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Proof. First take the case when either r — 0, or r — 1. In this case m ^ 
< \n(n — 1). According to [5] the complete graph with n edges is an i?#-graph. 
Thus construct the decomposition 0!' of the complete graph (n) according 
to the group H. Let m' = \n(n — 1) — m. The number m' is evidently divisible 
by the number o(H). Choose an edge h\ of the graph (n) and from the graph 
(n) omit all edges OL(1I\) for a eM. The number of such edges is evidently 
exactly o(H). In the reverse case there would have to be &(h\) = \3(h\) for 
some a e H and ft e H, a #= \3; therefore if the edge h\ were contained in the 
graph G'(y) of the decomposition 01', then the edge a(Ai) = fi(h\) would have 
to be contained at the same time in the graphs G'(aiy) and G'(\3y), which must 
be edge-disjoint, because a 4= \3 implies ay 4= fiy- In the graph thus obtained, 
choose an edge h% and proceed in the same way. We shall do this on the whole 
m'\o(H) times, whereby we omit exactly m' edges. The resulting graph G 
is the wanted graph; if we denote G(OL) = G n G'(OL) for any a eM, we obtain 
the decomposition 0 of the graph G according to the group H. 

Now let r ^ 2 and let n' = n — r. If m ^ \n'(n' — 1), we shall construct 
in the above dessribed way an Jfe-graph with nf vertices and m edges and 
add r isolated vertices to it. Therefore let m > \n'(n' — 1) and let m" = 
= m — \n'(n' — 1). The number m" is evidently also divisible by the number 
o(H). Construct the complete graph (n') with n' vertices (which is an RH-
graph, see [5]) and add the vertices u\, ..., ur to it. Take an arbitrary vertex v 
of the graph (n') and join some vertex u\ (1 ^ i ^ r) with all vertices a(v), 
where OLE H. In this way o(H) edges are created. If we do this m"\o(H) times, 
we obtain the wanted graph, in which the vertices u\, ...,ur are fixed. (No two 
of these vertices may be joined by an edge, thus we put the condition m fg 
^ \[n(n — 1) — r(r — 1)], because \r(r — 1) is the number of all unordered 
pairs of these vertices.) 

Now we shall consider an Abelian group of an even order. According to [1] 
any finite Abelian group is a direct product of cyclic groups, whose orders are 
powers of prime numbers (they are so-called primary cyclic groups). Therefore 
let us have a finite Abelian group H and let the mentioned primary cyclic 
groups be Hi, ..., Hi. If the order of the group H is even, the order of at least 
one of the groups Hi, . . . , H# must be a power of two . Assume without the 
loss of generality that all such groups are Hi, ..., Hi, where 1 ^ I fg k. 
If at is a generator of the group Hi, (1 ^ i ^ I) and its order is 2?, where 
q is a positive integer, the element af'1 is evidently the unique element of the 
group Hi whose order is two . Each of the groups Hi, ..., Hi contains therefore 

k 

exactly one element of the order 2. If b = ]~J bi e H, where bi e Hi for i = 
i=l 

1, ...,k, then the order of the element b is the least common multiple 
of the orders of the elements bi in Hi. The element b has the order 2 if and 
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only if for all i = I, ..., k the element bi either is a unit element of the group 
Hi, or has the order 2 in Hi, while all bi cannot be at the same time unit 
elements. If I < j ^ k, then according to the described facts the group Hj 
is of an odd order, therefore it does not contain any element of the order 2. 
Therefore any element of the group H of the order 2 can be expressed as 

i 

b = J J b$, where for 1 ^ i <; I the element bi is either a unit element of the 

group Hi, or has the order 2 in Hi, while at least for one i the element bi has 
the order 2. The number of such elements is exactly 2* —- 1. 

After this introductory consideration we shall prove the following theorem. 

Theorem 3. Let an Abelian group H of an even order o(H) and two positive 
integers m and n be given. In expressing the group M as the direct product of 
primary cyclic groups let exactly I of these groups be of even orders. Let r be the 
remainder of the division of the number n by the number o(H) and let m = 0 
(mod o(H)), m ^ \[n(n — 2l) — r(r — 1)]. Then there exists an RH-graph 
with n vertices and m edges. 

