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PRODUCTS OI' VECTOR MEASURES

CHARLES SWARTZ
1. Introduction

11 [4], [3] and [8] M. Duchon and I. Kluvanek have discussed the notion
of tle product of two vector measures where the product in each cise is
tc ket to be the tensor product. In [9] and [25] the product of vector measures
i~ al~o considered but in these papers the product is taken to be the inner
product in a Hilbert space; a soraew hat similar situation is considered in [28].
A hotion of the product of operator-valued measures is considered in [15]
anl [19]. In this paper we consider a general notion of the product of two
v tor measures and attempt to give conditions which will furnish positive
1c~1lts of the nature of those given by Duchon and Kluvanek in [S] for
the «-tensor product.

Let Xy, Xo and Z be locally convex Hausdorft spaces and let 6 : Xy X Xo —

-Z be a separately continuous bilinear map. (The bilinearity assumption
is made for convenience; b could also be taken to be sesquilinear, {9], [25].)
Let Sp, S2 be non-void sets and let 27 and X5 (71 and 72) be o-algebras
(algebras) of subsets of Si and 82 respectively. For any family T of subsets
of @ non-void set, let a a(T) denote the algebra generated by T and let ¢(T)
denote the o-algebra generated by .

If i oZi > Xy (or ji: 2y — X;) is a finitely additive set function, the
product, w1 X p2, of jqu and pe (with respect to b) is defined on /1 X o7
(or X1 X Xo) by p1 X pe(Ar X A2) - b(ra(Aq), pe(As)), A; € /i (or d; 7 X5).

If Hea(e/y » &Z2) (or a(X) x X)), then H U 1. x B; where {d; x B}
i1

are pairwise disjoint with 4; e .7; and B, € s/s (or d; €2 and B; € X5)

([16], 33. E), and we may extend w1 ¥ pi2 to a(e/y X Z2) by setting i X

> ue(H) Z b(un(Ay), p2(B;)). Then g X pe is a finitely additive Z-valued
!

set function on a(eZ1 X 7)) (or a(X; < 29)).

The various types of products of vector measures ireated in the literature
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fit into the abstract setup above. For example. in [8] Z X; 7. X2 wd
the bilinear map is that given by the tensor product while in [4] Zis X1 % ; .\>
In [9] and [25], X1 X2 M, where I7 is a Hilbert space, Z is the scalu
ficld, an the map b is taken to be the inner product on I I (if H is complex.
b 1s of course sesquilinear rather than bilinear, but this annoyvance causes
no real difficulties). Also in [19], 1. Kluvanck and M. Kovarikova con
sider the product of spectral measures: in [19] X is a B-space and X7 X

— Z  B(X). where B(X) denotes the B-space of bounded linear operators
on X, and b(T,8) T8 is the composition of 7' and S. A similar product
is utilized in [15].

At this point there are several natural questions which arise relative o

111~ . For example, if ;1 X — X, is countably additive. is 43 > 2 count
ably additive on a(X) x Yo) and if this is the case, does 11 X pe have a count
ably additive extension to o(X; x X»)? The examples presented in [9] and
25] show that even in the case when Xy — Xo [, a Hilbert space, and #
is the inner product, ;n > pe will not in general be countably additive on
a(Xy < X). A similar phenomena occurs when Z X 72X (18]). On
the other hand, when Z — X; ¢, No. j x pe will always have a countab \
additive extension to o(X7 x Xv), |8]. It should also be pointed out that i
cither u1 or pe has bounded variation, then u; X pe always has a countab
additive extension to o(21 X %) regardless of the nature of b, [5]. We con-idel
the question of the countable additivity of w1 X w2 in section 2 and prescnt
some fairly general assumptions which guarantee countable additivity on
a(Xy  X5) and the existence of a countably additive extension to o(X7 X X»)
In section 3 we consider the case where each u; : .o/; — X is strongly boundcd
([2]) and give conditions that insure that ue is  stronely
bounded. In section 4 we consider the question of regularity of the product
of two regular vector measures. Finally in the concluding section 5 we gnve
some indication of the necessity of the assumptions made in the precedit ¢
three sections.

