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Matematický časopis 22 (1972), No. 3 

ON THE GENERALIZED BANACH INDICATRIX 

J. S. L I P I N S K I , Gdansk and T. SALAT, Bratislava 

I n paper [7] the notion of the Banach indicatrix is generalized in the follow­
ing natural way: Let X, Y be two sets, let / be a mapping from X to Y. If the 
set f~l({y}) = {x eX;f(x) = y) is finite, then rf(y) denotes the number 
of its elements, if f~x({y}) is infinite, then we put rf(y) = + o o . The so defined 
function T/(T/ : Y -> {0, 1, . . . , + oo}) is called a (generalized) Banach indicatrix 
of the function /. 

I t follows from the results of paper [7] that, if 7 0 is an interval (it may be 
Jo = (—oo, + o o ) = E\) and f:Io->E\ is a Darboux function, then r/ is 
a Borel measurable function in the second class (and so T/ is a Lebesgue measur­
able function, too). 

We shall give some further classes of functions / : Jo -> E\, for which 
T/(T/ : E\ -> {0, 1, . . . , +oo}) is Lebesgue measurable. 

Theorem 1. Let f:Io->E\ be a monotone function. Then rf is a function 
in the second Baire class. 

Proof . Let, e. g., / be a nondecreasing function on Fo and Yo=/(Io). 
If xo is a discontinuity point of the function / and xo is an interior point (left-
hand and right-hand endpoint, respectively) of the interval lo, then for 
y =£f(xo), y e (f(x0 - 0), f(x0 + 0)) (y e (f(x0), f(x0 + 0)) and y e (f(x0 - 0), 
f(xo)), respectively) we have rf(y) = 0. Further for each y e Yo precisely one 
of the following possibilities holds: 

1) There exists the only x such that y =f(x); 

2) The set {x e Lo; f(x) = y} is an interval. 
Obviously the set of all such y for which 2) occurs is countable. Thus for 

all y G Yo but the points of a countable set we have rf(y) = 1 and Yo arises 
from E\ by ommitting a countable set of intervals. From this the assertion 
of Theorem follows at once. 

The following theorem gives a criterion for the continuity of monotone 
functions. 

Theorem 2. The monotone function f: <a, 6> -> E\ is continuous if and only if 

(*) hf)= jrf(y)dy 
a -oo 
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b 

(V(f) denotes the variation of the function / ) . 
a 

Proof . 1) S. Banach proved that if/ is a continuous function, then (*) holds 
(cf. [5], p . 246—248; [6], p. 374—375). 

2) Let, e. g., / be discontinuous at a point xo e (a, b) a n d / be nondecreasing 
on <a, by. Then 

Y0=f«a, b}) c { <f(a),f(b) > - (f(x0 - 0),f(xo + 0))} u {/(x0)} = M. 

Further rf(y) = 1 almost everywhere on the set Y0 (see the proof of Theorem 1) 
and rf(y) = 0 for y £ Yo. Hence 

f rf(y) dy= j dy< j dy = f(b) - f(a) - (f(x0 + 0) —f(x0 - 0)) < 
-00 Y0 M 

<f(b)-f(a)=V(f). 
a 

In connection with Theorem 1 we shall prove the measurability of the func­
tion r/ for functions / of a certain more extensive class which contains the class 
of monotone functions. 

Theorem 3. Let f : Jo -> E\ be a Baire function. Then rf is Lebesgue measur­
able. 

Proof . Let, e. g., I0 = <a, b>. We put 

/ b — a\ I b — a b — a 
Dl = (a,a + V Dn

i+1= [a + i , a + (i + 1) 
\ 2n J I 2n 2n 

(i = l,2,...,2n). 

Further let E$ = f(D?) (i = 1, 2, . . . , 2n). The sets E? are analytic since D}} are 
Borel sets a n d / i s a Baire function (cf. [3], p. 458, § 38. I I I . Th. 5). Hence E? 
are Lebesgue measurable. Put 

1 if yeE?, 

%nAy) = x 

^ 0 if y$El (i=l,2,...,2n) 
2" 

and Ln(y) = 2 %n,i(y) (n = 1? 2, . . . ) . Then the functions Ln are Lebesgue 
i=i 

measurable, the sequence {L^y)}^ is nondecreasing and rf(y) = lim Ln(y). 
W->oo 

Hence r/ is Lebesgue measurable. 
The assertion of Theorem 3 cannot be improved even if the function / i s 

supposed to have only countable many points of discontinuity. This shows 
the following 
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Theorem 3'. There exists a function f : Io->E\ with the following propertise: 
i) the set of discontinuity points of the function f is countable, 

ii) T/ is not a Baire function. 