Proof . First take the case when r — 0 and therefore m ^ \n(n — 2l). 
The number n is divisible by the number o(H), thus take the vertex set U with 
n elements and decompose it into subsets (pairwise disjoint) U\, ..., Uv, 
where p — njo(H); each of these sets contains o(H) elements. For 1 ^ i ^ p 
assign to each element a of the group H a vertex Ui(oi) of the set U%. Now join 
by edges all pairs of vertices of U, except the pairs {UI(OL), UI(OL^)}, where 
1 ^ i ^ p, OLE H, ft is an element of the order 2 in H. The graph thus obtained 
will be denoted by Go. Evidently for ai #= a2 we have aij3 #= a2/3 and at the 
same time (a/?) /3 = a/32 = OLE — a. Therefore there exist exactly o(H)j2 pairwise 
different pairs {a, a/3} at the given /3. As the group H contains 2l — 1 elements 
of the order 2, there exist exactly (2*-1 — \)o(H) different pairs {a, a/?}, 
where a e H, fi is an element of the group H of the order 2. The number of the 
pairs {ui(o.), Ui(cc^)} of the vertices of Ut assigned to those elements is therefore 
also (2*_1 — \)o(H), the total number of such pairs of elements in the whole 
the set U is p(2l~l — \)o(H) = (2l~1 — \)n. The graph 6?0 contains therefore 
\n(n — 1) — (2*_1 — \)n = \n(n — 2l) edges. To prove that Go is an Ife-graph 
i t is sufficient to prove that for an arbitrary edge h of the graph G0 the in­
equality a + /3 implies a(h) 4= (5(h). If the edge h joins the vertices Ut(y), 
Ui(d), where i + j , we can have o.(h) — fi(h) only of Ut(oiy) = Ui(/3y), Uj(o:d) = 
= Uj(^d) and this (as the assigning of vertices of Ut or Uj to the elements 
of H is a one-to-one) holds only if ay = /3y, OLS = fid, which implies a = (3. 
If the edge h joins the vertices Ui(y), Ui(d), then a(^) = fi(h) holds, if either 
Ui(o.y) = Ut(/3y), Ui(o:d) — Ui(/3d) (which is a case quite analogous to the pre­
ceding), or Ui(ocy) = Ui(fid), Ui(ad) = ut(Py). In the latter case ccy = fid, 
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ad = f}y, which implies uy(ad)-1 = pd(py)~i, which means yd-1 = y^d. The 
element y^S is equal to its inverse element and its order is 2. The element d 
is created by multiplying the element y by the element y^d, which is of the 
order 2, and therefore the pair {ut(y), ui(b)} is not joined by an edge in O0, 
which is a contradiction. Therefore the graph 6?0 is an RH-graph. The following 
procedure of the proof is analogous to the proof of Theorem 2 with the diffe­
rence that instead of (ny we take Go. 

Now we shall consider ife-graphs with the minimal number of vertices 
and edges. If we omit trivial ifc-graphs not containing any edges, this means 
that m = o(H) and therefore each of the graphs of the corresponding decom­
position contains exactly one edge. Among such graphs we shall look for those 
which have the minimal number of vertices. 

Theorem 4. Let H be a primary cyclic group of the order o(H) = pr, where p, 
r are positive integers, p > 1. Then every RH-graph with o(H) edges with the 
minimal number of vertices consists of ps connected components, where 0 ^ s < r 
and each of these components is a circuit with pr~s vertices. 

