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OSCILLATION OF SOLUTIONS OF NONLINEAR
DELAY DIFFERENTIAL EQUATICNS

PAVOL MARUSIAK

W consider the nonlinear celay differential equation of he n-th order
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followine form
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CIRy R, hi(t)y ~ ¢ for te R Tim Ai(t) — oo, (1 1

t >

9 o
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The tollowing papers |2, 3, 3, 6, 7, 8. 9] deal with the oscillatory properties
of ~olutions of some nonlinear lelay differential equations of the n-th order.
In this paper we shall prove a necessary and sufficient condition for all
solutions of the equation (1) to be oscillatory in the case # is even and to
be either oxcillatory or tendine monotonically to zero as ¢ ~ o when n is

odd.
Let

whete

and

Ht)y n n{IL(), ..., H, 1(1)].

Hity inff{h)y; v >teR,}, @ —1 ...,0m—1)

Dy {1, ., )t K< | <2K, v <K, (¢ 1, .

c, M)}

A function y(t) is said to be a solution of (1) on the interval [II(t), co),

to 0

with an initial function ¢ € C* 2 [[H (), lo]. R], if

(1) y(1) € C"lto, 0), R, y(t) € € * 2[[H(ly), ), |
@) yorty gy for tellilto),lo], (K 0,1,...,n 2),



yo Otey) gtV
(7it) y(¢) satisfies (1) for every t > {y.

In the following we shall always suppose that all the functions in (1) aud
the initial conditions ¢, y®~1 guarantee the existence and uniqueness Hf
a solution of the equation (1) for everv ¢t >{,.

A solution y(t) of (1) is called oscillatory on the interval J  [f. ). it
the set of zeros of y(t) is not bounded from the right. A sulution #(f) of (1)
is called nonoscillatory on J, if there exists a number « ./ snch that y(i) — 0
for ¢t > a.

Theorem 1. Let the functions in (1) satisfy (2), (3), (4) and in addition

(@) flar, ..., p-1) is nondecreasing [nonincreasing] ih Xp.0w. v, ... 0 o
e R [in as, x5, ..., xp_1 € R for n even.
If n is odd then f(ri, ..., ap_1) is nondecreasing [vonincieasing in 1y,
X3, ..y 2€R [In ay, ay, ..., xq 1€ R
Then
o
(3) e Lp(t)dt < co

15 @ necessary and sufficient condition for the existcnce of a solution y(t) of (1)
with the property

(7 |yt) —C, |y@@E) =0 for t -oo, 0 < C' constant,
(& 1, ...,n—1).

Proof. I. The necessary condition. Let #(f) be a nonoscillatory solutior
of (1), having the property (17). Without the loss of generality we can supposc
that y(t) > 0 for t > H(t)) > toe £ . Then y[h(t)] > 0 for ¢t > t,. Intecrat-

ing (1) j- times (j — 1. ..., % — 1) from (t > #;) to oo, we obtain
: (s — )y 1
(6) (—1)7 Tyt (1) . P(s)
(j— 1!

X fylha(s)]. ... y0 Dhg-n(s)Nds. (J=1,....0— 1), ¢ ~t.

IFrom (6), with regard to (2). (3), for j » 1.owe get ( 1)ny'(f) — 0.

If » is even, then the nonoscillatory solution y(¢) of (1), having the property
(V), is increasing and therefore 0 < (' — y(f) < cc.

When # is odd, then y(t) is a decreasing solution of (1). having the properts
(1) and therefore 0 < y(t) — €' < o

Integrating (6), tor ;  « 1, from 1 to =<. we obtuin
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( — ) 1
(7) (=DM — ) ’ p$)f(y fn(s)),. .. .y"=2[ha 1(s)]) ds
] )

As the function f is continuous, there exists ¢ >> ¢;, such that for ¢ >,

we hwve
]
Flha®)], -y @ O[ky 1()]) s fe,0,...,0)>0.
Iftom (7), using the last inequality, we cet
1 [ (s — ) 1
co  ( HMC —yi)> C,0,...,0) p(s)ds, t=>t
2 S (m—=1)!
t

The last inequality implies

| st s)de < o
i

and thus the necessary conditio is proved.

