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MATEMATICKY CASOPIS
ROENIK 19 1969 &isLo 3

MONOTONE AND OSCILLATORY SOLUTIONS OF A CLASS
OF NONLINEAR DIFFERENTIAL E QUATIONS

STEFAN BELOHOREC, Bratislava

The aim of this paper is to investigate some properties of the solutions
of the equation

(r) (r(x)y'(@)" + p(x, y(2), y'(x)) = 0,
where r(x), p(x, u, v) are functions satisfying the following conditions

T

1. r(z) € C' < a, o0), 7(x) > 0 for every z € < a, o), where a(x) = J' 1/r(¢)dt.
a

2. p(x, u,v) € C° in some 3-dimensional region, which will be specified

in the following theorems. If nothing else is said it will be a region
D:a<x<oo, —o0o < U <o, —00 < v < 00,

In some theorems these assumptions will be completed with condition

3. For every point (x, u, v) € D, w + 0 p(x, u, v)u > 0.

Further assumptions will be done in single theorems.

By the solution of the equation (r) we understand only a solution defined
in some interval <{x,00) (xo > a). A solution y(x) will be called oscillatory
if it has at least one zero in the interval (x, co) for an arbitrary «. In the opposite
case this solution will be called nonoscillatory.

This paper is divided into two parts. The first part deals with the existence
of nonoscillatory bounded solutions of the equation (r) and solutions of the
form y(x) ~ ca(x). It is proved further that (r) under some additional condi-
tions has no other nonoscillatory solutions besides the solutions of the given
form. The second part deals with the oscillatory solutions of (r). There are
given some sufficient conditions, in order that all solutions of (r) may be
woscillatory. In some cases these conditions are necessary and sufficient.
There are given further some theorems concerning the increase or decrease
of the ,,amplitudes of oscillatory solutions and sufficient conditions in order
that the equation (r) may not have oscillatory solutions, besides a trivial one.
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The special forms of (r) were studied by several authors, e. g. in the papers
[1]1, [7], [3], [8], [2], [9] and many others. This paper generalizes some of the
results of these authors.

Theorem 1. Let condition 2. be satisfied in the region
Di:a<ax<<oo, ug<u<u, 0<v< 0.

Let the function p(z, u, v) be non-negative and non-decreasing in w, v on D1,
Jor every fized x.

[e2)

If for some constants co and ex(uo < ¢o < 1,0 < e1<v1) [ a(@)p(x, co, crfr(x))da <
< oo holds, then for every m, wy < m << co there exists bo(m) such that for all
b = bo(m) there exists a solution of (r) defined at least in the interval <(b, o),
passing through the point (b, m) and monotonely increasing to a constant ¢ < co.

Conversely, if (r) has such a solution, then for arbitrary mumbers ca, ¢z such

that wo < c2 < ¢, 0 < ¢z < 7(00)y’'(c0), we have fa(x)p(x, €2, c3fr(x))dx < oo.

Proof. 1. Let ¢y and ¢; be such constants and let m be an arbitrary number
satisfying uo < m << ¢o. Then there exists bg(m) > a such that for every
b > bo(m) we have

1) foz(x)p(x, co, c1/r(x))dx < co — m,
b

f P, co, c1fr(z))dx < c1.
b

Consider the equation
x

(2) y(@) =m + [{a(t) — «(0)}p(t, y(t), y'(¢))dt +
b

+ {x(@) — «(d)}[p(t, y(t), y'(©))dt.
z
We prove that the equation (2) has a solution y(x) passing through the point
(b, m) and monotonely increasing to some constant ¢ < ¢o. This solution
is also a solution of the equation (r). The existence of a solution of (2) will
be proved by the method of successive approximations. If we put yi(x) m
adnforn =1,2,3, ...

(3) Yni1(@) = m + [{a(t) — 2(0)}p(t, yn(t), y,(£))dt +
b

170



+ {a(@) — a(d)}] p(t, Yo (), yu())dL,

x

then for > b and for every % the following inequalities hold
(4) m < ya(®@) < o, 0 < Yu(®) < eafr(w),

which may be proved by induction, using (1). Similarly, it may be proved
by induction that for every = > b, the sequences {ya(x)}, {y,(x)} are non-
-decreasing. Thus there exists y(x) such that for every x € (b, ©0) we have
71;52 yn(2) = y(x). Evidently, the functions {ya(z)} and {y,(x)} are uniformly

bounded and equicontinuous on every finite interval. Thus, on this intervals
lirg yn(®) = y(), }Lng y,(x) = y'(x) uniformly, where y(x) and y'(x) satisfy (4).
Using these considerations and the Lebesgue theorem we get by (3) that y(x)
is a solution of equation (2). This solution exists at least in the interval {b, c0)
and has the required properties.

2. Let y(z) be a solution of (r) considered in the first part. Then there
exists a number b > a such that for z > b, ¢ > y(x) > ¢z and r(x)y'(x) >
> r(o0) y'(c0) = 0. Now, from (r) and the last inequalities we get

¢ > yla) > y(b) + f {a(t) — (B)}p(t, €2, cafr(t))dt,

for all x > b. From this, fa (x, ¢2, e3/r(x))dx < oo, which proves the
theorem.

