 

3.7. Lemma. If x <y, xe A1, y $ A1, then for B = A(x, y), (AB} e Pr 

holds. 
Proof . We have x e A1 n B° and therefore 3.5(i) is fulfilled. As xeA1, 

there is u e L such tha t (uxy e A. If we assume A0 n B1 4= 0, then there are 
(u'x'yeB, (x'y'^eA. By 3.3(h) we have x \J y' G A1, therefore y \J x' 4= 
^r x \J y' holds, otherwise we had y e A1 by 3.3(h). Further we have x \J u', 
u \J x' ^ y \J x' and x\J u', u\J x' <^ x \J y', so tha t denoting w = (x \J 
V u') \J (u\J x'), z= (y V x') A (x \J y') we get x \J u' ^ w ^ z ^ y \Jx'. 
We have shown tha t there cannot be y \J x' = z = x \J y', therefore, e. g., 
z < y \J x' (the case z < x \J y' is analogous). By Lemma 2.2 x \J u' -< y \J xf 

holds, therefore x\J u' = w = z. But then u \J x' ^ x \J u' ^ x \J y', 
u V x' -<x V y' holds and we have u \J x' = x \J u' or x \J u' = x \J y'. 
In the first case we get u ^ x < u \J x', ue A0, u \J x' e A0 and by the 
convexity of A0 also x e A0, which is a contradiction with 3.3(i) because 
x G A1. In the second case we have u' ^ x' ^ y' ^ x \J y' = x \J u', u' e B°, 
x \J u' G B°, hence x' e B°, a contradiction. We have therefore proved 3.5(ii) 
and the proof is finished. 

3.8. Lemma. If (AB) e P', then 
(i) z G AB exactly when there are y e A1, x G B° such that y ^ z ^ x, 

(ii) x G AB, x -< y imply (xyy G B or y e AB-
Proof . If y G A1, x e B°, y ^ z ^ x hold, then evidently z e AB- To prove 

the converse implication it suffices to show that the set S of all such z is a convex 
sublattice in L, containing A1 u B°. But tha t follows from 3.3(h) and 3.6(iii). 

Now let x e AB, x -< y, then by (i) there are u G A1, v e B° such tha t u ^ 
^ x ^ v. If y ^ v, then y e AB- If y ^ v, then [xy] ~ [v, y \J v] and by 3.4(i) 
we have (v, y \J v)y e B and (xyy e B, or y \J v G B° and y G AB. 

3.9. Lemma. / / x, y e L and card NL(x) = card NL(y) = i, then 

card NL(x A Vf) = c a r d NL(x \J y) = t 
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Proof. Follows from Lemma 2.4. 

3.10. Lemma. If for A E Af there is B E Af such that (ABy e P \ then there 
is CeA' such that (ACy e P". 

Proof . Let us denote B' = {B : (ABy e P'}. For any B e B' there is xB e 
EA1 n B°. Let B" be a finite subset of Bf, we denote xf = \J {xB : B e B") 
and by 3.3(h) we have xf e A1. Then by 3.6(v) we get x' e A1 n B° for any 
JB G JB". Therefore card .B" ^ f must hold. As B" was an arbitrary finite subset 
of B', also 5 ' must be finite. Let us suppose that for any B e Bf, lodim AB = I 
holds. Then by 3.8(i) for any B e Bf there are UB E A\, VBE B°, ZB E [UB , VB] 
such that NL(ZB) C [^BJ VB] and card NL(ZB) = I. We denote u = /\ {UB : 
: J5 G £ ' } , z = A {ZB '. B E B'} and have u e A1, u ^ z. By 3.9 we get NL(z) = 
= f. Hence according to 3.3(iv), NL(Z) ^ A1 cannot be true, therefore there 

exists z' $ A1, z -< 2r. It means that there exist also XEA1, y $ A1 such that 
x -<#> u ^ •£ < <?. Denoting C7 = ^4(.r, y) we get by 3.7 that (ACy E Pf and 
therefore CEB'. Thus we have x^z^zc^w^vc for any W G N ^ C ) . 

But .r G C°, ^c e C° give by 3.3(H) a contradiction with 3.3(iv), card NL(zc) = I. 

3.11. Definition. Ze£ Q' fee the relation in A\ which is the reflexive and tran­
sitive hull of the relation P", i. e. Qf is the meet of all relations in A', fulfilling 

(i)(AAyEQf, 
(ii) (ABy E P" implies (ABy e Q\ 

(iii) (ABy E Q' and (BCy e Q' imply (ACy E Qf 

for any A, B, C E Af. 
N o t e . One can easily see tha t (ABy E Qf exactly when there exist 

Ao, A\, . . . , AnE A' with n ^ 0 such tha t (Ai-\A\) E Pff for i = 1, . . . , n and 
A = A0, B = An. 