Proof . I t is well-known that all subgroups of a primary cyclic group form 
a chain (a totally ordered set) with respect to the inclusion. Let it be a vertex 
of the graph G which is not isolated, let H' be the group of mappings of H, 
in which the vertex u is fixed. Let the vertex u be joined by an edge h with 
a vertex v. The vertex v cannot be fixed in any non-identical mapping o f B ' , 
because in this case there would be a.(h) = h, which is impossible. But if v 
is fixed in some non-identical mapping /? of H, it is fixed in all mappings of the 
cyclic subgroup H" of the group H generated by the element /?. According 
to the above mentioned either H" a H', or H' c / 7 " . In the first case the 
vertices u and v are fixed in all mappings of the group H", therefore also 
in the mapping /?, which is not identical, therefore fi(h) = h, which is im­
possible. In the second case the vertices u and v are fixed in all mappings, 
of H'; thus this group cannot contain non-identical mappings and H' = {e}T 

where e is the unit element of the group H. Therefore the vertex u is fixed only 
in the identical mapping and there exist o(H) pairwise different 
vertices u, r/(u), yf(u), ..., ^^(u). If the graph G contains the edge h = 
= ur\k(u), where 0 <C k ^ pr — 1, fc is a positive integer and the element rjk 

has not the order 2 in the group H, it contains also all edges rf(h) for i = 
= 1, . . . , pr — 1, that is the edges ?f (w)?f+*(w). Let G' be the graph generated 
by exactly all these edges. Let s be the greatest positive integer such t h a t 
the number k is divisible by the number ps. Then kpr~s is divisible by the 
number pspr~s = pr and therefore rjkPr~s(u) = u. The edges urjk(u),rjk(u)r]2k(u)9 

..., ^ ( p r" s _ 1 )(^)^ form a circuit with pr'6 edges and therefore also with pr~s 

vertices. The same consideration as for u can be applied to any other ver tex; 
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thus each vertex of G is contained in a circuit of the graph G' with pr~s vertices. 
I t is easy to prove that any two such circuits are edge-disjoint. As the number 
of edges of the graph G is pr, the number of such circuits must be p\ I t is 
easy to prove that the graph G' is an BH-graph, thus it is identical with the 
graph G, about which we have assumed that it is minimal. The case p = 2, 
s = r — 1 is excluded, because the edge unk(u) would be fixed in the mapping ?]k. 

Theorem 5. Let H be an Abelian group which can be expressed as the direct 
product of primary cyclic groups H±, ..., Hjc, where k ^ 2. Let o(H), O(Hi), . . . , 
o(Hjc) be the orders of the groups H, H\, ...,Hjc, respectively. Let I be such 
a subset of the set {1, 2, ...,k} that ||~JO(H^) — |/O(H)| is minimal and let 

iel 
Y\ o(Hi) = t. Then an Bn-graph G with o(H) edges with the minimal number 
iel 

of vertices is the complete bipartite graph consisting of the set A containing t 
vertices and of the set B containing o(H)\t vertices, while each vertex of A is joined 
in G with each vertex of B and each edge of the graph G joins a vertex of A with 
a vertex of B. 

Proof . Let a vertex u of the graph G be given and let H' be the group 
of mappings of H in which the vertex u is fixed. If the vertex u is joined by an 
edge with the vertex v, then the vertex v cannot be fixed in any non-identical 
mapping of H'\ if H" is the group of mappings of H in which the vertex v 
is fixed, then the groups H' and H" have only the unit element in common. 
The product of H' and H" is therefore a direct product. If G is to have the 
minimal number of vertices, H" (or H' respectively) must be a maximal 
subgroup of the group H such that it has only the unit element in common 
with H' (or H" respectively). Thus H is the direct product of H' and H". 
Let II' be the direct product of primary cyclic groups H[, ..., H\ and let II" 
be the direct product of primary cyclic groups Hl+1, ..., Hm. Then H is the 
direct product of the primary cyclic groups H[, ..., Hm. Therefore k m 
and Hi c±> HP(t), where p is some permutation of the set {1, . . . , k}. Thus II' 
is evidently isomorphic with the direct product of the groups Hi for i e I, 
where / is some subset of the set {1, 2, . . . , k} and H" is the direct product 
of the groups Hj for j e {I, 2, ..., k} — I (if / = 0, or {1, 2, . . . , k} — / — 0, 
then instead of the direct product over this set wTe take only the unit element). 
Then the group II is the direct product of the groups H' and H". The graph G 
contains the vertices OL(U) for a e II" (pairwise different) and the vertices ft(v) 
for {3 e H' (also pairwise different). As the vertices u, v are joined by the edge h, 
also the vertices a(u), p(v) for each a e H", /3 e H' are joined. We have namely 
xft(h) = vfi(uv) = oLfi(u)ocP(v) = <x(u)fi(v), because fi(u) = u, a(v) = v. The 