In the following theorem we omit the assumption of monotony of the
function p(x, u, v). Here and in some of the next theorems we shall consider
two functions fi(x, u, v), fo(x, », v) and it will be supposed they are continuous
and non-decreasing in « and v, for every fixed # > a on some region.

Theorem 2. Let there exist the functions fi(x, u, v) and fo(x, u, v) such that
for every point of D,

(5) 0 < filz, u, v) < plx, u, v) < folz, u, v).
Denote

(r2) (r(@)2' (@) + fa(®, 2(x), 2'(x)) = 0
(r1) (r(xyw' (@) + filx, w(z), w'(x)) = 0.

If there exist constants co, ¢1, (U0 << €o < u1, 0 < €1 < 1) such that

oo}

(6) [ «(@)fa(x, co, erfr(x))dz < oo,
then for every m, ug < m < co, there exists bo(m) such that for all b > by through
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the point (b, m) a solution of (r) passes defined at least in the interval <b, o).
By Theorem 1 this solution lies between the solutions z(x) and w(x) of (r2) and (r1),

passing through this point. Conversely, if (r) has such a solution, then J'oc(x)fl
(z, c3, c3fr(x))dx << oo, where ¢z and cz are such as in Theorem 1.

This theorem will be proved by the following particular case of Tychonov’s
theorem.

Lemma. Let X be a linear metric, locally convex, complete space (. e. Fréchet
space). Let M be a convex, closed subset of X. If T is a continuous operator of M
into itself, such that the closure of TM is a compact subset of M, then there exists
at least one fixed point of T, (see [4]).

Let X be a space of continuuous, bounded functions f(x) with continuous
derivatives, such that r(x)f'(x) are bounded on the interval I = (b, o).
Let a sequence {x,}—> oo for n— oo be such that b=xy<a1<3....
Let us denote K,(f) =, Max >[ f@)] + max r 2)|f'(x)]. Then the system of semi-

norms K,(f) defines a topology of X under which X is locally convex. The
space X is metrizable as well and the convergence on it is the uniform con-
vergence of the functions and their first derivatives on every compact sub-
interval of I. Thus X is a Fréchet space, (see [11]).

Proof of Theorem 2. From the construction of solutions w(x) and z(x)
passing through the point (b, m), by Theorem 1 and (5) it follows that w(x) <

< z(z), w'(x) < 2/(x). Define a set M < X and an operator 7' in the follow-
ing way

(7 M = {fz)e X : wx) < f(=) < 2(2), w'(2) < f'(@) < 2'(@)},
Tf()—m+j{oc — a(b)}p(t, f(1), f'(£)dt +

+ {a(@) — a(b)} J p(t, f(t), f(t))dt

The set M and the operator T' have the following properties:
1. M is convex and closed, which can be easily proved.
2. Operator T' maps M into itself. Let f(x) € M, then by (5) and (7)

Tf(x) < m 4+ [{a(t) — «0)}falt, =(t), 2/ (£))At +
b
+ {al@) — aB)}[ folt, 2(), 2/ (1))t = ().
The inequalities w(x) < Tf(x) and w'(x) < (T'f(x) (x) are proved similarly.
3. The continuity of 7' can be easﬂy proved by (6) and the Lebesgue
theorem.
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4. Let us denote T'M = {fs(x)}. Then this set of functions and the set
{r(x) fé(x)} as well are uniformly bounded on the interval I, which follows from
the definition of M and the property 2. It will be proved that these sets are

also equicontinuous on I. Let ¢ > 0 be an arbitrary number, then there
e 2]

exists ¢ > b, such that J fo(x, co, c1/r(z))dx << ¢/2. Let us divide the interval
{b, o0) into two subintervals (b, ¢> and {¢, c0). On the interval <b ¢> the set

{r(x)f3(x)} is equicontinuous, because |r(xz) )fs(@2) — (1) (@1)f5(21)] < Iffz x, co, C1f
[r(x))dx|. If the numbers z1, x2 € {¢, o0), then [r(zs f,g x2) — 7 xl fs(@)| <
f (x, xg, cifr(x))dx < e. In the case of x; € <b, ¢), 2 € {c, o0), then

[r(z2)fa(@e) — r(@))fs(x1)] < |r(ze)fs(x2) — r(e)fs(e)]l + I )s(e) — r(as)fs(a)] <
< ¢[a+ ¢/, =¢. Thus the con51dered set is equicontinuous on I. If we use (5) and
(6), we can prove by a similar consideration that the set {fs(x)} is also equi-
continuous on the interval I. Consequently, Arzela’s theorem shows that
TM is a compact subset of M.

All assumptions of the Lemma are satisfied, thus 7" has a fixed point on 2/,
i. e. the equation (r) has a solution y(z), passing through the point (b, m)
and such that w(x) < y(x) < z(x) for all > b. This proves the first part
of our theorem. The proof of the second part is similar to that of Theorem 1.

