Matematicky casopis

Zuzana Ladzianska
Chain Conditions in the Distributive Product of Lattices

Matematicky c¢asopis, Vol. 24 (1974), No. 4, 349--356

Persistent URL: http://dml.cz/dmlcz/126558

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1974

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/126558
http://project.dml.cz

CHAIN CONDITIONS IN THE DISTRIBUTIVE
PRODUCT OF LATTICES

ZUZANA LADZIANSKA

This paper is concerned with a generalization of the distributive free product
and the ordinal sum of distributive lattices, so-called the & — poproduct
of distributive lattices. The notim of the & -- poproduct was first introduced
by Balbes and Horn [1] und r the name of the order sum. Generally, the
notion of the .#° — poproduct for an arbitrary equational class of lattices
was introduced in |7].

We begin with some preliminary notions.

Tet P be a poset and let L,, p € P be pairwise disjoint lattices.

Tet @ U L, be partially Hrdered in the following way: «, be@, a« < b

pel’
if and only if one of the conditions (1) and (2) holds:

(1) there is a p € P such that «,be L, and the relation « < b in L, holds;

(2) there are p, re P such that a e L,, b € L, and the relation p < in the
poset £ holds.

If [is a mapping from @ into Jf then f;, denotes its restriction on L,.

Definition (sce [7]). Let ' be an equational class of lattices. Let L,, L € .
let P be a poset. A lattice L is the #" — poproduct of the lattices L,.p e P, if:
1. there is an isolone injection 1 :Q — L such that for each p e P, 7, s a laltice

homomorphism;
2.0f M e ", then for every isotonc mapping f:Q — M. such that for cach p e I,

fo is a lattice homomorphism, there exists vwiquely o lattice homomorphism
¥ L such that ¥ .0 — |
We denote by ¢ the class of all distributive lattices. The  — poproduct
will be called also the distributive poproduct.

Theorem 1 from [7] says that the 2/ — poproduct is a generalization of
the 7 free product and the ordinal sum of lattices: the %~ — poproduct
forms the " free product iff I’ is an anti-chain and the ordinal sum iff P

is a chain.

lemark. It 7y < 4, are two equational classes of lattices and L is
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the 4’5 — poproduct of lattices L, e .7 (p € P), then L need not be in
a~ the following example shows.

Example. Let P {x,8,7,0}, § y» o« f# v 0 (see fig. 1) Lt
Ly {0}, Lg {a,b}, a« <b, L, {c}. Ls— {i} (see fig. 2). Then L (~cc
fie. 3) is the L poproduct of L, p c P, but not the ¥ poproduct.

In this paper the word problem for the ¥ poproduct is solved and the
following theorem about the chain condition is proved: if m is a rceuln
cardinal greater than §o, then the ¥ poproduct of L,, p I’ does not
contain a chain of the cardinality = m iff P and every L), p c I’ docs not
‘ontain a chain of the cardinality = m. The existence of the & popro Inct
follows from [1].

We shall consider distributive lattices with 0,1. We shall use the met ods
of [6]. Similarly to [6]. all results are applicable to the catecory of distribu ive
lattices.

1. The word problem

Lemma 1. Let L be a distributive latltice with 0,1 and let a, y e L. Let I he
a two clement chain {01}, If x £ y, then there exists a lattice homomoi} hism

@ L >3 such that @) 1, @(y) 0. The proof follows from the Sto
ne theorem ([3], Theorem 7.15).
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Let Lbethe 7 poproduct of the family (L,, p € P). The lattice operations

m L will be denoted by », Let @ |J Lp. A finite nonempty subset

pef’
X is <aid to be reduced if for every two distinct elements v, y € X holds.

itwe L,,y Lp p,reP, then p r. For every finite nonempty set X there
are unique reduced sets XA, AV such that AN - A(X?), VX VA(XY).
If X is civen, let X' {A(X N L) e Py}, where Py  {peP X NL,+ 0}
Then XA is the set of v e X' uch that if xeL,, there is no ye L, N X’
r p. The set XV is constructcd dually.