k 

number of these edges is J~J o(Ht) ]~J O(Hj) = J~~ o(H{) = O(H). The number of 
iel je{l,2,...,k} • I /_1 
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the vertices of the graph G is YJo(Ht) + J~J O(H;); this number has to be the 
iel je{l,2,...,k}-I 

minimal possible one. We know that the function f(x) = x -j- njx attains its 
minimum at x = ]/w. Thus the number |~[O(Hi) must differ as little as possible 

iel 

from |/O(H). If we consider different subsets J of the set {1, 2, . . . , k}, the 

numbers J~JO(H )̂ are ahvays positive integers. If \/o(H) ^ P|O(Hi) < J~JO(H;) 
iej iejx iejz 

or Ylo(Hi) < Y[o(Ht) ^ y^H), evidently Y\o(Ht)+ FJ °(H*) ^ [ > ( # • ) + 
iejz iejx i~J2 je{l,2,...,k}—J2 iejx 

+ Y\ o(IIj). Thus, as J^[O(Hi) + Y\ °(Hj) must be minimal, we have either 
je{l,2,...,k} Jx iel je{l,2,...,k} • 7 

Y\o(Hi) S o(H) and for no J a {1, 2, ..., k}, J + 7 we have Yl°(H*) < I T 0 ^ 
iel iel iej 

or YJo(Hi) ^ O(H) and for no J cz {1, 2, . . . , k}, J + / , we have J~[O(Hi) > 
ie7 ?'e7 

> lio(ff<). But as f 7 O(Hy) = o(H)[Y[o(Hi)]-i for each J cz {I, 2, . . . , k}, 
iej je{l,2,...,k} • J iej 

we see that if / satisfies the first (or the second respectively) condition, the 
set {1, 2, . . . , k} — / satisfies the second (or the first respectively) condition. 
Thus we need not distinguish, whether / satisfies the first or the second con­
dition and may state that I is such a subset of {1, 2, . . . , k} tha t |]^[O(Ha) — 

iel 

— I/O(H)| is minimal (in this case I evinently satisfies either the first, or the 
second condition). 

Now let us have the edge a(u)fi(v) of G, where OL E II", ft e H' and two mapp­
ings cp G H, *p £ H, while cp = cp'cp", \p = yy", where cp' e H', cp" e H", \p' e H". 
Let the images of the edge OL(U)@(V) in the mappings cp, \p be identical. This 
me*ms that there must be cpo:(u) = \po:(u), cpft(v) = ipj3(v), because a vertex 
of A (or of B, respectively) can be transformed by a mapping of H only into 
a vertex of^l (or of B, respectively). Evidently cpa(u) = cp"o:(u), \po:(u) = \p"o:(u), 
while cp"oL e H", \p"oL e H". The images of the vertex u in mappings of II" are 
pairwise different, therefore there must be cp "OL = \p"oL, which implies cp" \p 
Analogously cpfi(v) = ipft(v) implies cp' = \p , therefore also cp = cp'cp" = \p'\p" = 
= \p. Thus it is proved that the images of the edge o:(u)ft(v) in different mappings 
of H are different; therefore any of such edges form together with all vertices 
of the graph G one graph of the decomposition of the graph G according 
to the group H. 