3.12. Lemma. If A,BEA', (ABy E Q', then 
(i) if A =(= B, then *or any y e A1 there exists x E B° such that y ^ x, 

(ii) if (BAy E Q', then A = B, 
(iii) if (ABy e P" , then there is noC E A' such that A * C 4= B, (ACy e Q\ 

(CsyEQf. 
Proof . According to the previous note, (i) is proved by repeated using of 

3.6(iii). 
If (AByEQf, (BAyEQf, A 4= B, then by (i) there exist IJEA1, UEB<>, 

v E B1, x E A0 such tha t y ^ u ~<v ^ x, which is a contradiction by the note 
in 3.2. 

Let be (ABy EP", A 4= G * B, (ACy, (CBy e Qf. Then there exists D e A' 
such tha t (CDyEQ'9 (DBy e P" and by (ii) A 4= D holds. By 3.5(i) there 
exists y e A1 n B° and by (i) we have u e D°, v e D1, w E B° such tha t y ^ 
^ u •< v ^ iv, therefore UE B° by the convexity of B°. But this is a contra­
diction with 3.6(h). 
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3.13. Definition. By the previous lemma, Q' is a partial order in A'. Using 
3.4(i), 3.8(h) and the local finiteness of L it is easy to show that an interval [AB] 
in (A', Q') is not longer than any interval [uv] with UEA°, v e B° (by 3.12(i) 
such u, v ahvays exist if (AB) e Q'). 

Throughout this section, M will denote an arbitrary but fixed maximal 
chain in (A', Q'). By the above remark, M is locally finite and evidently non-
-empty (we have assumed t + 0). 

Now the set R is defined as follows: 
if A is the least element in M, then A0 E R, 
if A is the greatest element in M, then A1 E R, 
if A, BE M and (AB) e P", then ~ARER, 

R does not contain any other elements. 
3.14. Lemma. R is a partition of L, i. e. 

(i) a, b e R and a =f= b imply a n b = 0, 
(ii) \j R = L. 

Denoting by R the equivalence determined by R we have 
(hi) R is a congruence in L, 
(iv) LjR is a chain, 
(v) if (xy) G u M, then (xy) $ R. 

Proof . Let a, b e R, a # b, z e a n b. Let either a = C°, C being the least 
element in M, or a = AC, A,C eM, (AC) E P", and either b = BD, B,DE M, 
(BD) E P" or b = B1, B being the greatest element in M. First we suppose 
(CB)EQ'. By 3.8(i) we have elements UEC°, y E B1 such that y ^ z < u. 
This leads to a contradiction with the note in 3.2 if C = B. Therefore C #= B 
and by 3.12(i) there are v E Cl, t E B° such tha t u -<v < t and again y ^ t is 
a contradiction with the same note. If we suppose A = B, we get by 3.12(iii) 
C = D and a = b. Other possibilities for a, b are verified analogously, thus (i) 
has been proved. 

Let ZE L — u R, let X E 31. Then by 3.4(h) there exists y E X1 such tha t 
y ^ z (the other case is dual). If X is not the greatest element in M, from the 
local finiteness of M we get Y E M, (X Y)EP" and XY eR- Hence yE\j R and by 
the local finiteness of L we can find UEKJ R, v ^ u R, u -< v. There is not 
u E A0, A being the least element in M, nor u e AB, (AB) EP", A, BE M, 
because then by 3.4(i), 3.8(h), respectively, v EKJ R would hold. Thus u E A1, 
A being the greatest element in M. Then by 3.7 for B = A(u, v), (AB) E P' 
is true and therefore by 3.10 there exists C E A' such that (AC) E P". That is 
a contradiction with the maximality of A in M and M in (A', Q'). 

For the proof of (hi), (iv) let us take x,y E L. 
If x is arbitrary and y E A1, where A is the greatest element in M, then 

x V y > y and the assumption x V y $ A1 gives elements UE A1 v f. A1 
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such that u -< v. Again by 3.7, 3.10 we get C G A', (ACyeP" and that is 
a contradiction with the maximality of A and M. Therefore x\J yeA1. 