Remark 1. Let in the region Dy = {a < * << o0, up € # < u1, v < v < 0}

plx, w,v) < 0and foc(x) |p(x, co, c1fr(x))| de << o0 (co, €1 are suitable constants),
then the conclusions of Theorem 1 remain valid, up to the fact, that the
solution is monotonely decreasing. The conclusions of Theorem 2 remain also
valid if instead of (5) we demand

(8) fz(x, u, ’U) < Z’(x, u, 1)) < fl(x’ u, v) <0

for every point of D; and f o(x) | fa(z, co, c1/r(x))] dx << 0. The proofs are
evident from those of Theorems 1 and 2.
The next two theorems deal with such solutions of (r), for which the lim y(z)/

Ja(x) = ¢, 1. e. y(x) ~ ca(x), ¢ + O. o

Theorem 3. Let the function p(z, u, v) be non-negative, non-decreasing in u
andvon D3 = {a < x < o0, up < u < 0, 0 < v < v} for every fixed x and let
lim a(x) = co. If there exist positive numbers co and c1suchthat vy > ¢1 > co > wp
y->0

and

(9) fp x, coor(x), cafr(x))dx < o,

then (r) has a solution y(x) ~ ca(x), where up < ¢ < Co-
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Conversely, if (v) has such a solution, then for arbitrary numbers ¢z, c3 such

that up < ¢c2 < ¢, 0 < ¢z < r(00)y'(0), we have J'p(x, caa(x), csfr(x))dx < co.
Proof. 1. Let us consider the equation

(10) W(2) = m + (o)) [a(t)p(t, «(t) W (), ((t) W (6))" )t +-

b

+ [ pt, @)W (2), (2(t) W (2)))dt,
where uo < m < ¢o. It will be proved that this equation has a solution
Y (x) ~ c. Let {Wx(x)} be successive approximations for (10), where Wi(x) = m.
If two numbers ¢y and ¢; are given, then by (9) there exists a number b such

that f p(x, cox(x), cifr(x))dx < ¢o — m. Let us suppose that the number b

in (10) is chosen in this manner. Then for all z > b and an arbitrary positive
integer we have

(11) m < Wa(x) < ¢, 0 < () Wa))' < cifr(z),

where these sequences are non-decreasing. The proof of these assertions
can be easily made by induction. From (11) and (9) it follows that the se-
quence {(a(x)Wx(x))'} is uniformly bounded and equicontinuous on every
finite interval. Thus there exists a function Z(z) such that for all x > b,
11}12 (e(x)Wr(x)) = Z(x) uniformly on every finite interval. For the sequence

{Wa(x)} we have similarly Iim Wa(z) = Y(x) < ¢o. By the well-known classical

theorem it follows that for all z 2 b, Z(x) = (x(x) Y(z))". From the preceding
considerations and Lebesgue’s dominated convergence theorem we get that
Y (x) is a solution of (10). Let us denote y(x) = «(x) Y (z), then by (10) it follows
that y(x) is a solution of (r), where y(x) ~ ca(z).

2. Let y(x) be such a solution. Then for every number ¢z (up < ¢z < ¢)
there exists b > a such that in the interval <b, o0) y(2) > cex(x) and r(z)y'(z) >
> r)o0)y’'(c0) = 0. From (r) and the preceding inequalities we have

z xr

r(b)y' () = [p(t, y(t).y')dt > [ p(t, cax(t), cafr(t))dt.
b b
This implies that f p(¢, caa(t), cs/r(t))dt << co and the proof of the theorem
is complete.
Similarly as in Theorem 2, we omit in the following theorem the assumption
of monotony of the function p(x, u, v).
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Theorem 4. Let fi(x, u,v) and fa(x, u,v) be such functions that for every

point of D3 inequality (5) is satisfied. Let further lim a(x) = oo and let there
>0

exist positive numbers co, ¢1 (v1 = €1 = ¢o > ug) such that Jrfz(.’L‘, co(x), ¢1f

[r(x)dx < co. Then (r) has a solution y(x)~ ca(x). This solution lies for all

sufficiently large x between the solutions w(x) and z(x) of (r1) and (re) that have
the same asymptotic behaviour and their existence is guaranted by Theorem 3.

Conversely, if (r) has such a solution, then f fi(z, ca(z), cafr(x))dx < o0, where c2
and c3 are the same as in Theorem 3.

This theorem can be proved in a similar way as Theorem 2. If we suppose e. g.
X to be a space of all continuously differentiable bounded functions such that
r(x)a(x)f'(x) are bounded on I = <b, o), then we define 7' by (10) and M
is defined as follows

M = {f(z) € X : w(x) < «(@)f(2) < 2(2), w'(z) < (x(2)f(2))" < 2(2)}.

Remark 2. From the proof of Theorem 3 it is evident that the conclusions
of this Theorem remain valid also in the case if p(x, u, v) < 0 in the region

Di={a<x<o0,— 0 <u< u,v < v< 0and f |p(, cox(x), cafr(x))ide <
<< o (co and ¢; are suitable constants). Similarly if in Theorem 4 instead of (5)
inequality (8) holds for every point of D4 and all the other of the assumptions
are satisfied, then the conclusions of the last theorem remain valid.

From the preceding theorems it follows that equation (r) can have bounded
as well unbounded solutions. However in the case of boundedness of a(x)
we have

Theorem 5. Let the function p(x, u, v) = 0 in the region Ds = {a < x < o0,
0 u<o, 0<v<aoo} and let lim a(x) < 0. Then every solution of (r)

>0

in Ds is tounded.