Proof . Let E be an analytic set which is not a Borel set. I t is well-known 
(cf. [8], p. 78—80) that there exists a function / such that /(Jo) = E and the 
set of all discontinuity points of the function / is countable. According to 
Theorem 3 rf is Lebesgue measurable. Now we have {y; t/(y) > 0} = E. 
Hence T/ is not a Baire function. 

In connection with the result of paper [7] quoted at the beginning of this 
paper the question arises whether to each ordinal number a, 0 fg a < Q 
(Q denotes the first uncountable ordinal number) there exists such a function 
/ : E\ —> E\ that rf belongs precisely to the Baire class a. The following theorem 
gives a positive answer to this question. 

Denote by B^ (0 ^ f < Q) the class of all functions g :E\-> E* (E* = 
= <— oo, + oo>) belonging to the Baire class | . Put C0 = B0, C^ = B^ — U -*?? 

(1 ^ f < f i ) . 

Theorem 4. a) There exists for each y, 0 <; y < Q a Borel measurable function 
f: E\-> E\ in the class y such that T/ E CV . 

b) There exists a function f : E\^E\ such that rf is a Lebesgue but not a Borel 
measurable function. 

We prove first the following auxiliary result. 

Lemma 1. Let Aa and Ma, respectively, denote the system of all Borel subsets 
ofE\ belonging to the additive and multiplicative, respectively, class a, 0 <; a < Q. 
Then for each y, 1 ^ y < Q there exists a set E e Ap n Mp such that E $ 
$\J (A/ jUM,) . 

P r o o f of L e m m a . I t is well known that for each a there exists a set 
H c E\ such that H $ Aa, H e Ma - U (A/5 u tAfi) (cf. [6], p. 196). If we 

j8<a 

put H' =E\- H, then H' $ M a , H' e Aa — U (A/? U M^). There exists 
/3<a 

an interval (a, b) (a < b) such that 

H n (a, b) e Ma - U (A, U M,), (a, b) - H e Aa - \J (A, u Mfi) . 
/3<a /3<a 

Without loss of generality it can be supposed that a = 0, b = \. Put Ha+\ = 
= [H n (0, J)] u {[(0, 1) — H] + 1} (If + \ denotes the set which arises 
through the translation of the set M by \). Then Ha+1 e A a + 1 n M a + 1 , 
Hot+i$ U (A/? U M^). The same is true also for H'a+1. Let y be an ordinal 

number, 1 ^ y < ,Q. There are two possibilities: 1) y is an isolated number, 

221 



2) y is a limit number . In ease 1) we put y — 1 = a, thus y = oc + 1, From 
the foregoing the existence of such a set Fp(= Ha+i) follows that Fv <= (0, 1), 
Fy G Ay n My , Fy $ | J (A/3 U M^), Without loss of generality we can take 

(n — l,n)(n ^ 2) instead of (0, 1). 
In case 2) denote by r the set of all isolated ordinal numbers oc < y. Then r 

is a countable set, _T = {ai, a2, ...}• I t follows from the foregoing that there 
exists an FXn (n = 1, 2, ...) such tha t 

Fyn c ( n _ i, n), FXn e AXn n Man, FXn $ ( J (A„ U Mrf. 

oo oo 

Put Fr = U Fan. Then Fy G Ay , Fy c (0, +oo) . Further Fy = f | {[Fy n 
ii=l n=l 

n (0, ?i)] U (n, + oo)}. From the definition of Fy we obtain Fv n (0, TI) G M r , 
where r = max (ai, a2, . . . , ocn) and obviously MT cz My . Hence Fy e M7 , 
Fy G Ay n My. But Fy ^ ( J (A^ U M^) since in the reverse case we have 

P<Y 

FveApKJ M/3- for a suitable /} < y. Then there exists an ocn, ]8 < ocn < y 
such that Fan = Fy C\ (n — 1, n) e Ap U M^ and this contradicts the pro­
perties of the set Fan. 