II. The sufficient condition. "'he existence of a solution y(t) of (1), having
the property (1'), will be provec by the method of successive approximations.

a) Let n be an even number.

Let us define the sequence of functions  {yu(t), ..., 5% V() oot > H(T)
as follows:

) ml) €2, 400 0, G Vo), (=I(T), C >0

1

C ‘(;_Tzl
+](s )

1) PG hr($)], - 5 Plha-1(s)]) ds -+

2
‘f

. J(s . T)n~1 _ (8 - t)n 1 ) N

) Yunll) T Y Py bas)], ...,y P x

7
S lhn 1(s)])ds, ¢=T
C




( . (s 1)1
( nt [v (i — 1) POl a(s)). ooyl
(10) () i
b 1(s)]) ds. t-T. (@ 1.....¢ ]
0, HT)y<t<T, (i . ..., w 1),

where 7' is chosen so that

C(
(1) M [(s Y Tps)ds <", @ .. .. n
;1‘ -
and
I max {1, Meo  sup [ o).

D o
By mathematical induction, with regard to (8) (11) and the assumptiy
(), it is casy to prove that
C ) ('
(12) , Suwl) OO (D) (1) .t T,

9

(¢ 1,...,m e 001, ..))

(13) Y1) = (), (=1 o 0 = (0w
(¢ 2,...,n e 0.1, ...)

From (8), (9), (10) it is obvious that the functions 2% (). (¢ 1, . )
are continuous for ¢ >17T.
In view of (12), (13) the sequences {y Y)Y . (i 2..... ..t T)

of the continuous functions are uniformly convergent on [7'. Al < |T. )
(deR, A>T)and convergent on [T, @), i.e. limy” Y1)y 4 (1), (0
2, ...,n) exist on [T, o).
The function y(t) is a solution of the integral equation

‘I(S — Ty 1
R p)flla(s)] - ooy D)y 1(s)]) ds
2| (n 1!
P
{ R oo
yil) (s Ty 1 (s !
—[—’ PEWh)].. .y 20h, (s)))ds, (=T
. (n 1)!
t
CY

o Ty <t<T

and it has the property (17).
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If we carry the initial point 7' to the point i,
then the solution #(t) with the property (1)

val [Il(tp) T. oo).
b) Let » be an odd numb -r.

Let us define the sequence of functions {y,,(f),

as follows:

sup {t; HYy <T,t Ty,
is the solution of (1) on the inter-

7/51‘/’ l}( )Jm 0 t—~ I](YY)’

S) ) C=>0, YN 0, @ L2, . — 1), t>HT),
[ (s — tyn1 . o 7 i
- D) fm b)) b 1 (s)Dds, ¢ T
() Ywia(l) J =1
t
ym(T ), Tyt T
el
1/1(/11/ i)([) (Z l" “")7 s, N — l)
is defined by (10).
The point 7" is chosen so that
(1) Mf@E—"T)Y1tps)ds —C, 7 1,....n.
0
where M max {1, H¢  sup fler, oo, 0 1) ).

D¢

By mathematical induction, in view of (8’

tion («), it easy to prove that

), (97). (10), (1) and the assump-

(12) C<ynlt) <20, 0<(—=1) 10, t>T,
¢ ,...,n—1. m—0.1...)
(13 (D 20 > (=0 by 2, 1> T,

(2 A T

m=0,1,...)

rom (8'), (97). (10) it is obvious that the functions »% (1), (i L, ...,n)

are continuous for ¢ > T.