Since L isx a distributive lattice generated by @, cech element a of L can
be written (in a nonunique manner) as @ (VXX eJ), where .J is a finite
family of finite reduced subsets of Q. Conversely any such family yields an
clement (/X X e.J) of L.

Theorem 1. Let L be a distrib ttive lattice generated by the poset Q  |J L, .

pel

Then Lois the 7 — poproduct of the L), p e P if and only if in L there holds
Lct Py, Py be finite subsels of I’. Let vy« Ly for i € P and y;€ L forj P
Then N i <\ yj implies that there is at lcast oxe pair 1, j (1 <)), i€ P,

h

el

Je Py such that v; < yj.

Proof. The part ,,only if”” of the theorcm has been proved in | 1], Lemma 1.9.
We shall prove the sufficiency ¢t the condition. Denote by L* the poproduct
ot L,. p P. We shall show L’ L. Let f be the identity mapping @ > L,
then there exists a homomorpl ism @ : L* — L extending f, hence for ¢ e
there holds @(9)  f(q)  ¢q. We shall show that @ is an isomorphism. @ maps
L* onto L, because L is generated by . To prove that @ is one-to-one it is
cnoueh to prove that a,be L’. @(a) £ OB) implies « < b. Tet a,be L*,

W(a) < db). The clements a, b could be written in the form a J(INX X e
J) b (/Z Z € K), where .7, Z are reduced subsets of @, hence @(X)

N.dZ) Z. Because @ is a homomorphism, for every pair X, Z we have

X < @) £ b)) £ VZ in L, therefore according to the assumption there
are € X, 2 Z such that x £ 2z Then in L* there holds AX £ v £ £ VZ
for every pair X. Z. Therefore ¢ < b in L*. The theorem is proved.

Definition 1. A finite family J of finite reduced subsets of Q is said to be a
representation of a € Loif a \V(\X|X € J). The family J is suid to be a
representation of wel if a — (VX XelJ).

Given a » representation J of an element ¢ € L we can write, using the
distributivity, «  V(AF ()1 e C(J])), where C(J) denotes the set of
choice functions on .J, that is, the set of functions ¥ :.J — U .J such that
F(X)e X for each XeJ. Henee « V(AT FeC())) holds. Since
the et C'(J) i~ finite we can cor sider a subset Crea(/) = C(J), the set of re-
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duced choice functions such that the set { A (F(J)M)[F € Crea(J)} is the sct of
all maximal elements of the set { A (£'(J)N)| I € C(J)}. Thusa — /(" (F(J)N) F

€ (rea(J)). The family {F(J)NF € Crea(J)} is said to be a normal — — repic-
sentation of a. A normal — — representation is defined dually.

Ilach element @ € L has a normal v — representation and a normal
representation. From the definition it follows that if J; is a normal  — re-

presentation of a, a = V(AX|X €J1), then X, X' € J; implies X X

Lemma 2. Let L be the distributive poproduct of the distributive lattices (L,
peP). If X. Y are finite reduced subsets of @, then NX < / Y (i L if and only
if for each ye Y there is an v € X such that x < y.

Proof. The sufficiency is clear and the necessity follows from Theorem 1.
Let ye Y, then AX = 9, X is reduced. so there exists + € X such that « < 4.

Theorem 2. Let L be the distributive poproduct of the distributive lattices
(Ly,peP). Let a,be L and let J1 be «  — representation of a and J> a normal
V' — representation of b. Then a« = b if and only if the followiny condition
hold=:

For each X € Jy there is a Y €Jy such that NX < / Y, that is. for cuch
y e Y there is an v € X such that x < y.

Corollary. The normal — — representation of any element of L ix wniquecly
defined.

Proof of Theorem 2. The sufficiency is clear. Now let «, be L. a £ 1.
7 VINXIX edy), b — V(AY|Y €Js). Because J, is a normal  — repre
scntation, it has arised from some / — representation A : b ( ZZ NK).
where K is such that Js = {F(K)MF € Crea(K)} holds. Thus \, (# X X e.Jy)
< \(VZ|Z € K). It follows that for every pair X e J;, Zc K holds X
< J(ANXIXedy) £ N(VZZeK) £ VZ. Let XeJy. By Theorem 1 there
are v € X and G(Z) €Z such that » < G(Z). Then ANX £ » £ ((Z). There-
fore for each Z € K there is ((Z) € Z such that A X < ((Z). 1t follows 7 X <
< \N(G(Z)Z e K) = N(G(K)N). By the definition of Crea(K) there is F e ('y
(K) such that A(G(K)A) = AF(K)N). Therefore to each X €./; there exists
Y F(K)ed: so that / X £ A Y. The rest of the condition follows by
Lemma 2. Thus the theorem is proved.