Before proceeding to the material concerning products of vector measures.
we present a lemma concerning scalar measures which will be needed later
Two parts of this lemma appear in [8], but we give entirely different proofs
here which present (hopefully) interesting applications of the Dunford-Pettix
property ([14]; [11], 9.4). In the lemma and throughout the remainder ot
thepaper, we use the notation and terminology of [10].

Lemma 1.

a) If I'; < ca(Xy) 1s conditionally weakly compact (¢ 1, 2), then Iy X I
Y P
= {1 X pe:p; €Iy} is conditionally weakly compact in ca(a(Zy X 1b)).
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(b) If I't < ba(</;) is conditionally weakly compact (¢ - 1,2), then 'y > I
ts condilionally weakly compact in ba(a(s/1 X £75)).

(¢) Let 2; be a positive finite measure on X (v = 1, 2). If [y < L1(1;) 1is condi-
tionally weakly compac{ lhen I ® I's is conditionally weakly compact vn L1 (4 X
Z2), whao if fie LY, fi ® fo: 81 X Sz — R is given by (s, t) - fi(s)fa(t)

() If Iy < ca(Xy) is uniformly absolutely continuous with respect to the positive

measure iy Cca(Xy), then I't ¥ I's < ca(o(Zy X X)) is uniformly absolutely
conlinuovs with respect to Ay X 72.

Proof: For (a), note the bilinear map (11, u2) =t X p2 from ca(Xy) x

(X)) = ca(e(Xy x o)) is continuous since v(a X p2) (S1 > Sa)

v(11) (S1) e(p2) (S2) ([10], T11. 1 . 11). The result now follows from [14], Pro
position 1.2.2 or [11], 9.4.3 (¢) wd the Smulian—Eberlein Theorem ([10],
V. 6.1) since ca(X;) has the Dunford—Pettis property ([14], 1.4 or [11], 9.4.6
().

(‘ondition (b) can be establish>d exactly as part (a) above (recalling 1V.
9.11 of {10]) once the continuity of the bilinear map (u1, st2) = p1 X w2 is
established. Theorem TIT. 11.11 of |10] cannot be used directly here since
the set functions involved are only finitely additive (the proof of this result

n
[10] uses the Radon—Nikodym Theorem). Suppose E  |J d; x B;

!
belongs to a(.«/1 > /2) with the union disjoint and also {d}| pairwise disjoint.
n

Then u X ‘llg(E)‘ < Z‘(/lg) (Sg) Z ‘[ul(:li)l < U(/h) (Sl) 1)1/!2) (Sz) By [10], III.
i1

1.5, v(nr X p2) (St X S2) < 4o(ur) (S1) v(ue2) (S2) which implies that the bi-
linear map above is continuous.

Part (c) is established exactly as part (a) using the fact that L1(1;) has
the Dunford—Pettis property ([11], 9.4.4).

, dye
For (d), let I

1" :/161‘1-} < LY(%). By [10], LV. 8.11, I/ is condi-
asq

tionally weakly compact in Ll(4;). By (c), I ® I'; is conditionally weakly
compact in LY(4 X A2). The result now follows from [10], IV. 8.11 and [17],
21.29,

emark 2. In [8], part (c) is established first and then (a) follows as a co-
rollary. The result in (c¢) is also an easy consequence of part (a) and Theorem
1V. 9.2 of [10]. Part (b) does not appear in [8], and the proof of part (a) pre-
<ented in [8] cannot be adapted to derive (b) since the countable additivity
of the measures in question is used at several points. It may be possible to
derive (b) from (a) by using a ,,Stonespace technique®, [10], IV. 9.10.



