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EXTREMAL CROSSING NUMBERS
OF COMPLETE k-CHROMATIC GRAPHS

MILAN KOMAN, Praha

I. INTRODUCTION. The complete k-chromatic graph (k; ni, no, ..., ng),
where k& = 2, is defined as an undirected graph whose vertices can be de-
composed into & disjoint classes with ny, ne, ..., ngy vertices such that any
two vertices are joined by an edge if and only if they belong to different
classes.

If we draw in the plane in the usual manner any nonplanar graph, that
means we map vertices as points and edges as arcs which are homeomorphic
with a straight segment, then necessarily certain two edges cross. The minimal
number of crossings is called the crossing number of this graph. (See e. g. [1].)

The crossing number of graphs (k; 1, 1, ..., 1) and (2; n1, ne) is investigated
in [1] to [8]. For the general complete k-chromatic graphs (k; 71, ne, ..., nk)
the crossing number is studied in [9] to [12]. In [10] and [11] there is proved:

Theorem 1. Suppositions and denotations. Let (k; n1, nz, ..., ng) be a complete
k-chromatic graph and

h(k; m1, ma, ..., ng) =

LR T

t=1 %, j=
i>j

+ Z [aras(aay + bibu) + aubs(arb; + bras) + brbyu(bsbe + asa)] ,

1=Sr<s<
<t<u=k

where
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and where a;, b; (1 = 1, 2, ..., k) are non-negative integers such that

a; +b;=mn;, 0= (@ — bi)(_l)n1+n2+...+m <1.

Assertion. The value h(k; n1, na, ..., ng) ts independent of the order of the
numbers mi, ng, ..., n; and it is an upper bound for the crossing number
pk; na, na, ..., ng) of the graph (k; ni, ne, ..., ng).

Now let us investigate this problem:
For given natural numbers N, k(N = k = 2) the maximal and minimal
crossing numbers

P(N7 k) = mmax .p(k: n, ng, ""nk‘)>
R(N,k)

p(N, k) = min p(k; n1, ne, ..., ng),
R(N,k)

where R(N, k) denote the set of all decompositions of the number N into k na-
tural summands 7, ng, ..., ng, should be estimated.

By means of statements from Theorem 1 we obtain in this article upper
bounds for the numbers P(N, k) and p(N, k). The main results will be presented
in Theorems 2 and 4.

II. UPPER BOUND FOR MAXIMAL CROSSING NUMBER P (N, k). We
shall investigate for all natural numbers N,k (N = k£ = 2) the maximum

H(N, k) = max h(k; n1, na, ..., ng).

R(N,k)

This function gives an upper estimate for the maximal crossing number P(, k),
because obviously P(N, k) < H(N, k).

Let (m1, ma, ..., mg) € B(N, k). For all different indices 7,5 =1, 2, ..., k we
denote

%
S(mi, mj) = 8(N — myj) — AmZ; — dmy; + 8) — 2my; > mA(my),
4
t#4,7

where
1 1 .
mig = m; +my, A= E[l — (=1)¥], A(me) = 5[1 — (=1 ™.

Lemma 1. Apart from the order of the summands, there are at least one,
but at most three disjoint decompositions
(ml.mz, ceey mk) GR(N, ]C),

which satisfy for all different indices ©,5 = 1,2, ..., k the two conditions:
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(1) d(m;, m;) = |my — my| < 2;
(ii) [d(mi, mj) — 1] 8(mi, my) 2 0, if my; = 0 (mod 4).
Lemma 1 is a consequence of

Lemma 2. Suppositions and denotations: Let N, k (N = k > 2) be given
natural numbers and m, r such integers that

N=kn+r, m=0(mod2), —k=r<k.

We denote
*1 k b 1(k —b
a=—(k—r—0>b), c=— r ,
2( ) 5 + )

where the non-negative integer b is defined in Table 1.