=
=

Proof of corollary. Let ¢« — \V(ANX XeJy) — /(/ Y Y ey anl let
J1, JJ2 be normal  — representations. Let X €./1. Then there exists Y €./,
such that / X £ , Y. Similarly there is X’'e.J; such that < X
Then AX £ /Y £ p X, but because of the normality of J; we have X

X’ = Y. SNimilar arguments prove that to every J = 1, there i~ X ./,
such that X Y. Thus J, — Js.



2. The chain conditions for regular cardinals

Let 1t be an infinite cardinal. A poset P is said to satisfy the strong (weak)
choin condition for m, if every chain in £ has cardirality < (=m). It will
be denoted R(m) (R'(m)).

Theorem 3. Lct L be the distributive poproduct of the distributive lattices L,,,
p  DP. Let mt be a regqular cardir al, wmt > No. Then there holds: L obeys R(m)
if and only if P and each Ly(p € P) obey R(m). L obeys R(No) if and only if P
is finitc and each L, (p € P) obey R(No), t.e. > and each L, (p € P) are finite.

Corollary 1. Let m be an infinite cardinal. Then there holds: L obeys R'(m)
if and only if P and each L, pe P) obey R'(m).
(orollary 1 immediately follows from Theorem 3, because ' > No is

reculir for m’ the succesor of 1.

Corollary 2. Let mt be @ regula cardinal, m > 8o. Then the following holds:
The distributive free product of the distributive lattices L;, 1 €I obeys R(m)
if arvd only if each L; (i € I) obeys R(m).

C'orollary 2 implies Theorem 4 from [5].

Proof of the Theorem 3.

1) the necessity is clear: if we take the ordinal sum of n lattices, n = m and
it P is a chain with P 1, or the free product of lattices at least one of
which does not obey R(m), then in L, R(m) fails to hold.

2) the sufficiency: Throughout the proof, the following lemma proved in
|3] and [4] will be useful:

Lemma 3. Let A be a chain ard let . # = (H;|A € A) be a family of finite sets.
For each pair 2, w such that . < u let there be a relation @, < H, x Hy awith
the domain (codomain) H, satisfying the two conditions:

(i) D, 18 equality for all 7. € A,
(i) if 2 = p = v, then @y . Dy < Dy,
Then there is a family (x; € H{Z € A) such that (xy oy € oy if 2= 1.

Now let L be the distributive poproduct of the distributive lattices L,
(p = P) with 0, 1. Let P obey R(m) and let each L, (p € P) obey R(m) for
m > No and regular.

If Jisa — representation of « € L, we call J the runk of the representation
and 'ZX the length of the rejresentation (a = V(A XX €J)).

Yes

It 71 < L, then a  — representation of I1, J(H), is a family (J,« € H),
wheie J, is a  — representation of «. 1f »n is an integer and the rank of J,
is n for each a € H, then J(H) is aid to have the rank n. A — representation
J(IT) of H is said to be special 1f for each a. b e H, the following conditions
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hold (J, e JJ(I1) and Jy e J(II) are  — representations of « and h. respect
vely):

() if Ja I, then &, ye Xy, {Xy} — Jo and @ <y imply that + y: it
Jo>-1, then X, YeJ, and #X £ AY imply that X Y

2yit g, — 1, Jp — 1, then @ < b imply that for each ye Y, {¥} .J; there
isan o€ X, {X} J, such that © £ y;
if Jo. > lor.j,>1,then ¢ £ b imply that for cach X €./, there is ¥ .J,
such that \X £ Y.

Lach H < L has a special ~— representation: by Theorem 2 a normal
representation is special. A special representation need not be normal as
the example in [6] shows.