Let there exist two functions fi(x, w, v) and fo(x, u, v) satisfying (5) in Ds.
Let there exists a number ¢; > 0 such that for every 0 < ¢o < ¢1 and all sufficiently
large u and x

(12) Sfo(z, cou, cafr(z))/u < Kfi(x, ¢, 0),

where K is a constant. If all solutions of (r) are bounded, then a(x) is also bounded.
Proof. 1. This part is evident, because if y(z) is a solution of (r), then
x

there exists b such that for « > b from (r) we have 0 < y(z) < f(r(b)y’(b)/

b
[r(t)dt + y(b).
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2. Let a(z) be unbounded and all solutions of (r) be bounded. Then by

Theorem 2, J'oc(x)fl(x, ¢o, 0)dz < 0. But from (12) we have foc(x)fg(x, co(x),
cifr(z))de < co and this, by Theorem 4, implies the existence of a solution
y(x) ~ ca(x) of (r), which is a contradiction.

In the next two theorems it will be proved that (r), under some assumptions,
has no other solutions, besides the ones given in Theorems 1 and 3. In all
of the following theorems, besides Theorems 16, 17 and 18, it will be supposed
that lim «(x) = oo.

a—>00

Theorem 6. Let for all points of Ds p(x,u,v) > 0, continuous and non-
decreasing in v. Let there exist co such that for u e {co, o) p(x, u, v)/u be non-
increasing tn w for every x and v. Besides, if for every number ¢1 > 0 we have

(13) foc (, co, c1/r(x))dx < o0,

then all solutions of (r) in Ds are either bounded or of then form y(x) ~ ca(x).

Proof. Let y(x) be an unbounded solution of (r), then there exist numbers
¢1, b1 > a such that for allz > by, y x) > ¢o and y'(z) < cifr(x). Integrating (r)
and using the assumption p(x, y(x), ¥'(%))/y(x) < p(x, co, c1fr(x))/co Wwe get

x

(14) 1< yOu)fy) + «@)r@)y'@)/y() + (Leo) [at)p(t, co crfr(t))dt

by

Let & be an arbitrary positive number, then by (13) there exists b2 > b; so that

(l/co)J'oz(x) z, ¢, ¢1/r(x))dz << &. Thus (14) implies
by

(15) lim inf a(x)r(z)y’ (x)/y(x) = 1 — .

r—>w©

Since for x > b (x(x)r(z)y'(x) — y(*)) = —a(z)p(z, y(x), y'(x)) < 0, there
exists a constant K such that «(x)r(z)y'(x)/y(x) < 1 + K/y(x). This implies
hm sup a(x)r(z)y'(z)/y(x) < 1. Since ¢ can be arbltrari]y chosen we have from

thls inequality and (15)
(16) lim a(x)r(x)y (x)/y(x) = 1.

Z->0

Let ¢ < 1/2, then there exists a number b > bz such that for x > b, a(x)r(x)y’(r)
> (1 — &)y(x). By using this inequality, we get from (r)

x

(I — &){r(b)y'(®) — r(@)y'(x)} = f“(t @)y O)p(t, y(@), y'(O)]y(t)dt <

< r(b)y«b)(l/coffa(t)p(t, co, xfr(t)dt < r(B)y B)e.
b
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From this we have 0 < r(b)y'(b)(1 — 2¢)/(1 — &) < r(x)y'(x) and because
r(x)y’(x) is non-increasing, lim r(x)y'(x) = ¢ > 0. From this and (16) we

obtain y(x) ~ ca(x), which proves the theorem.

Theorem 7. Let the function p(x,u,v) > 0 be continuous in Ds and rnon-
decreasing in v. Let there exist a number ¢ > 0 such that for we <¢, )
p(x, u, v)[u is non-decreasing in u for every fixed x and v. Let further for every

number ¢; > 0 and ¢y > C fp(x, coa(x), cfr(x))dx < co; then all solutions of (r)
are either bounded or of the form y(x) ~ cx(x), (¢ > ).

The proof of this theorem is similar to that of Theorem 6 and can be there-
fore omitted.

Remark 3. It is evident from the proof of Theorem 6 that the assertion
is valid also in the case when for every point of the region Ds = {a < = <
<, —o<u<0,—w<v< 0}, pr,u,v) <0 and p(x, %, v)/u is non-
-decreasing in » and (13) converges under suitable constants. In a similar
way we can formulate also the assertions of Theorems 5 and 7 in De.

So far we have investigated only bounded solutions of (r) and solutions
of the form y(x) ~ ca(x). But there can exist also other solutions of (r), e. g.
the equation

(17) (x22y’) + (2232 In"x)ly» = 0, n > O

has the solution y(x) = In 2. In the case of n = 1, equation (17) has neither
a nonoscillatory bounded solution nor a solution of the form y(x) ~ cx(x),
which is evident from Theorems 1 and 3. In the case of » > 1, by Theorem 1,
there exists a bounded solution of (17). In the case 0 < n < 1, by Theorem 3,
there exists a solution y(x) ~ ca(x) of (17). This leads to the following asser-
tions.