Asscrtion: The decomposition (my, ms, ..., mg) € R(N, k) satisfies the two
conditions (i) and (ii) if and only if it has the form

(1) o(N, k) = (m1, ma, ..., mg) = (m — 1)*mb(m + 1)° (1)

Proof. a) It is not difficult, but long enough, to show that in all cases we
have

Table 1
* 2

mod 2 mod it | mods | Wi b

1 0 1 — b= 2+ wm?

1| o 0 |w=o 0<b=1b=k+ 1 (mod?2)
! 0 0 Jwzo0 b=k — |rl

1 =£0 — w =<0 0b=1,b=k-+ 1 (mod?2)
1 | =0 — |w=o0 b—k— |r|

0 — — s=Zk—1rl—2,t=Z22|s8=b=t b=k(mod?2)
O— — — s>k —|r] — 2 b=k — |r|

0 — - E< 2 0<b=<1,b=Fk(mod?2)

() w— 2N — 1 — (m+ 12, (**) s = max [0; (Nm — 2N + 4m — 4m2)/m?],
t =min [k — [r]; (Nm — 2N + 4m)/m’] ‘ -

(1) The symbol (m — 1)2 m"(m + 1)¢ d>notes the dscomposition in which there are @
summands equal to m — 1, b summands equal to m and ¢ summands equal to m + 1.
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0<ab,c =k,
a+b+c=k,
am — 1) +bm + c(m 4+ 1) = N.

Thus (1) is a decomposition of the number & into k natural summands.
b) Obviously the decomposition (1) satisfies condition (i). Conversely, if
the decom position (m;, ms, ..., mi) € R(N, k) fulfills condition (i), then

max [my, ma, ..., mg] — min [my, ma, ..., mg] < 2

and therefore it has the form (1), where a, b, c and m = 0 (mod 2) are suitable

numbers.
Let

min (@,¢) =21, b = 2.

Then condition (ii) is fulfilled if and only if

1
—4—S(m, m) = (A — 1)(Nm + m? 4 2m — 2) + (w — 2m?) + dbm2(—1)¥ < 0,

1 1
ZS(m— 1,m + l)zzs(m,m)~4(l— 1)m2 = 0.

Let
2.

1\

min (a,c) <1, b
Then condition (ii) is equivalent to

1
— 8(m, = 0.
4 Sm, m)

Let
min (a,¢c) =21, b < 2.

In this case condition (ii) is equivalent to
1
ZS(m— 1, m 4+ 1) = 0.

It is easy to verify that in all cases the number b, which is constructed in
Table 1, satisfies even these inequalites.

¢) It remains to prove: If the decomposition (m1, ms, ..., mi) € R(N, k),
for which conditions (i) and (ii) are fulfilled, has the form

(mo — 1)% mg> (mo + 1),
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where m % mo = 0 (mod 2), then

(2) mo=m-4+2, bp=co=a=b=0, ap=c=k%k
or
(3) mo=m —2, aqg=bp=b=c¢c=0, co=a=="L.

Indeed if m¢ << m, then
N = ag(mo — 1) + bomo + co(mo + 1) £ k(mo + 1) =
<km—1) 2am—1)+bm+cim—+1)=N
and hence we obtain (2). If my > m, then
N = ap(mo — 1) + bomo + co(mo + 1) = k(mo — 1) =
= km-+1) 2 am —1) 4+ bm + ¢(m 4+ 1) = N.
Hence we have (3).
Lemma 3. Let
(n1, ne, ..., ), (n{, n;, e n;) € R(N, k)

be two decompositions, which are different only in two places i, j (3, 1,2,..., k).

i,j =
For these i, j let the numbers n;, n; fulfil the conditions (i) and (ii). Then we have
D = h(k; ni, ne, ..., ng) — h(k; n;,né, vy n,'c) =0,

where the equality holds if and only if also the numbers n;, n; fulfil conditions
(i) and (ii).
Proof. We denote