(127, (13) imply that the sequences {y" "(t)}% (¢ —

Sue 0 "7""72’[ >T)

of the continuous functions ire uniformly convergent on [T, B] < 7', o0),

B

2, ...,n) exist for ¢+ >1T.

R, B>T) and converget on [T, o).

linu /% O(t)

nt

Le. y=o(t), (i

ht=>r

The function y(¢) is a solut on of the integral equation
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s — {1
C—J ( pfylha(s)], .y 2y a(s)))ds, ¢ T
y(1) Dt

(T, (T <t<T

and it has the property (V).

Similarly as above it follows that y(t), having the property (1), is the sol1
tion of (1) on the interval [H(t) — T, o).

Thus Theorem 1 is proved.

Lemma 1. Lel y(1) be a function such that its derivatives up to order n 1

tnclusive by arc absolutely continnons and of constant sign in the interval (fy. )
and y(t)ytot)y < 0. Then there exists a number ke{0,1, ..., n Iy, n A
is odd and such that

(4) ytyd(t) =0, @ 0,1,...,k),
(=17 POyt >0, (G- k+1,...,n), t _l,
(15) YyEO| =gk dye D2n kL) >,
(16)  yh D) = Btn ki Yyl (6 — 1,2, ..., k), 20 My,

where
2 ki)
B; ) .
m—Fk)...m—k+1i—1)
The proof of Lemma 1 can be found in [6, Lemma 2|.

Theorem 2. Let the assumptions of Theorem 1 be fulfilled and, in addition.

suppose that
D) bi(t) L git), —r <gi(t) <0, (2 1, ...,n 1), telR | r
(c) there exists a number = > 1 such that

0

e ,f(J'l s X2, ey )]
lim inf + 0.
ry =0 X1 .D(
1. If n is an even number. then a necessary and sufficient condition for «ll
solutions of the equation (1) to be oscillatory is

(17) fﬂz—l p(t)di oo.

2. When n ts an odd number, then (17) is the necesswry and sufficient condi-
tion for all solutions of (1) to be either oscillatory or to tend monotonically to zc1o
as | —> oo logether with their first n — 1 derivatives.
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Proof. I. The necessary coadition follows from Theorem 1.

I1. Condition (17) is sufficier t. Let (17) hold and et y(t) be a solution of
the equation (1) such that y ) > 0 for t > 1o — r. Then yfgi(¢)] > 0 for
{1y and with regard to (2), (3), we have

gty — pOf@lg O ¢dg-O) - 5" Plgn 1)) <0, L> .
From y(t) < 0 it follows thit there exists ¢ > f; such that y@() (j
0,1,....n— 1) have constwt sign for ¢ > ;. Then, by Lemma 1, for

y(t) and its derivatives (14)—(16) hold.

1. Let n be an even number. I'hen, by Lemma 1, there exists an odd num-
ber I {1, ...,n 1} such th t y@)y@@¢) > 0,7 — 0, ...,k t > . There
fore, in view of Theorem 1, we have y(0) = oo.

2. If » is an odd number, then by Lemma 1, there exists a number ke
~10,2, ..., n — 1} such that » -+ £ is odd. Let £ = 0. Then (14) implics
y'(1) < 0 for t > ;. By Theotem 1 and (14) we have y®(0) =0, ¢ 0,
1,...,n 1. Thus we proved that y(t) tends monotonically to zero as { = co
tocether with its first n — 1 derivatives.