2. Countable Additivity

In this section we consider the question of countable additivity for the
product i1 X sz of two vector measures. The basic assumption made on
the map b is essentially that it be an integral-type bilinear map. This appcars
to be the difference between the results for the inductive and projective tensot
product as given in [8] and [4]. Recall a scalarvalued bilinear map fon A,

X is an integral map iff there exist weak™*-closed equicontinuous subs t~
A; < X and a regular probability measure m on the Borel scts of .! A
(equipped with the weak™ topologies) such that

(1) f(x’ ?/) _[AA\'AQ ‘7“'17'2 /\?/'=?/> dﬁl( ',sy')

(see [29], §49 and [27], §7 and 16 for the properties of intceral mavs). The
space of all scalar-valued integral maps on X} < X is denoted by JIX;, X» ¢
J(X1, Xo) is the dual of X1 ®. X2 ([29], §49 and [27], §7). Throuzhout this
paper we consider the following two fundamental assumptions on the ba-
linear map b:X; X Xo—2:

() ='b is an integral bilinear form for each <" < Z’

(B) for each equicontinuous subset D < Z', {z'b:z" D'} 15 an equicorti-
nuous subset of J(X1, Xo) (considered as the dual of X7 @, \o).

Of course, when Z is the scalar field, (x) and () are equivalent. Examples
are presented following Theorem 3 illustrating eircumstances when (x) and ()
are valid

Theorem 3. Let ji; : X, — X; be countably additive (1 1, 2).
(a) If condition () is satisfied, then 11

12 is weakly countably additire on
a(Xy x o).

(b) If condition (B) is satisfied, then n1 « psiscountably additive on a(Xy v L»)
and has a countably additive extension from (X1 < o) to 7, the completion
of Z.

Proof: Let z’eZ and I —JE; <« F;ca(Xy < Y5) with the union
i1

disjoint and E; € X1, F, € Yo, Since z'b ix integral, there exist weak*-clo-ed
. . -/ o1

equicontinuous subsets A, < X' and a regular probability measure m(  m:)

on A; X As such that 2'b(r, y) = 4,

Lovee Ly dim(,y) for o Xu,
g € Xo. Hence,

(2) 2~ (Il E [

(B -y, ma(FY dmel ) <

b

< fa > v ) (Enetn ws) (F)) din(a’, 9"y <

1
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< (o @ ) X oy ee) (H) dm (2", 9y") <
< osup o w(@a) X o ue) (Hymy (A x As).

OO L A
Now v edi} and {y'uy: y' € Ay} are conditionally weakly compact
in ca(Xh) and ca(Xs) ([30], Corollwy of Theorem 2) so @) 12’ e 41 It
and {v(y'pe) 1y € A2} Iy arve also conditionally weakly compact ([10],
IV s 10). By Lemma 1, Iy x I s conditionally weakly compact in ca(o(X; X
X X)), and therefore It x I'y is uniformly countably additive ([10], IV
9.1). If {1,} is a sequence in a(X; x X») which decreases to @, then (2) implies
2 X pa(y)) > 0so that (2, 11 X ue(.)) is countably additive on a(X; X
~ 22). Hence p1 X iz is weakly countably additive on a(li X X2) and (a)
follows.

To establish (b), let p be a continuous semi-norm on Z. Set U — {ze€Z
p(z) < 1) and let U be the polar of U in Z’. Since U° is equicontinuous,
Zb:2 e U } is equicontinuous in J(Xp, Xso) so there exist weak*-closed
cquicontinuous sets 4; < X and a bounded family of positive regular measures
on: 2 e U} on Ap X dg such that 2'0(x,y) [ .4, <&, 2> <yy dmy
(v, y) for v e N1, y e Xo (|29], p. 502 and [27], remark following 7.11). The

estimate in equation (2) becomes z', X we(H)y < M sup  w(@'py) X
@ uedr Ae
> v(y'12) (1), where J is the bound for {m, :2" e U } and 2" € U . Hence