Now we shall consider one generalization of the concept of the bipartite 
graph, namely so-called simplex-like graphs [2]. A simplex-like graph is by 
definition the graph whose vertex set can be decomposed into pairwise disjoint 
sets Ui, . . . , Ujc, while exactly all such pairs of vertices are joined by edges 
that the vertices of the pair belong to different sets Ui (i = 1, . . . , k). They 
are the critical graphs with respect to the chromatic number. 
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Theorem 6. Let H be a finite Abelian group which can be expressed as the 
direct product of the groups Hi, ..., Hjc (not necessarily non-decomposable). 
Let o(H\), ...,o(Hjc) be the orders of the groups H, Hi, ...,Hk respectively. 
Let P(x\, ..., xjc) (or Q(x\, . . . , xjc), respectively) be an elementary symmetric 
polynomial [3] of the degree n — 1 (or n — 2, respectively) of the undetermined 
x\, ..., xjc. Then there exists a simplex-like Rn-graph G, whose number of ver­
tices is P(o(Hi), ..., o(Hjc)) and whose number of edges is o(H)Q(o(H\), .. .r 

O(HJC)). 

Proof . We shall construct the graph G. I ts vertex set is the union of pair-
wise disjoint sets U±, ..., Ujc, while the set Ui contains o(H)\o(Hi) vertices 
for each i = 1, . . . , k. The vertices of the set Ui (i = 1, . . . , k) are denoted 
by Ui(oi) for all a of the direct product Hi of the groups Hi, . . . , Hi-i, H*+i, . . . , 
Hjc, therefore of the group isomorphic to the factor-group H/Hs. Let \3 e H 

k 

and let /? = Y\ fa, where fa e Hi for each i = I, ..., k. Then faUi(o)) = Ui(faa.)y 

where fa = fife1 eHi. We see that the vertex UI(OL) is fixed exactly in all 
mappings of Hi. The proof that G is an RH-graph is analogous to the proof 
of Theorem 5. We shall also compute easily the number of vertices and edges 

k 

of the graph G. The number of vertices is 2 o(H)\o(Hi) = P(O(Hi), . . . , o(Hk)). 

The number of edges going from Ui into Uj is the product of the numbers 
of vertices of the sets Ui and Uj, i. e. [o(H)]2\o(Hi)o(Hj). The number of edges 

k k 
of the whole graph G is therefore ]> {2M#) ] 2 M#*MH y ) - MH)]2/[O(H;)]2} = 

i = i ?:=i 
k k 

= o(H)^{2o(H)lo(Ht)o(H}) - o(H)l[o(H})f} = o^Q^H^), ..., o(Hk)). 
i=l i=l 

Theorem 7. Let there be given a vertex set U of the cardinality 4& or 4k -f 1, 
where k is a positive integer, and on it a permutation p*such that the member of 
vertices of each of its cycles is divisible by four, with the exception of at most one 
cycle formed by a fixed vertex. Further let an Abelian group H, whose order o(H) 
is odd and is a divisor of the number k, be given. Then there exists a self-comple­
mentary RH-graph G, whose vertex set is U and the permutation p*is induced 
by the isomorphic mapping g of the graph G onto its complement G. 

The proof is similar to the proof of Theorem 4 of [4]. Let the permutation 
p*h&ve no fixed vertex and let ^ i , ...,^q be its cycles. The cycle ^ (i = 
= 1, ...,q) contains the vertices u^\ ...,u\^. The numbers u are divisible 
by four for any i = I, ..., q. Let n be the number of vertices of the set U, 

Q 

evidently n = 2 r% • For each vertex introduce another notation so that the 
%=\ • 

vertex u^l) will be denoted by Vjc, where for j ^ r^/2 we have k = j -f- | ^ rz > 
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for j > Til2 we have k = j + \(n — n -f 2 ^z)- I t can be proved that if 
z>i 