Theorem 8. Let there exist a function fa(x,w,v) such that for every point
of Ds, 0 < p(x, u, v) < fao(x, u, v). Let there further exist a positive function

F(u), continuous in the interval {uz, o) (uz = 0), non-decreasing and such that
o

J'I/F(u)du < 0. Let for some positive numbers co, ¢1, all u € {ug, ), v > 0
and all sufficiently large x be
P(x’ u, U)/F(u) = Klfz(x: Co, cl/r(x))

(K1 > 0 is a suitable constant ) ; then if there exists an unboundea solution of (r),
there exists also a bounded solution of (r).

Proof. Let y(x) be an unbounded solution of (r), then there exists a number b
such that for x > b, y(x) > uz. Using this fact from (r) we get
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y'@)Fy@) = (Ur(@)[p(t, y(t), y' €)/F(y®)dt >
> (Kl/r(x))offz(t, co, c1fr(t))dt.

Integrating this inequality over the interval <b, z) we obtain

[UF@)dw > K[ (1r®) [ fa2(0, co, eafr(v))dvdt >
Ug b t

z

> Klf{a(t) — a(b)}fa(t, co, cafr(z))dt.
b

This implies convergence of the integral on the right hand side from which,
by Theorem 2, our assertion follows.

Theorem 9. Let there exist a function f2(x, u, v) such thatin Ds, 0 < p(x, u, v) <
< fo(x, u, v). Let there further exist a continuous function G(s) having in the

interval {uz, ) (uz = 0) the following properties G(s) > 0, f G(s)[s?ds < o
and fa(x, su, ci/r(x)) < KoG(s)(x, u, v) forall w > 0,v > 0,s € <’ug. o) and all
sufficiently large x, whwere ¢y and Ko are suitable constants.

Then if equation (r) has some solution, it has also a solution of the form
y(x) ~ ca(x).

Proof. Let y(z) be a solution of (r), then there exist constants b and ¢z >0
such that for x > b from (r) we get

<<}

y(@) > oxa(@) [ p(t, y(t), y'(t))dt.

By the properties of the functions fa(x, u, v), p(z, u, v) and the last inequality
we obtain

@

(18)  fa(®, cox(@), aifr(x)) < fol, esy(@){[p(t, y(0), y' (1))}, eafr(2)) <

k4

< KoG(es{ [ p(t, y(t), ' ())d} L)p(x, y(2).2'(y)),
x
where co is a positive constant such that ¢y < ¢;. Integrating (18) we have

[Felt, coxlt), exfr()) At < Kz[ Gles{ [ p(v, y(»), y'(#))dv} )p(t, y(t).y')dt <

Zeo

< K03 G(s)[s2ds < o0.
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This implies the econvergence of the integral on the left hand side and thus,
by Theorem 4, equation (r) has the solution y(x) ~ cx(x).

Remark 4. The assertions of Theorems 8 and 9 will be valid also in Ds.
It is sufficient only to suppose that fa(x, u, v) < p(x, , v) < 0 for all points
of Dg, the functions F(u) and G(s) are negative in the interval (—oo, uz)
(uz < 0) and co, ¢1, K1, K2 are suitable constants. This follows from Re-
marks 1 and 2.

Remark 5. In case when the function p(z, u, v) satisfies condition 3) and
all assumptions of Theorems 5, 6, 7, 8 and 9 are valid, the assertions of these
theorems will be also valid in D. It must be noted that this concerns only
nonoscillatory solutions.

1I.

Theorem 10. Let there exist two functions fi(x, u, v) and fo(z, u, v) such tha
Jor every point (x,u,v) € D, u + 0 we have

(19) 0 < ufi(x, u, v) < up(x, u, v) < ufo(x, u, v).
Besides, let for every continuously differentiable monotone function B(x) such

that lim |f(z)] = o0 be fﬂ z)fi(x, B(x), f'(x))de = co. Then.

1. If for eveyr constant cy + O, joz x)|fu(x, co, 0)|dx = o0, all solutions of
(r) are oscillatory.
2. If all solutions of (r) are oscillatory, then for every positiev (megative)

numbers co, ¢c; we have ‘.a(x)lfz(x, ¢o, c1/r(x))/dx = 0.

Proof. 1. Let us suppose that y(z) is a nonoscillatory solution of (r).
Without loss of generality we can suppose that for x > b > a, y(z) > 0.
Then y(z) is an increasing function and r(x)y’(x) a decreasing one. The function
y(x) is unbounded. If it were not so, there would exist two numbers ¢y and ¢
such that for x > b, ¢ > y(x) > co. Using this fact and integrating equation (r)
successively over the intervals (¢, 2D, <E, x> (b <t < x) we have

2) > [{alt) — adp(t. y(0), y'()dt > f {a(t) — a(®)}fr(t, o, 0)dt
b

The last inequality holds for every > b and this implies faz (x)fi(x, co, 0)dx < cO.
But this contradicts the assumption of the theorem and thus y(x) in an un-
bounded solution of (r). Since we have

(r(@)y'(@)[y(x)) = —p(x, y()y () [y(x x)y3(x)[y*(x),

integrating thls equality over (b, x> we obtam
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T

rle)y (@)y(@) = r®)y G)y®) — [y 10)p( y(6), y'®)dt —
b

— [roy2Oy20at.
b
The function r(z)y'(z)/y(z) is bounded, because r(x)y'(x) > 0 and decreases
for > b and y(z) is an unbounded solution of (r). This implies that

[y @)p@, y(@), y'@)de < 0, ie [y i@filx, y(x), y'(@)de < o,
but this also contradicts the assumption of the theorem. Thus all solutions

of (r) are oscillatory.
2. If there existed two positive numbers ¢o and ¢; (similarly negative ones)

such that f a(z)fe(z, co, c1/r(x))dx < co, then by Theorem 2 (Remark 1) there
would exist a nonoscillatory solution of (r), which is a contradiction.