(3)  plur X g2y < M sup  v(& ) ¥ vy ue) (H)
Gl Ay s

for 1 € a(X; x X3). Now as in the first part of the proof Iy {w(a’pi) 1 2" € A}
is conditionally weakly compact so there exists a positive measure Z; € ca(X;)
such that I"; is uniformly absolutely continuous with respect to 2; ([10], IV.
9.2). By Lemma 1, It X 1% is uniformly absolutely continuous with respect
to 71 N A2 €ca(o(X1 N 2y)). Thus, equation (3) and Corollary 1 of [3] imply
that v1 X p2 has a countably additive extension from (27 X 2%) to 7., and (b)
is established.

Remark 4. Note equation (2) y'elds Axiom A of Duchon ([7]), and equation
(3) is similar to condition (B) of [19]. In part (a) it can also be asserted that
fi1 X n2 has a unique extension from o(Xy ¥ 2%) to 2" which is countably
additive with respect to the topology o(Z"’, Z") (see [21] and also [7], Th. 1).
In part (b) if Z is sequentially complete, the extension of j11 X w2 will actually
have values in Z (see [3]).

Note also the equality in (1) is not actually required but only the inequality
S, y) < Lava, K252y o', y>l dm(a’, y'); such bilinear maps could be consi-
dered to be the bilinear analogue of the quasi-integral operators of [23].
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We now present some examples illustrating conditions under which th
assumptions (x) and (f) hold.

Example 5. Take Z = X1 & Xa2. Then condition (f) is clearly satisf ed
so part (b) of Theorem 3 holds. This gives the result of M. Duchon and
I. Kluvanek ([8], Theorem) concerning the existence of a countably addit ve
exatension of g > pe from o(27 X X») into Z.

Example 6. Let Z be sequentially complete. Suppose o, € X is weak' -
closed and equicontinuous and let m be a Z-valued regular countably dditive
vector measure defined on the Borel sets of .17 < ds. Define b : Xy X -7
by b(r, y) — [, 22> ' y> dm(2’, y'). where the integral is taken in
the <ense of |20]. (Note the integral exists by Theorem 2.2 of [20].) That
condition (B) is satisfied follows from Tweddle [30] and the characterization
of the equicontinuous subsets of J (X7, X2) noted in the proof of Theorem 3 b .
Bilinear maps of this type furnish a vector generalization of the intecral
bilincar forms of Grothendicck.

Example 7. Let Z be sequentially complete. A special subclass of the
maps in Example 6 is given as follows. Let {14} €1, {¢;} and {f,} be ecui-
continuous sequences in X and X, respectively, and |z} be a bounded ~ t
in Z. Let b: Xy X Xo—Z be given by b(v.y) >t e, floy =z Such

"
bilinear maps furnish a vector generalization of nuclear bilinear forms ([24
7.4).

3. Strong Boundedness

In this scction we discuss the strong boundedness of the product of two
strongly bounded vector-valued set functions. Recall that if .~/ is an aleebra
of sets and if v : o7 —Z is finitely additive, then ;o is strongly bounded if
for cach continuous semi-norm p on Z there is a positive finitely additive ~ct

function 2 on .o/ such that lim p(u(4)) 0 (this is the locally convex gcne
21)-0
ralization of the notion of strong boundedness as discussed for B-spaces by

Brooks, [2]; see also [3], Theorem 1). The methods and results of this section
are (uite similar to those of section 2 so we only outline the proofs

Theorem 8. Let 11; 1 <7 — X be strongly bounded (i 1, 2). If condition (p)
is satisfied, then pui X pe is strongly bounded on a(.o/y X .o/3).
Proof: Let p be a continuous semi-norm on Z and set {2 p(®) "
hen U° is equicontinuous and with the notion as in the proof of part (b)
of Theorem 3 we obtain the inequality in (3). Since ;; is stronely bounded
there exists a positive 7; € ba(/;) (depending on A;) such that lim 2" (B)