vk = u^\ Vic' = v$\ then k = j (mod 4) and therefore k — k' = j — j ' (mod 4). 
Now we construct the graph G in the following way. By an edge we join any 
two vertices with odd subscripts at v. Further, for any even y we join the 
vertex vy with all vertices whose subscripts at v are congruent with y -\- 1 
modulo 4. We can easily verify tha t the graph thus constructed by an iso­
morphic mapping inducing the permutation £>*can be transformed onto its 
complement. Now let us decompose the set U into the sets Uo, U\, ..., 
U±icio{H)-i so that to the set U% (i = 0, 1, . . . , 4k/o(H) — 1) exactly all such 
vertices Vi belong, for which I = i (mod kk\o(H)) holds. As o(H) is a divisor 
of k, such sets are at least four and each of them contains exactly o(H) elements. 
In a one-to-one manner assign to each element a e f l a vertex WQ(OL) of Uo. 
Now if Vi e Uo and vi = WQ(OL), then for any j = 1, . . . , 4kjo(H) — 1 denote 
vl+j = Wj((x); this vertex evidently is contained in Uj. Now for any a e H , 
P eH and any j = 0, 1, . . . , 4k/o(H) - - 1 define P(UJ(OL)) = %(/?a). The number 
4k/o(H) is divisible by four, therefore the image of any vertex vi in any mapping 
of H is a vertex whose subscript at v is congruent with I modulo 4. Thus the 
image of an arbitrary pair of vertices is joined by an edge if and only if the 
original pair is joined. We can also easily prove that for any edge h the equality 
y(h) = d(h) implies y = d. Now if-p*has a fixed vertex x, we shall make the 
described construction for the set U — {x} and for the restriction of the 
permutation p* on U — {x} .Then we join x with all vertices which have odd 
subscripts at v and define cn(x) = x for all a e H. 

§2. 

In this paragraph we shall study directed graphs. The definition of the 
decomposition according to a given Abelian group is quite analogous. We have 
the same situation in the concept of a directed RH-graph. By the term complete 
directed graph we shall mean the graph which with any two vertices u, v, 
contains both the edges uv and vu. 

We shall express one lemma and some theorems analogous to the lemmas 
and theorems of the first paragraph. 

Lemma 3. Let G be a directed Rn-graph. Let H'be a subgroup of the order 
greater than one of the group H, let u, v be two vertices of the graph G which are 
fixed in all mappings of H'. Then the vertices u, v are not joined by an edge in G. 

Proof . In the same way as in Lemma 1 we could prove tha t in the reverse 
case the mentioned edge would be fixed in all mappings, therefore also in 
non-identical mappings, of H' and would have to belong to more than one 
graph of the decomposition R, which is impossible. 
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The lemma analogous to Lemma 2 for directed graphs does not hold. 
If a is an involutory element of the group H and u a vertex of the directed 
Ifo-graph G, then there may exist the edge UOL(U), because its image in the 
mapping a is the edge a(u)u, which is evidently different from UOL(U). Therefore 
the edge UOL(U) is not fixed in the mapping a. 

Theorem 8. Let G be a directed RH-graph. Let m be the number of edges of the 
graph G, let o(H) be the order of the group H. Then the number m is an integral 
multiple of the number o(H). 

The proof is the same as the proof of Theorem 1. 

Theorem 9. Let an Abelian group H of the order o(H) and further two positive 
integers m and n be given. Let m = 0 (mod o(H)), m ^ n(n — 1) — r(r — 1), 
where r is the remainder of the division of the number n by the number o(H). Then 
there exists a directed Rn-graph with n vertices and m edges. 

The proof is analogous to the proof of Theorem 2. In the assumptions of the 
theorem there is the inequality m g n(n — 1) — r(r — 1) instead of the 
inequality m ^ \[n(n — 1) — r(r — 1)] from Theorem 2, because the number 
of edges of the complete directed graph with n vertices is n(n — 1), while 
the number of edges of the complete undirected graph with n vertices is 
\n(n — 1); analogously for the complete graph with r vertices. Further, the 
assumption that the order of the group H is odd is omitted. In the proof 
of Theorem 2 one starts from the complete undirected graph which according 
to [5] cannot be decomposed according to an Abelian group of an even order 
(for the sake of involutory elements — see Lemma 2). But in Theorem 9 we 
start from the complete directed graph which according to [6] can be de­
composed according to an arbitrary Abelian group whose order is a divisor 
either of the number of vertices of that graph, or of this number minus one. 