If either x e AC, A, C e M, (ACy e P", or XG C°, C being the least element 
in M and if y e BD, B,DeM, <5Z>> e P", then let (CBy eQ'.We have C 4= D 
and by 3.8(i), 3.12(i) we get elements ueC°, veC1, ZGD<>, seB1, t e D° 
such that x ^ u ^(v ^ z, s ^ y ^ t. Then s^y^x\fy^z\/t gives by 
3.8(i) x V y e J5F>. If ^. = 5 , then C == Z> and x \J y GAC = BD. 

By this and by the dual reasoning we have proved tha t if a, b e R, then 
either for any x e a, y eb, x \J y e a and a; f\ y eb hold or for any x e a , y e b 
we have x \J y eb, x f\ y e a. Hence (hi), (iv) have been proved. 

Let <#£/> e A e M. If A is the 011I3' element of M, then evidently (xyy $ R. 
In the other case there is Be M, (ABy e P" (or dually). Then y GAB but 
x $ AB by 3.8(i) and by the note in 3.2. 

3.15. Definition. We set (xyy GQ iff there exist elements xo,x\, ..., xnG L, 
n ^ 0 such that (xi-iXiy e u M for i = 1, . . . , n and either x = xo, y = xn or 
x = xn, y = xo. 

3.16. Lemma. 
(i) Q is a congruence in L, 

(ii) if (xyy G R and (xyy G Q, then x = y, 
(iii) for x, y G L, x <y implies (xyy GQ\J R. 

Proof . The reflexivity and the symmetry of Q follow immediately from 
3.15. To prove the transitivity let us suppose (xyy, (yzyGQ. Then there 
are x0, ...,xn,y0, .., ym G L, n, m ^ 0 such that <^ - i ^> , (yj-iyjy G\J M 
for i = I, ..., n, j = 1, . . . , m. If x = x0, y = xn = yo, z = ym or z = y0, 
y = ym = XQ, x = xn, then (xzy GQ by 3.15. Hence let x = xn, y = xo = yo, 
z = y?n (the case x = xo, y = xn = ym, z = yo is dual). For the proof by 
induction we assume x%-\ = yi-i, 1 ^ i < n,m. Then <#«-i#*> e A GM, 
(pi-iyty GBG M gives 4 ° n B° + 0. As M is a chain, we have (A By G Q' 
(or dually). If we suppose A 4= B, by the local finiteness of M we have <-4C> e 
GQ', < C £ > e P " for some C G A'. From 3.12(i) we get the elements UGC°, 

v G Cl, w G B° such that Xi-\ ^ u < v ^ w. By the convexity of B° we have 
UGB°, which is a contradiction with 3.6(h). Hence A = B and by 3.3(iii) 
Xi = yi holds. We have proved x = xn = yn if n ^ m or z = ym = xm if 
m ^ n. By 3.15 then (xzy GQ. 

Let (xyy G u M, ZGL. \ix \J z ^ y holds, then x \J z = y \J z. \ix \] z ^ y, 
then [xy] ~ [x \J z, y V z] and (x V z, y V z> e A(x,y) G M. Dually (x f\ z, 
y A £> e Q is shown. According to the transitivity of Q, we have proved tha t Q 
preserves the lattice operations in L. 

Let x, y Ga G R, let there exist xo, . . . , xn, n ^ 0 such that x = xo, y = xn, 
<^_u^> G\J M for i = 1, . . . , n. The convexity of a implies XiGa for i = 
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= 0, . . . , n. By 3.14(v) <#o#i> e U M gives x\ $ a. Therefore n = 0, i. e. x = y. 
For the proof of (hi) let x, y e L, x -< y. If x e A0, A G M, then by 3.4(i) we 

have either (xy} e A and (xy) e Q or y G A0 and (xy) e R. If x e AB, (AB) e 
eP", A, BeM, then by 3.8(h) we have either (xy} e B and (xy)eQ or 
y G AB and (xy) e R. If x e A1, A being the greatest element in M, then using 
3.7, 3.10 and the maximality of A, M we get y e A1 and (xy) G R. 

3.17. Lemma. 
(i) If X, Ye LjQ and X -< Y, then there exists xo G X such that for any x e X, 

xo ^ x there is y e Y >mch that x -< y, 
(ii) lodim LjQ < t 

Proof . Let us take arbitrary x' e X, y' G Y. AS X -< Y, then x' y y' e Y 
and for any z e [x', x' V y'] we have z G X or z e Y; therefore there exist 
xoe X, yoe Y in [x', x' \J y'] such that x0 Kyo- Now let x e X, x0 ^ x. Then 
yo ^ x would give yo G X, therefore yo d£ x and denoting y = x V yo we have 
[%oyo] ~ [xy] and a; -< y. Moreover, [a'o^] ^ [yoy[ and so <xo^> G Q gives 
<yoy}eQ a n d y e y . 