J =

rl‘
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= 0 uniformly for 2" € A; ([29], Prop. 36.1). As in Theorem 3, It {v(x"p;) :
2" € A;} is conditionally weakly compact in ba(<Z;) ([10], IV. 9.12) and by
Lemma 1, I X I% is conditionally weakly compact in ba(a(=7/y X o/3)).
By 1V. 9.12 of [10], there exists a positive v € ba(a(s71 X .©/2)) such that

lim (/) X o(y'p2) (H) 0 wmiformly for o’ € 41. ¥’ € A2. Thus equation
1(H —0

(3), which still holds in this situation, implies that jin X w2 is strongly bounded
on a(o/1 X ).

The examples presented following Theorem 3 are likewise applicable to
the situation in Theorem 8. In particular, Example 5 shows that Theorem 8
is applicable to the ¢-product of two strongly bounded set functions.

4. Regularity

In this section we consider the regularity of the product of two regular
vector measures. Because of the many and varied notions of regularity (see,
for example, [3]), we will not attempt to discuss all of the possible types of
recularity in detail or even consider the difficulties which arise between
using Baire and Borel sets ([1], Lemma 57.2 and Exercise 57.16). We consider
two different situations in Theorems 9 and 11: after seeing the basic ideas
employed the reader can supply the details pertaining to the various types
of regularity, etc.

Let S be a locally compact Hausdorft space and let 27 be a ring of subsets
of S. A finitely additive set function p : o/ — Z is regular if for each A4 € .7
and each neighborhood of zero in Z, U, there exist a compact K € -/, K < A,
and an open G €./, G =2 4, such that whenever De.«/ and D = (¢ K,
(D) e U. (This is regularity of type 21 in [3]; see also [22].)

In order to avoid rephrasing the previous material for rings and o-rings,
we assume that each S; is o-compact ([10], X1. 3). Let &; denote either the
o algebra of Baire sets or Borel sets of S;. Again the methods employed in
this section are similar to those used in Theorem 3 so we do not write out
complete details.

Theorem 9. Lel ;1 AHi — X be regular. If condition (f) is salisfied, then
w2 s reqular on a(#1 X A2) and has a reqular extension to o(Hr X -#>).

Proof: Let U7 be a closed absolutely convex neighborhood of 0 in Z and
let p be the Minkowski functional of (7. With notation as in the proof of
Theorem 3(b), we again obtain equation (3). Now each p; is regular so there
exists a positive regular measure A; € rea(%;) such that Iy — {v(@'p;) s 2’ € Ay}
is uniformly absolutely continuous with respect to A; ([22]). By Lemma 1,
It % I's is uniformly absolutely continuous with respect to 4, X 42, and
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1 <« Joisrecular on o(#1  A9) ([1], Theorems 56.3, 60.1 and Exercise 62.10
Thus, equation (3) implies pn g2 is regular on (41 X Hg) and also tlat
(1 12 has a regular extension to (41 < A2) ([22], Theorem 3).

Remark 10. In particular, Theorem 9 contains Theorem 1 of [6], and the
technique used in the proof of Theorem 3 of [6] can be used to show that
if each ;-; 1s a regular Borel measure, then yi; < p2 can be extended to are_ulu
Borel measure on 81 X Ss.

If the weak topology on a locally convex space Z is used and a ve tor
measure . with values in Z is regular with respect to the weak topoloav.
we say that u is weakly regular. Using the methods of part (a) of Theorerr 3
we can obtain

Theorem. 11. Let yi; : Ay — X be weally regular. If condition (o) is sat’sf d
then pi1 X no is weakly reqular on a(#1 X He).

Proof: As in the proof of part (a) of Theorem 3, we obtain cquation 2
and as above this equation yields the desired conclusion.