Theorem 11. Let the functions p(z,u,v), fi(x, u,v) and fo(x, u,v) in the
region D satisfy (19). Let there exist a function F(u) continuous, non-decreasing

in the interval (— oo, o0) and such that wF(u) > 0, J 1/F(u)du < oo, f 1/F(u)du <

&

<< oo for every ¢ > 0. Let for some positive numbers co, ¢1, K1, all u > 0,v > 0
(some megative numbers co, c1, K1, all u << 0, v < 0) and all sufficiently large x
be fi(z, u, v)[F(u) = Kifa(x, o, cifr(x)).

Then a necessary and sufficient condition in order that all solutions of (r)

te oscillatory is
=]

(20) }.oc(x)[fg(x, ¢o, c1/r(x))|dz = 0.

Proof. 1. Let y(x) be a nonoscillatory solution of (r). Without loss of gene-
rality it can be supposed that for x > b, y(x) > ¢, where ¢ is some positive
number. Using the properties of fi, p and f;, from (r) we obtain for z > b

0

(21) Y @)F(y() > (r@)F(y@))? [t y(), y'¢)dt >

> r(z) [Py A yt), y'(0)dt > Kir=4(2) [ falt, co, eafr(t))dt.

Integrating this inequality over the interval <b, x> we have
0 0

JYF@)du > K1 [r72(0) [ fov, co, eafr(v))dv At >
b

& t

= Klj{“(t) - Ot(b)}fz(t, Co, cl/r(t))dt'

b
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‘This implies convergence of the last integral, hence we get a contradiction
to (20). Thus the sufficient condition is proved.

2. Let all solutions of (r) be oscillatory and let f ()| fa(z, co, c1fr(z))|dx << co.
Then by Theorem 2 or Remark 1 equation (r) has a nonoscillatory solution,
but this again contradicts the assumption of the theorem and the proof
is complete.

In the following theorem there will be given a sufficient condition in order
that all solutions of (r) be oscillatory. This condition is similar to that of
Theorem 11.

Theorem 12. Let there exist a function fi(x, u, v) such that for every point
(x, u,v) €D, u + 0 we have

(22) 0 < ufi(@, u, v) < up(x, u, v).

Let there further the function F(u) be continuous on the set N = (—oo, —uzy U
U {ug, ©) (ug > 0 is a suitable number), non-decreasing and such that uF(u) > 0,

f 1/F(w)du < oo, f 1/F(u)du << co. Let for some positive numbers co, K1, all

u’e<u2, ), v > Z)’(some negative numbers co, Ki,all w € (—o0, —uz), v < 0)
and all sufficiently large x be fi(x, u, 0)[F(u) > Kifi(x, co, 0).

Then if foc(x)]fl(x, ¢, 0)|dx = oo for 0 << |c| < |co|, all solutions of (r) are

oscillatory.

Proof. Let y(x) be a positive nonoscillatory solution of (r) (likewise for
Y(x) < 0). As in the first part of the proof of Theorem 10 we can similarly
prove that y(x) is an unbounded solution. Then for = > b, y(x) > u2. Thus
from (r), as in (21) we get

Y (@)[F(y(x) > Kir(z)[fi(t, co, 0)dt.

x

Integration of this inequality over <b, x> yields
JUF)du > K[ {a(t) — a(®)}fi(t, co, 0)dt.
Uy b

However, this contradicts the assumption and proves the theorem.

Theorems 11 and 12 generalize the known criteria of [1], [5]. The inde-
pendence of the criteria from Theorems 10 and 12 is shown by the following
-examples

(23) y'(@) + zy(@) In (2 4 () = 0
(24) y'(@) + 2 23(x) = 0.
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All solutions of (24) are oscillatory by Theorem 12, because we can choose
F(u) = 3. But the conditions of Theorem 10 are not satisfied, because if we
put e.g. B(x) = 213, then J.,B3(x)(x2/3(x))—1dx = fx—4/3dx < oo. Similarly
all solutions of (23) are oscillatory by Theorem 10, since for every function

B(x), j.x In (2 + B2(x))dx = o0, but the conditions of Theorem 12 are not
satisfied.

Theorem 13. Let there exist two function fi(x, u, v) and fa(x, u, v) satisfying
(19) on D. Lei the function G(s) be continuous on the set N = (—o0, —uy» U
U {ug, ©) (uz > 0 is a suttable number) having these properties sG(s) > 0,

-0

j?G(s)/s2ds < @, f G(s)/s?ds < 0 and

(25) folz, su, ci/r(z)) < KoG(s)fi(z, u, v)

both for all w >0, v > 0, seug, ©) or 4 <0, v < 0, se{—00, —uzy and
sufficiently large x, where ¢ > 0, K2 > 0.