Putting in both cases 1), 2) E = Fv, we see that E has the required pro­
perties. 

P r o o f of T h e o r e m 4. a) Put f(x) = x for x GKj.. Then / is continuous 
and Tf(y) = 1 for each y eEx. Hence T/ G Co. 

Let 1 S y < O. Choose E c Kx such that K e A7 n My , E £ \J (Ap U Mp). 
/3<y 

Such a set exists on account of Lemma 1. Let t0 eE. Pu t f(x) = x for x e E 
and f(x) = to for xeEx — E. Then / is a Borel measurable function in the 
class y. Further we have rf(y) = 1 for y eE — {to}, T/(£o) = + GO and T/(H) = 0 
for y eE\ — E. We show that for each set G cz K* open in K* the set T^1(C7) 

is a Borel set in the class y. I t suffices to take for G the sets of the following 
form: 

1) G = (b ,+oo>, 2) G = < - o o , a ) , 

3) G = (&,+ao) , 4) G= (-co, a). 

{t0} for 6 ^ 1 , 
1) { ;y ;T / ( ? / )>b} - \E for 0 £ & < 1, 

for b < 0; 

for a ^ 0, 
2) {y;rf(y)<a}=\Ei-E for 0 < a ^ l , 

- {fo} for 1 < a; 
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(Ex —{to} for b<0, 
3) {V\b<rf(y)< + co} = I E - {t0} for 0 ^ b < l , 

( 0 for 1 ^ b; 

4) we proceed in the same way as in case 2). 
From these facts it is obvious that rf e B7 and since {y; rf(y) > 0} — E, 

we have T7 e Cy . 
b) The assertion follows at once from Theorems 3 and 3'. 
We put in the sequel T = ZEl (= the system of all functions g : E\-> Z, 

Z = {0, I, 2, . . . . -f-00}). In connection with Theorem 4 a) we prove the 
following result. 

Theorem 5. The functions g(y) = 1 and g(y) = m (m ^ 3) are the only con­
tinuous functions from T which are Banach indicatrices of some continuous 
functions f: E\-> E\. 

R e m a r k 1. I t will be shown that the function g(y) = 2 is a Banach 
indicatrix of a function f: E\->E\ (see Theorem 6 b)) which on account 
of the foregoing theorem cannot be continuous on E\. 

P r o o f of T h e o r e m 5. Put f\(x) = x and fz(x) = x sin x for xeE\. 
Obviously rfl(y) = 1 and ru(y) = + 0 0 . 

Further it is well-known (cf. [4]) that for each natural number m ^ 3 
there exists a continuous function f :E\^E\ such that for each y e E\ the 
set {x e E\; f(x) = y} consists of precisely m points. I t is also well-known 
(cf. [1], [2], [4]) that there exists no continuous funct ion/ :E\->E\ for which 
the set {x eE\;f(x) = y} would consist of precisely two points for each y e E\. 
This completes the proof. 

Denote by S(So) the class of all Banach indicatrices of real functions defined 
on arbitrary non-void sets (defined o n ^ i ) . Then S, So are subsets of the set T. 
We shall investigate the structure of the set T from the point of view of sets 
S,S 0 . 

Theorem 6 a) Let go denote the function which is identically equal to zero on E\. 
ThenS = T -{go}. 

b) Let To denote the system of all such functions g e T for which the set Ag = 
{y eE\; g(y) > 0} is countable and for each y e Ag we have g(y) < -f 00. 

Then S0 = T — T 0 . 
Proof, a) Obviously go cannot be a Banach indicatrix of any function 

/ : X ->E\ with X # 0. Let g e T - {g0}. Put Ck = g~l({k}) (k = 1, 2, .. . ,+ 00), 
A : = {1,2, . . . , £} X C * ( i = 1,2, . . . ) , ^ = {1,2, . . . ,ra, ...} X Coo. Let 

00 

X — ( J Dk u D^. Since g =£ go at least one of the sets Ck and consequently 
jfc=i 

at least one of the sets XM1 = k ^ +00) is non-void. Hence X -^ 0. 
Let us define the function f on X in the following way: If x e 
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e Dk (1 ^ h ^ +00) then x = (I, y) for some natural I and y eCk, and we 
put /(#) = ^/. Then / : X ^>EX and obviously rf = #. 

b) Obviously any function g e T0 cannot be a Banach indicatrix of any 
function / : EX->EX. Hence S0 cz T — T0 . 