Theorem 10. Let H be a primary cyclic group of the order pr, where p, r are 
positive integers, p > 1. Then every directed Rn-graph with o(H) edges with 
the minimal number of vertices consists of ps connected components, 0 ^ s < r, 
and each of these components is a cycle with pr~* vertices. 

Theorem 11. Let H be an Abelian group which can be expressed as the direct 
product of cyclic primary groups H\, . . . , II&, where k ^ 2. Let o(H), O(IIi), . . . , 
o(Hjc) be the orders of the groups H, H±, ..., Hjc respectively. Let I be such a subset 
of the set {1,2,..., k} that \Y\o(Hi) — [/o(H)\ is minimal and let J~JO(IIi) — t. 

iel iel 

Then a directed RH-graph G with o(H) edges with the minimal number of vertices 
is the bipartite graph consisting of the set A with t vertices and of the set B with 
o(H)jt vertices, while either each edge of this graph has its beginning vertex in A 
and its end vertex in B, or each edge of this graph has its beginning vertex in 
B and its end vertex in A, and the mentioned graph contains all such edges. 
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These theorems are quite analogous to Theorems 4 and 5, also their proofs 
are completely analogous. 

If we define a directed simplex-like graph as the graph whose vertex set can 
be decomposed into subsets U\, ..., Ujc pairwise disjoint, in which from the 
vertex u into the vertex v a directed edge goes if and only if the vertices u 
and v belong to different U%, we can express a theorem : 

Theorem 12. Let II be a finite Abelian group which can be expressed as the 
direct product of the groups H\, . . . , IIjc (not necessarily non-decomposable). 
Let o(H), o(Hi), ..., o(H) be the orders of the groups II, II\, ..., Hjc, respectively. 
Let P(x\, ..., xjc) (or Q(x\, ...,xjc), respectively) be the elementary symmetric 
polynomial of the degree n — 1 (or n — 2 respectively) with the undetermined 
xi, ..., xjc. Then there exists a directed simplex-like EH-graph G whose number 
of vertices is P(o(H±), ..., o(Hjc) and the number of edges 2l(H)Q(o(Hi), ..., o(Hjc)). 

The proof is analogous to the proof of Theorem 6. The number of edges 
is the doubled number of edges from Theorem 6, because each pair of vertices 
(which is joined) is joined by two directed edges. 

Finally we shall express a theorem analogous to Theorem 7. 

Theorem 13. Let there be given a set U with n vertices and on it a permutation 
p* such that the number of vertices of each of its cycles, with the exception of at 
most one cycle formed by a fixed vertex, is even. Further let an Abelian group 
be given, whose order o(H) is a divisor of the number \n in the case if n is even 
and of the number \(n — 1) in the case if n is odd. Then there exists a directed 
self-complementary En-graph G whose vertex set is U and the permutation p* is 
induced by an isomorphic mapping of the graph G onto its complement G. 

Proof . First assume that the permutation p* has no fixed vertex and 
therefore it contains only cycles with even numbers of elements. Let ^\, ...,^q 

be these cycles. The cycle ^ (i = I, . . . , q) contains the vertices u^, ..., u^. 
Q 

The numbers rt are even for any i = I, ..., q. Evidently n = 2 r* • I ° r e a c h 
i=l 

\er tex we introduce, as in the proof of Theorem 7, another notation, so that 
the vertex u^ will be denoted hy vjc, where forj ^ n/2 there is k = j + \ 2 rz, 

z<i 
for j > Til2 there is k = j -f- \(n — r% + 2 rz)- I t c a n be proved that if 

Z>1 

vjc uy\ then k = j (mod 2). Now we construct a directed graph G so that 
we join by both edges (i. e. from the first vertex into the second and from the 
second vertex into the first) any twT) vertices whose subscripts at v are odd; 
further, from any vertex with an even subscript at v we put directed edges 
into all vertices with odd subscripts at v. We can again easily verify that the 
graph thus constructed can be transformed by an isomorphic mapping in­
ducing the permutation p* into its complement. Now decompose the set U 
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