Then all solutions of the equation (r) are oscillatory if and only if _f felz, cox(z),
cifr(z))dz = oo for all 0 < ¢y < c1.

Proof. 1. Let y(x) be a nonoscillatory solution of (r). Without loss of gene-
rality we can suppose y(z) > 0. Then there exist positive numbers b and

@

¢o < ¢1 such that for « > b from (r) we get y(x) > coa(x)Jp(t, y(t), y'(t))dt,

where {fp(t, y(t), y'(6)dt} 1 > us. By (19), (25) and by the preceding inequalities
4

we have
(=]

fal®, cox(x), exfr(@)) < fe(x, y(@){[p(t, y(8), y'(£))A, erfr(w)) <

z
0

< KG({[plt, (1), ' (1))d} DA, y(@), y'(2))

x

N

0

< KG({[p(t, y(t), y' ()dt} Dp(e, y(x), y'(x)) -

x

Integrating this over the interval <b, ) we obtain

x

j.fz(t, co(t), cafr(t))dt < sz?G(s)/szds << 0.
b

Uy

This implies convergence of the integral on the left hand side of the last
inequality and contradicts the assumption.
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2. Let all solutions of (r) be oscillatory and let ffz(x, coor(x), cafr(z))dar < oo
for some 0 < ¢y < ¢1. Then by Theorem 4 equation (r) has a nonoscillatory
solution and thus we get a contradiction. This proves the theorem.

Theorem 14. Let the functions p(x, u, v) and fi(x, u, v) satisfy (22) in D.
Let there exist a function G(s) with the properties as in Theorem 13 such that
Si(x, su, 0) < Kol(/(s)fi(x, u, 0) both for all w >0, seus, ©) or u <0,
s€(—o0, —uz)y and all sufficiently large x, where Ko > 0. If there existsc > 0
such that for every 0 < ¢g < ¢, ‘.fl(x, coor(x), 0)dx == oo, then all solutions of (r)
are osctllatory.

The proof is analogous to that of the first part of Theorem 13 and therefore
can be omitted.

The last two theorems generalize some assertion from [2] and [6].
The next theorem is a generalization of a criterion given in [10] for a linear
differential equation of the second order.

Theorem 15. Let the function p(x, u, v) satisfy condition 3) tn D, let it further
be non-decreasing in v and such that p(x, w, 0)ju is non-decreasing for u € (— o0, 0),
non-increasing for u € (0, ©) and an arbitrary fixed x. Let there exists a positive
Sfunction w(x) € O {a, ©) satisfying

)

(26) fr(x)w’z(x)w—l(rc)dx < 0.
Besides, let for any ¢ £ 0

(27) fu x)|p(, cx(x), 0)|dx = co;

then every solution of (r) ts oscillatory.
Proof. Let y(z) be a nonoscillatory solution of (r) so that y(x) > 0 for
x > b > a. From (r) we get

w(x)(f y'(@)]y(@)
= —w(@)p(®, y(*), y'(x /y(x — W( )T(x)(y’(x)/z/(x) )?

By integration over the interval (b, z) we have
(28)  w(@)r(z)y' (x)/y(x) = wd)r®d)y ®)/y@) + [w )ty €)yE)dt —
b
— [wOp(t, yt), y'O)y(e)d — [ty ©)]y(e)2dr.
b b

Since the function r(z)y'(x) > 0 is decreasing, there exists a constant ¢ such
that y(z) < ca(x) for every « > b. Thus by assumption the following is true
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(29) p(®,y(2), ¥'(2))y(x) > p(=, ca(x), 0)[ca(x).
Using in (28) the Cauchy inequality and (29) we have

(30) w(@)r(x)y’ (@)]y(x) < wd)rd)y (0)/y©®) +

2

+ [[r(tyw(t) e()de)z . [fw(t)f(t)(y'(t)/?/(t) )] —
— c—ljfw(t)a 1(t)p(t, cat), j w(t)r(t)(y' (¢)y(t) )2dt .
b
By (26) we can take number b such that fr(t)w’2(t)w—1(t)dt < 1. Then by (27)
b

and (30) we get w(z)r(x)y'(x)/y(xz) < O for all sufficiently large x. Thus we get
a contradiction. For y(x) << 0 the consideration is similar.

The following theorem deals with the increase or decrease of the ,,amplitudes*
of oscillatory solutions. Here and in the next theorems «(x) can be bounded.

Theorem 16. Let condition 3) hold in D. Denote by b, ¢ the successive zeros
of some solution y(x) of (r), by b, ¢’ the successive zeros of y'(x). Then the
Jfollowing assertions hold:

a) Let the function r(x)p(x,u,v) be non-increasing in x for u > 0, non-
. decreasing for uw < 0 and all v. Let it further be non-decreasing in v for every

Jized x and u, then r(d)|y' (D) = r(c)ly'(c)].

b) Let the function r(x)p(x,u,v) be non-decreasing in x for w > 0, non-
increasing for w < 0 and all v. Let it further be non-increasing in v for every
Jfized x and u, then r(d)|y'(b)| < r(c)ly'(c)|.