S aa, = AA, > bb,=BB, 3 ab,—= AB,
S ba, = BA,  w =M,

where the indices ¢, » take on all values 1, 2, ..., k so that ¢t £ 14, j, u # 1, yj
t < u and where a;, b; are defined as in Theorem 1. Note that

k

1

tml
t#i,j

Hence we have

Lo | =
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Now we can find the difference D (see detailed enumerations in [10]):
I. Consider [n; — m5] £ 1. From this — according to condition (ii) — it
follows: If n;; = n; + n; = 0 (mod 4), then

(4) S(ni,nj) é 0
1. Let
n; = 2n + 1, n;:2(n—x)+1,
n; = 2n, n]' = 2(n 4 x),

where —n < x £ n, x #% 0. Then

D =: Dy(z) = 2?[AB + (n — 1)M 4+ n(n — A)] +

1
+ x(x—1) B’A—I—(n—;)(llf—l—l—-1)—{—722—:102 .
2. Let
n; = 2n — 1, n;=2(n—x—1)—|—l,
n; = 2n, n;.: 2(n + x),

where 0 < || << n. Then
' D =Dy@) =2a[BA + (n — )M +n — 1 — 3)] +

3 1
—]—x(x—i—l)[AB—{— (n—;)]lf+ (n—12+ (1 —A)(n—g) —sz.
3. Let
n = 2n + 1, n;, =2mn+ x4+ 1),
ny=2n + 1, n; =
where —n < « < n. Then
1 1
D = Ds(z) :E(AB—}—BA) —5(27»—}— 1(AB — BA) + nM +
+ 2(x + 1)[AB + BA + (2n — 1)M + 2n2 — z(x + 1)] =
1
> —2—(AB + BA) + z(x + 1)[AB + BA + (2n — 1)M + 2n2 — x(z + 1)].
4. Let
n = 2n 4+ 1, n; = 2(n + x) + 1,
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nj = 2n + 1, n; == 2(n — x) + 1,
where 0 < |z| £ n. Then
D = Dy(x) = 2?[AB + BA + (2n — 1)M + 2n2 4 A — 2?].
5. Let
n; = 2n, n
n; = 2n, n
where 0 < |z| < n. Then
D = Ds(x) = 2?[M44 + BB) 4+ (1 — A)(4B -+ BA) +
+ (n — 1)2M 4 n — 1) + n2 — a?].
6. Let

~

n; = 2n, ; =2n —2)+ 1,

K. N o

n; = 2n, n
where —n < 2 £ n. Then

D = Dg(x) = 2(AB + BA) + n(AB — BA) + (8n — 9)M/8 +
+ 54 [n(n— 1) +%] + 22n(n — 1) + 4 — a(x — 1)] +

+ @+ )z — 2)[A4B + BA + 2(n — 1)(M + n) +
+ A — x2(x — 1)].
It is easy to see that for j =1, 2,...,5 and all admissible x Dj;(x) > 0.

The inequality Dg(z) > 0 holds for all admissible 7 0. On the other hand
Dg(0) = 0 is fulfilled if and only if

%
A2n2 — 2n 4+ 1) 4 nZnM(nt) — M = 0.

=1

But this inequality is equivalent to S(n;, n;) = 0. Furthermore the equality
Dg(0) = 0 holds if and only if S(n;, n;) = 0.
I1. Consider |n; — n;] = 2. Then ny = n; + n; = 0(mod 4) and the
inequality S(n;, ;) = 0 must be true.
1. Let »
n; = 2n + 1, n;=2(n+x),

n; = 2n — 1, n;=2(n—x),
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where |x| << ». Then

e Ds(x) — D(;(O) if « +0,

D=0 = _byo) if © = 0.
2. Let

n=2n + 1, n; = 2(n — x) + 1,

ny=2n — 1, n; =2m +ax— 1)+ 1,

where —n <o < n, v + 0, —1. Then
D = Dg(x) = De(x) — De(0).

Also in these cases it is easy to see that for all admissible x is D7(x) = 0 and

Dg(x) > 0 if and only if condition (ii) holds. Furthermore D7(0) = 0 if and
only if S(n;, n;) = 0.