Let X G L/Q such tha t Y e B implies XL'-< y . Then for any y G J5 there is 
a?r with the property of xo from (i). Let us suppose card £ = f and denote 
x = V {XY - r ^ - ? } . Then x G X and for any y G JB there is /̂ G y such that 
x <y. By 3.16(iii) then (xy) G i? for any Y e B. But this is a contradiction, 
because by 3.3(iv), 3.5(iii) lodim a < f for a e R. 

3.18. Theorem. If L is a locally finite distributive lattice, then lodim L = 
= f < >?o if and only if L is a subdirect product of f chains. 

Proof . Let lodim L = f <! Xo - We go by induction through f. If f = 1, 
then L is a chain and the assertion of the theorem is true. If k > 1, we use 
Theorem 3.1, proved by 3.14(iii), (iv), 3.16(i), (ii), 3.17(h), and get i a s a sub-
direct product of a chain L\R and of the lattice L;Q, which has its local dimen­
sion less than f and therefore, by induction assumption, is a subdirect product 
of less than f chains. Thus L itself is a subdirect product of ^ f chains. The 
converse implication is trivial. 

4. Main theorem 

4.0. Here we extend Theorem 3.18 for arbitrary cardinal f and then show 
by an example thas local and lattice dimensions need not be equal. 

4.1. Theorem. / / L is a locally finite distributive lattice, then lodim L = f 
if and only if L is a subdirect product of f achains. 

Proof . One of the implications is trivial. The other is proved by Theorem 
3.18 for f < Xo. Thus let f be infinite. A dimension function / on L, i. e. 
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a function with integer values fulfilling f(x) + 1 = f(y) for any x, y e L, x -< y, 
can be defined (see e. g. [6]). For x e L and for an integer i we denote Mf(x)=--
= {y :f(y) = i & y comparable with x). If i = f(x), then apparently Mi(x) = 
= {x}. As L fulfils (b") and the dual condition, by induction through i we 
easily prove card Mi(x) ^ f for any integer i (using I2 = I for f infinite). 
As [x) = u (M*(x) : i ^ /(#)} and dually for (x], we get card [x), card (a:] ^ f. 
But L = u {(2/] : y G [x)} for any x e L and therefore card L ^ f. By the 
Birkhoffs theorem, the lattice Zy, being distributive, can be embedded into 
a product J~[{^a : a e A} of (two-element) chains by a lattice isomorphism g. 
For any x,y e L, x ^ y we take an index a = a(x, y) e A such that ga(x) 4= 
4= ga(y) (here ^ (^ ) denotes the a-th component of g(x)) and set A' = {a(x, y) : 
: x, y e L, xr 4= ?/}. Then the mapping h oi L into ]7J{Ai : a e -4'} defined by 
setting /^(z) — 9^(3) for any z e L, a e A' is a lattice isomorphism of L into 
a product of < i chains. 

4.2. Definition. Let I be an infinite cardinal, let Dt be the Cartesian product 
of i topological spaces, each of them being the two-point space with the discrete 
topology. By Ct we denote the Boolean algebra of all open regular subsets of Dt, 
ordered by inclusion. 

4.3. Theorem. Lodim Ct = Xo; ldim Ct > tf 0 if f > 2?So. 
Proof . I t is easy to construct an infinite system of pairwise disjoint elements 

in Ct, therefore lodim Ct ^ Xo holds. On the other side, it is known (see e. g. 
[f>|) tha t in the Cartesian product of topological space with countable bases 
any system of non-empty and pairwise disjoint open sets is countable, which 
gives lodim Ct < No. Thus lodim Ct = No • 

Let us suppose now that Ct is embedded into a product of countably many 
chains by a lattice isomorphism. As a lattice homorphic image of a Boolean 
algebra is again a Boolean algebra and the only linearly ordered Boolean 
algebra is the two-element one, we may assume tha t any chain in the product 
contains exactly two elements. Then the cardinality of the product is 2^° , 
but the cardinality of Ct is at least f, which is a contradiction for f > 2 ^ ° . 

4.4. N o t e . The Boolean algebra Ct and the assertion lodim Ct = No are not 
new. By this counterexample we did not intend to say tha t lodim L = ldim L 
could not hold at all without the local finiteness of L. On the contrary, is seems 
probable tha t with some additional conditions, e. g. for I finite, Theorem 4.1 
could be proved also for (distributive) lattices which are not necessarily locally 
finite. 
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