3. Necessity

In this concluding section we make son e remarks pertaining to the neces-ity
of the assumptions ((«) and (f)) made in the previous theorems. Takin: into
consideration the counter-examples presented in [9] and [25], it is certunly
desirable that some necessary conditions for the existence of product mcvsures
be given. We consider the Hilbert space situation as in [9] and [25] Le+t //
be a real Hilbert space and 4 : H — I be a bounded linear operator. Define
a bilinear map b on H x H by b(x,y) (v, dy), where (,) is the inner pro
duct on H. According to Theorem 3 if 4 is an integral form, the product of
any two IHH-valued vector measures has a countably additive extensio1 to
the ¢-algebra generated by the measurable rectangles. Recall that & i~ an
integral form iff the operator 4 is a nuclear operator ([29], 49.6). These rem 1ks
lead to the following conjecture:

Conjecture 12. Suppose b has the property that the product of any two
H-valued vector measures has a countably additive extension to the o-al_ebra
generated by the measurable rectangles (as in the conclusion of Theorem 3 b))
Then A is a nuclear operator.

We have not been successful in establishing this conjecture. We do however
present an example which illustrates that the operator 4 must indeed sati-fyv
some restrictive conditions if b satisfies the condition set forth in Conjectur> 12

Let 4 : 1212 be a compact operator with spectral representation A v
= > Ax(e, 0k)0k, where (A} €co, 2p = Apar, and Oop  {Org) €8 (12]

7
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19.3; [29], 45: the sequence {0x} i> used only for convencience, any complete
o1thonormal sequence will do). To show that .1 is nuclear amounts to showing
that {£;] e 11 ([12], 21.2; [29], 48). We have not been successful in establishing
1135 fact (which would essentially prove the conjectare for compact opera-
tors). but we do show that {1;] €1” for everv p > 2 whenever b satisfics
the conditions of the conjectur>. This at least shows that the operator 4
must satisfy some fairly stringent conditions if the condition of the conjecture
is satisfied ([24], 8.3).

]
Let A; be the matrix [ ] and for each n > 1, let 4, be the 217 . 2

1
matrix A,  [dy], where dyp= A = oo = —ds = Ay 1. Let B the
unitary operator on {2 defined to be the direct sum of {27724 17 as in [13].
and let [b;] be the matrix of B with respect to {d;}.

For »n > 1, define @x, — {a,,j}; ;€L by ag; — 0 for 0 < j < 20201 — 1),
aj; 1 for 20 —1<j <22 —1), and ap; =0 for j> 2(2# — 1). Tor
1 <.+ < = define a sequence {{,} (depending on r) belonging to 12 by {t;}
N2 o2, (Note Xtz — X (2/21)) < oc.) The series Xt;0; and X ¢;B9,

—

arc unconditionally convergent in 12 so we may define two [2-valued measures
s and » on the o-algebra ./ of all subsets of the positive integers by u({n})
taBo, and v({n}) — tz0,. If the product measure u X v (with respect to b)
has a (finite) countably additive extension to the c-algebra generated by
< then S (udnd), Av({m}) = > Aubudn(Bon, 0n) = > Zntwbaban <

"ot o 1yt

i w2 0
<. . However Z Aodmtnbnm]| == Z 2112 1) z A > z Aww 2032 0 For
nan no 1 J o2n-1 n1
1 <1 <32, we have 1/(3/2—7r) > 1 (recall r > 1 so {t;} €1?) which
oo ee)
implies > 207,120 < 0. Hence > 4,]' 321 < ([26], 3.27).
v 1 oL

That is, {4;} belongs to 1 @2 for 1 <r < 3/2. But 1/(3/)2 —r)—2 as
r— 1 so that {2;} € [» for each p > 2.

This example falls far short of establishing the conjecture (even for compact
operators), but even this example does show that the operator .4 must satisfy
<some restrictions in order to fulfill the hypothesis of the conjecture ([24],
S.3). If the conjecture can be established as stated, this would show that
the theorems of sections 2, 3 and 4 are essentially the best general results
that can be expected.
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