I L (2,4, ..., — 1}, then y'(f) > 0, y"(t) > 0 and therefore y(co)

OO,

In ceneral, the case y(oo) oo, y'(f) > 0 for ¢ >>{; can occur only for
bef{l.20 0 ,m — 1}

Inteerating (1) from ¢t > 1) to co and then using y»D(co) C 0
we obtain

(18) Yo D) > gy D) Y V() =

.|"P(S)f(.?/s[.’h(8)], Y191 -y Plga ws)) ds, >4
t

A)Let £ 1. Then (15) imp ies
ylt)y =ty B2 2, b=

IFrom (18), with regard to tie last inequality and the assumption («), we
have

Yy =2 fopOfysd— Ly ) T ) ds, ¢ i
202
Multiplying the last inequalitv by {y/] — r]}=* and using #'(t) > 0, y" ({) < 0
and assumption (a), we get
Yil—r y'()
(19) = >
yd—Tx — Ayd— =



o

, Jwst oL ylg2)) -y Plge 1))
fn 2 p(s) ds
[ 1

o

According to the assumption (¢) and the fact limy] »] oo we cn

t=s
choose Ty > t; such that for s > 27 27" we have
Tl o yldg)] g Plga 1)) P
{ysl i -

Then (19) implies

ul 7l

. ' ! S 2 [ ps)yds, ¢ T

Y e

f S S

Integrating the last inequality from T to {(t > Th), we obtain

[ 1 1 )
(20) —
a— 1 ({.V'r,[ rjet el el
on
d o1 T, 1
‘ (22 ns)r U —T" M p(s)ds 4+ d
n — 1 . Nn 1
202y
s 20 -f
d
‘ s = Ty T e ds.
n —
2 on 2y

The first expression in (20) is bounded because limy[ ] o, v 1

>

and therefore

@©L

(21) FIE syt T pls) ds < o

om2yy

If we choose 22 #s > 22 nty > 2V P} ‘then (22 ns)n V Ty !
andd so (21) implies

—_
o
I
“
~
|87

ow@

[ s 1p(s) ds < oo.
12

which contradicts (17).

D, Let ke{2.3, ..., 7n — 1}. Then from (16) we got

(22) y(t) = B tn 2yl (1), t >3 20 My,



where

1
1),/( 1 4
S N (N & R (TR )

From (18), in view of the mo otonicity of the function D(1). the assump-
tion («) and (22), we get
g1 = Bealt o1 2 psifgsd oLyl - " g, (s)]) ds,
!
>t >l r.

Further, exactly as in the cose 4, (i.e. we multiply the last inequality by
il ol Y use (¢) and finallv we integrate from Th 20 27 4y to f)

we vet
(.S’ «)-)u (/—l ,-)// 1
pls) ds < o .
l 1
Ts

That contradicts (17).
The proof of Theorem 2 is ccmplete.
Theorem 2 generalizes Theorem 2 [4].
Theorem 1 and Theorem 2 can be generalized to the equation
m

(23 ) = 3 pOfilylh O], -y Dk O] — 0, w2,
i1

The proof of Theorem 17 Theorem 2’ is very similar to the proof of
Theorem 1 |{Theorem 2] and we omit it here.

Theorem 1'. Let the functions p;, fi hj; (i L, ...,m: ) I,...,n 1)
satisfy (2), (3), (4) and, in addition lct f; (i 1, ... n 1) satisfy the assump-
tion (a) in Theorem 1.

h

>l p(yde - o

i1
(s« neecssary and sufficient cor dition for the exisience of a solution y(t) of (23),
having the property (17).

Theorem 2'. Let the assumpl ons of Theorcm 17 be satisfied and in addition
let

({)) ]’i‘i(l) t —+— g;,([) 7 <g)2(/) < 0 (.} l.....»n ly [ J, .. -77'})a
te R ,r ~0;

(¢) let there exist a number o > 1 such that
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i1, « ooy p
limim"f(1 , 1)\#0, (@ — 1, ...,m)

(1 =0 A1

1) If nis an even number, then

(el

(25) > ip(tydt oo

i1

is a necessury and sufficient condition for all solutions of (23) to be oscillatory
2) Let n be an odd number. Then (23) is « necessary and sufficient condilion
Sfor all solutions of (23) to be either oscillatory or to tend monotonically to zciro
as t — o together with their first n — 1 devivatives.
Acknowledgment. The author wishes to thank the referee for his helpfil
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