Let g eT — T0. Then we have the following possibilities: 
1) The set Ag = {y; g(y) > 0} is uncountable; 
2) The set Ag is countable but for some y e Ag we have g(y) = + 0 0 . 

Case 1) can be decomposed into the following two cases: 
11) For each y e Ag we have 1 ^ g(y) < + 0 0 ; 
12) There exists some y e Ag such that g(y) = + 0 0 . 

In case 11) let Ag denote the cardinal number of the set Ag and 12* be 
the least ordinal number of the cardinality Ag. Let 

(1) 2 l o , * / i , . . . , ^ , . - . ( f < £ * ) 

denote the one-to-one transfinite sequence of all elements of the set Ag and 

(2) x0,xx, ...,xv, ... (rj < Q) 

denote the one-to-one transfinite sequence of all elements of the set Ex. 
Define the function f: Ex-+Ex by transfinite induction in the following way: 

1) Put f(x0) =f(xx) = . . . = f(xg{yo)-X) = y0. 

2) If for each y%, f < y from (1) the numbers g(y$) in (2) were found in 
which the function / is equal to y%, then let /? denote the least ordinal number 
such tha t the function / was yet not defined in xp. Then we put 

f(Xf>) = f(xP+l) = • • • = f(%0+g(yv)-l) = Vv • 

Thus we obtain the function f :EX->EX for which T/ = g. 
In case 12) let (1) have the previous meaning and for a 6 5 0 ^ ( 5 < . Q * 

let g(yo) = + 0 0 . Let 

Fo,Fx,...,Fz,... (£<Q*) 

be a sequence of such infinite pair-wise disjoint sets that ( J F% = Ei. 

Define / : Ex -> Ex in the following way: If g(y%) < + 00 (0 ^ | < Q*), then 
we take from the set F% the points xx, X<L, ..., xg(ys) (xi -7-= Xj for i -7-= j) and 
put / f o ) = ^ (j =1,2, ...,g(y^)). For x eF^, x ^ Xj (j = 1, 2, . . . , g(y^)) 
we put f(x) = yd- If g(y^) = +00 , then we put f(x) = y% for each x eF$. 
Thus we get the function / : Ex -> Ex and obviously r/ = g. 

In case 2) the existence of a function f :EX->EX with rf = g can be proved 
in an analogous way as in case 12). This ends the proof. 

Let T* denote the set of all functions g : <1, +oo)-> .Z. Let S*, S*, T* 
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have an analogous meaning to the sets S, S0, To in Theorem 6 (i. e. S*(S*) 
denotes the set of all g e T* for which there exists a n / : X - > < l , + 0 0 ) , X ^ 0 
(/ :F / i-> <1, +00) ) such that g = rf | <1, + 0 0 ) ; T* denotes the set of all 
g G T* for which the set Ag = {y e <1, +00 ) ; g(y) > 0} is countable and for 
each y e Ag we have g(y) < +00) . I t is easy to see from the proof of Theorem 6 
that S* = T* — {g*}, where g* denotes the function which is identically 
equal to zero on (\, +00) and S* = T* — T*. 

We can illustrate the mutual relation between the sets S* and T* also 
from the topological point of view. 

If g, h G T* and g = h, then we put q(g, h) = 0. In the reverse case we put 
1 

q(gy h) = . I t is easy to see that Q is a metric (cf. [6], 
inf {x; g(x) 7^ h(x)} 

p. G7) and the space T* with this metric is a complete metric space. 

Theorem 7. The set T* is non-dense in T*. 
Corollary. The set S* is residual in T*. 
Proof . Let g e T*, 0 < e < 1, 0 < e < s. Define gi(x) = g(x) for x e 

e <1, 1/V> and gx(x) = 1 for x > Ijs . Then we have q(g, gx) ^ s < e. I t is 
easy to check that for 0 < (5i < e we have S(gx, Oi) <= S(g, e) (S(h, d) = 
= {/e T*; Q(h,f) < d}). Let feS(gu dx). Then f(x) = gi(^) for 1 ^ a: ^ 1 /^ 
and from this and from the definition of the function gL we get that f(x) = 1 
for 1/E < x < l/(5i. Hence / ^ T * . The proof is complete. 
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