From Lemmas 2, 3 we obtain immediately
Lemma 4. a) If in a decomposition (my, ma, ..., mg) € R(N, k) there are such
summands m; , my, for which conditions (i) and (ii) are not fulfilled, then
H(N, ]C) > h(k, my, ma, ..., Mg).

b) If (mi,me, ..., mg), (my,my,...,m;) € R(N, k) are the decompositions
satisfying conditions (i), (ii), then

h(k; m1, ma, ..., mg) = h(k;mi,m;, ey m,’c).

The following Theorem 2 is now obvious.

Theorem 2. We have
H(N, k) == h(k; m1, ma, ..., mg)
if and only if (m1, ma, ..., mg) is a decomposition
e(N, k) = (m — 1)smb(m + 1),
which s defined in Lemma 2.

Note 1. Theorem 2 gives an interesting result: The decomposition g(N, k),
for which A(k;ni, ng, ..., ng), where my -+ n2 4 ... - np = N, reaches its
maximum H(N, k), is asymmetrical. This probably also holds for the maximal
crossing number P(N, k). For example if N = 6, k = 3, we have (6, 3) =
= (1,2,3) and

p(3;1,2,3) = P(6,3) = H(6,3) = (3;1,2,3) = 1.
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On the other hand for the symmetrical case we obtain
Pp(3;2,2,2) = k(3; 2,2, 2) = 0.

Note 2. As a consequence of Theorem 2 we have the following upper
estimate:

P(N,k) < HN, k) < h(k;m +1,m + 1, ...,m + 1).

If b =k + r (we use the notation of L.emma 2), we obtain a better upper
bound

PN, k) < H(N, k) < h{k; m, m, ..., m).
Moreover if b =k +r =0 (i.e. if N = km — k), then
P(N,k) < HN,k) £ h(lke;m —1,m—1,...,m — 1).

In these cases we can obtain the number k(k; n, n, ..., n) from Theorem 3,
which is proved in [10]:

Theorem 3. We have

hk;n,n,...,n) = En) [’nE(Im —n) — (Z)E’(n)] +

+§ﬂk+mﬂmmm+4r+%Emmk—mm%w—zmm+1n+

+ Bk -+ DE(k — 2)E(n + 1)G(n),

where

B} mo-[5 on- 5]

In the particular case for n = 0 (mod 2)

hk;n,n, ...,n) = E(n) [nE(kn —mn) — (l;) E’(n)] 43 ({:) n4/8

holds.

III. UPPER BOUND FOR MINIMAL CROSSING NUMBER p (N, k)
We shall establish for the given natural numbers N,k (N = k = 2) the
minimum

N, k) = min h(k; n1, ne, ..., ng).
R(N,K)
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In this way we reach for the minimal crossing number p(N, k) an upper bound,
since certainly

p(N, k) = h(N, k)
holds.

Theorem 4. For all natural numbers N,k (N 2 k = 2) we have

PN, k) £ BN, k) =h(k;1,1,...,1, N + 1 — k).
. Proof. Let
(n1, n2, ..., n), (ny, My, ..., n;) € RN, k)

be decompositions, which differ at most in two places ¢, j. Let for these ¢, j
| i — g < 1.
We shall prove that the difference
D = h(k; ny, na, ..., ng) — h(k; n;, n;, e n,'c)

reaches its maximum if and only if n; = 1 or n]' = 1. But this follows from
Table 2:

Table 2
?I;;l_d Zj) Maximum D
1 max Dy(x) = Di(n)
3 max Dy(x) = D2(n — 1)
2 max [max Ds(x), max D4(x)] = Ds(n)
0 max max Ds(x), max Dg(x)] = Ds(n)

We can obtain the number 4(k;1,1,...,1, N + 1 — k) from Theorem 5,
which has been proved in [10]:

Theorem 5. We have
hk; 1,1, ..., 1, mg) = E(k — 1) B(n) + E(k — 2)] + ax[T(k 4 1) + 2T (k)] +
+ b[T(k + 1) + T(k) + T(k — 1)],

=[] o ().

2
ag —|—— bk = Ng, 0 < (—l)k(ak — bk) <1.

where
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