Besides, if p(x, u, v) ts odd in u, then in the case a) |y(b')| < |y(¢')| and in

b) ly(®9)] = ly(c)l-

Proof. Without loss of generality we can suppose that y(x) > 0 for x € (b, ¢).
From (r) we see that in the interval (b, ¢) there lies one and only one zero
of y'(x), denote it by b'. In the interval (b’, ¢') there lies one and only one zero
of y(x), denote it by c. Let us multiply (r) by r(x)y’(x) and integrate over
<b, "> or (b', c) then we get

1 y(b)
(r()y' (b)) = 2[r(@)p(=, y(@), y'(@))y'(z)de > 2 f p(x, 5, 0)ds,
b
c y(b)

(r(e)y'(€)): = —2[r(t)p(t, y(®), y'(£))y'()dt < 2 [ r(t)p(t, s, 0)ds.

b

In the case a) r(x)p(x,s, 0) = r()p(t, s, 0), hence we have r(b)|y'(b)| >

r(e)ly'(e)].
Denote v = n})in y'(x) and suppose that p(x, », v) is odd in %. Then from (r)
re<b,e’>
we obtain
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¢ y(’)
(r(e)y'(0))* = —2[r(@)p(@, y(@), y'(2) )y (2)de > 2 f p(x, 5, v)ds,

v
¢ ly(e’ )|

(0 @) = 2[rOp(t, 9O, 5 OO < 2 [ r()p(t, 5, ).

0

[y(e"] lw(®")
This implies that f r(t)p(t, s, v)ds = f r(x)p(x, 8, v)ds. Since for ¢ > x
0

0
we have r(z)p(z, s, ) > r(t)p(t, s, v), the preceding inequality is possible only
if y(c)] > [y(®).

The case b) can be proved analogously.

Remark 6. Denote by {xn} the sequence of successive zeros of some
oscillatory solution y(x ), {z,} zeros of y'(x). Then by assumptions of
'_lheorem 16 in the case a) the sequence {r(»)|y'(xa)|} is non-increasing and
{ly(x,)|} is non-decreasing. Besides, the function r(z)y'(z) has extrema in wxn,
therefore there exists a number K such that |y(z)] < Ko(z). If «(x) is bounded,
then every solution of (r) is bounded, which follows from the last inequality
and Theorem 5.

Remark 7. Let y(z) == 0 be an oscillatory solution of (r) and the assumptions
of Theorem 16 be satisfied. Then the sequence of zeros of y(x) has a cluster
point only at infinity. If it were not so there would exist a finite cluster point
Z such that by the continuity of y(x) and y'(x) we shold have y(Z) = y'(Z) = 0.
Hence we get a contradiction in both cases a) and b).

Theorem 17. Let the function p(x,u,v) be non-decreasing in w,v for every
Jized x and 3) hold in D. Besides, let a) from Theorem 16 hold and p(x, u, v)/u
be even and non-decreasing in w for u > 0.

If for any positive number c, f p(x, ca(x), ¢/r(x))dx < oo, (r) has no oscillatory
solution, besides a trivial one.

Proof. Let y(x) == 0 be an oscillatory solution of (r). Let y(zx) = ¥'(x,) = 0
and y(x) > 0 for xe (v,,z,>. By Theorem 16 the sequence {r(xx)|y'(xn)|}
is non-increasing, thus there exists a number ¢ such that r(z)y'(z) < ¢ for

all x > z,. From this we have y(x) < ca(z), ¥'(x) < c/r(x) for x > 2. By
assumptions of the Theorem and the last inequalities we obtain

(31) P, y(x), cfr(x))(r(@a)y' (xa) )™t < p(2, ca(x), c/r(x))/c.

Integrating (r) over the interval <z, , z,> we get

r(en)y' (@) = | ple, y@), y'@)dx < [ ple, y(@), ofr(@))ds.

Hence and by (31) we have
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(32) f (@, y(), ¢fr(@))(r(@a)y’ (za))1dzx <
¢! f p(x, ca(x), ¢/r(zx) )dx.

By Remark 7 the set of zeros of y(x) cannot have a finite cluster point, therefore
it is possible to find x, such that ¢-1 f p(x, cx(x), ¢/r(x))dr < 1. Hence we
get a contradiction to (32) and the proof is complete.

Theorem 18. Let the function p(x, u, v) be such that the assumptions of Theorem
17 hold, where p(x, u, v)[u is non-increasing in u for w > 0. If for every ¢ > 0

and all small positive numbers co fa(x)p(x, co, cifr(z))dx < 0, then (r) has
no oscillatory solution, besides a trivial one.

Proof. Let y(z) == 0 be an oscillatory solution of (r) such that y(x) > 0
for z € (x,, z,>. By Theorem 16 the sequence {|y(z,)|} is non-decreasing and
{r(za)|y'(xa)|} non-increasing. This implies the ex1stence of two numbers
co > 0, ¢; > 0 such that ¢y < [y(z,)| (co can be chosen small) and ¥'(x) <
< afr(x) for all x > x,. Integrating (r) over the intervals (z,x,>, <(x,,,>
and using the assumptions we get

e

f y Y, ) (x)p (e, y(x), y'(x))dx < f a(z)p(, co, cafr(x))dx.
xn
Using the same consideration as at the end of the proof of Theorem 17, we can
easily complete our proof.
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