We shall show that if ¢ is a chain in L. then ¢ << m. Let .J(C) be a special

representation of C. For each n < §o let ¢, {« " rank.J, n!

Then J(C',) — (Jq,a e () is a special 7 — representation of (', of rank »
We <hall show by induction according to a rank of the representation that
O <M.

Lemma 4. Let C'he a chain in L that has a special — — represcntation of ranl
Then (<.

Proof. Let J(U') be a special v representation of €' of rank 1. For cach
intecer n let € = {a e C |length.J, n}. Then J(CW) (Jyae Clny i<
a special representation of €@ of length n. We shall show by induction

according to the length of the representation that Cuy < m.

if 1, then CD is a chain in Q, so OO < m.m  n.

Now suppose that for all k < n there is C% < m and (' = m.

ForaeCn, J, ={X,},a ANX,. We use Lemma 3 for /A KGN

~Xge @ 2b Dy =, yplee XNy, ye Xy, v £ y}. Then there is a family
W (wq2a € Xy, aeC)such that w4, xp) € Dy if @ < b, Since ¥ is a sHe
cial  — representation of rank 1 and length 1 of a chain in L, y < . Be
cause m is regular, there is a subset (™" < C'Ww such that Coo’ =z m and
if a, be Cw’" and &y, xp € ¥, then &y — xp. The family @ ({Xq gt}
e 0"y has cardinality = m. & is a representation of rank 1, length » |
of some subset (¢ < L. It is a special representation — condition (1) followx
from the speciality of J(C)) and condition (2) as well: let « < b, a. be ("t»
and y € X, — {xp}. Then there is x € X, such that + < y. If « .. then
xp = wy = &, hence xp <y and the speciality of J(Cw)), ye (' implies
2y — y. Thus © + 2, and ¢ is a special representation of the chain . Thu-
(! < m, which is a contradiction. Therefore Ct) < m. Since nm - Ny and

regular, there holds ¢ - Z Coy < m. Lemma 4 is proved.
n No
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Lemima 5. Let (" he a chain in L that has « spe‘cirzl . — representalion of
ranl w. Then ¢ < m.

Proof. Let » be the smallest integer such that there is a chain € < L
where (" > m and € has a spucial representation J(C') of rank n. Note
that by Lemma 4 # > 1. W use Lemma 3 for 4 C, H, Jo, a < b
by, {NXN,Y Xed,,YcJ, AX £ AY). Then there is a family y

(Ne Xo S, JoeJ(@), ae ') such that AX, £ AX,, whenever « £ 0
Sinee y is a special - — repres ntation of rank 1 of a chain in L, by lemma +
7 m. Nince m is regular, thore is a subset (" < ' such that ¢" = m and
ifa.be and Xy, Xpey, thon X,  X,. The family # (Ja {Xgja

(") has a cardinality = m. / is a representation of rank n 1 of
sume subset H < L. 1t is a spceial representation, condition (1) follows {rom
the speciality of J(C') and condition (2) in the first case from Lemma 2 and
in the sccond one as follows: let a < b, @, b’ and X €.J, — {X,}. Then
there i« Y e, such that AX £ AY. If ¥ - X,, then X, X, Y,
hanee Xy Y, AN £ AY — A\ X, and the speciality of J(C), a € (" implies
AY Ny. Thus Y eJ, — {Xp} wd so I is a chain with a special — — repre-
sentation  # . However, rank % n 1 and 7 = m, contradictine the
minimality of ». Lemma 5 is proved.

Now let (" be a chain in L that has a special / - vepresentation C. Then
(' U C.. where €, {a € C'rank .J, n}. 1t was shown that (v, nt.

Ny
Ninee m No and regular, ¢! Z Cn < nt holds. The first part of theorem 3
No
18 proved.

To prove the sccond part of the theorem, we note that an infinite distri
butive lattice contains an infinite chain. Let P be finite and each L, (p )
contain only finite chains, then each L, is finite, @ — |J L, is a finite set

el”
and J, < 220, C'onversely, if sowr ¢ L, contain an infirite (;hain or I” is infinite.
then @ is infinite and L < € is infinite. Theorem 3 s proved.
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