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THE RECONSTRUCTION OF A CONNECTED GRAPH
FROM ITS SPANNING TREES

JIRT SEDLACEK

Thouehout this paper a graph is to be undeistood as an u directed geraph
without loops and multiple edges. Following the well-known Kelly-Ulam
conjecture (see [4] and [8]) every graph @ having at least three vertices is
uniquely reconstructalble from its subgraphs ¥ —ux where x passes through
all the vertices of the graph @. There exist a number of papers proving the
Kelly Ulam conjecture for special classes of finite graphs. J. Fisher [1]
has proved that the conjecture is not valid for infinite graphs and has so
eiven a counterexample to the question raised by F. Harary [3]. In this
paper we shall deal with a connected graph and all its spanning trees. By
A spanning tree 7 of a connected graph @ we understand the maximum tree
contained in @ as a subgraph In bibliography there already exist references
dealing with the structures of the spanning trees of a given graph.So e.g.
B. Zelinka [9] has paid attention to a finite connected graph whose all
spanning trees are mutually isomorphic and has described all the graphs
having this property. The investigation of a connected finite graph whose
no two spanning trees are mutually isomorphic would represent a similar
problem. It can be easily proved that such a graph exists even if in addition
we require for it to have a given number m of the spanning trees (m —~ 2).
However in this paper we will be concerned with another question resembling
the Kelly-Ulam conjecture — namely with the problem whether a graph
is uniquely determined by the structure of all its spanning trees. In order
to make the explanation concise we shall say that a (finite) tree is of the snake
type if it has two vertices of degree 1. Moreover, we will call a tree a Y -graph
if it has three vertices of degree 1 (see [7], page 25). If we denote u the vertex
of degree 3 and v, vz, and vz the vertices of degree 1 in a given Y-graph
we shall say that this graph is of the type (d1, dz, d3), provided d; is the distance
of w from v; in the usual metiic (i = 1, 2, 3).

We shall say that a connected graph % is uniquely reconstructable from
all its spanning trees if the following property is true:

P. Let @ be a connected graph with the same numboer of vertices as 4. Let
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M — {2} be an ordered set of all spanning trees of the graph @ and J/*
{77} an ordered set of all spanning trees of the graph @*. Morcover
let |M = |M* and .#; be isomorphic with .7 ¥ for every i. Then % and
%* are isomorphic.

It is trivial to show that each tree and cach circuit have the property .
Unlike the Kelly-Ulam conjecture a finite graph can be found that is not uni-
quely reconstructable from all its spanning trees. An example ix given in
I'ig. 1. Graph %, plotted on the left-hand side has eight spanning trees, ot
which two are of the snake type and the remaining ones are 1 -graphs: two
spanning trees of the type (1, 1, 6), two of the type (1, 2, 5) and two of the
type (1, 3,4). The graph &7 plotted on the right-hand side also has eicht
spanuing trees isomorphic in turn with those described above. And yet %,
and %y are not isomorphic. It can also be easily seen that @, and % are
(with respect to the isomorphism) the sole two graphs determined by the

structure of the particular eight trees.

() =0AN

Fig. 1

An example not having the property P can be found also among infinite
connected graphs. Let us choose the complete bipartite graph 2.8y and
prove that it is not uniquely reconstructable in the sense explained above.
g 2. No , whose vertices helong to two

Let us consider thus the graph
{u, ¢} and let w he

classes 4, B where |4 2, |B — No. Let us put A
another vertex not belonging to A U B. Let us choose as @*the graph arising
from % by completing it with the vertex w and the edee 2. Obviously %
and @* are not isomorphic.

Cach of the graphs @. @* has an uncountable number of the spanning
trees and [/ [J* . Let us order the spanning trees of the craph % anl
also the spanning trees of the graph @% and prove that two corresponding
spanning trees are isomorphic. The spanning trees of the eraph @ can be
split into three types. The first tyvpe is such that either « or ¢ is an end-vertex
of a spanning trce. The number of these spanning trees i~ countable The
second type is such that cither v or ¢ i~ of a finite degree >1 in the civer
spanning t ee. Also heve i~ the number of the spaning trees countable At last
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the third ty pe isa spanning tree, in which both « and » have an infinite decree.
The number of the cases is uncountable here. The same classification can be
implemented for the spanning trees of the graph @* and hence there follows
what was to be proved.

The two presented examples concern the graphs lacking the property P
but from a few attempts we can see that finite connected graphs with a small
number of vertices are uniquely reconstructable. Another illustration of the
eraphs with the property P is provided by the results found in [6]: If a graph
(with at least eight vertices) lacks less than five edges in order to be a complete
eraph, then its structure is already determined by the number of its spanning
trees. Or, in other words the ,nearly* complete graphs have obviously
the property P.

In the remaining part of this paper we shall describe in two theorems classes
of finite connected graphs that are uniquely reconstructable from their spann-
ing trees.

Theorem 1. A complete bipartite graph 2, n) has the property P.

Proof. The statement is obvious for n 1, 2. Let therefore n > 3. A graph

2,0 hus altogether n2* 1 spanning trees separable into two groups. The
first oroup contains the spanning trees with diameters 3 and the spannin
trees of the second one have diameters 4. Let a connected graph @* on #
vertices have in turn-isomorphiec spanning trees with these trees. Let us ques-
tion if %* can contain a circuit of a length at least 6. If' yes, let ui, ua, ..., us,

denote in turn the vertices of this circuit. We can certainly construct
L spanning tree .7 containing five edges uyuz, uzus, ugia, waus, wsug. However
4 is then of diameter at least 5, which is impossible. Let us discuss therefore
the case that @* contains a pentagon Os with the vertices ui, us, us, us, ;.
From the existence of another vertex w not belonging to 05 and connected
with some u; (1 < ¢ <5) the existence of a spanning tree of a diameter at
icast 5 can be derived. Graph @* has therefore only 5 vertices and the cal-
culation shows possible numbers of 3, 11, 21, 24, 40, 45, 75 or 125 spanning
trees. Since none of these numbers is of the form n 22-1 we have 1o reject
the assumption that @* contains 0s. Let @* contain a quadrangle €4 with
the vertices uy, w2, us, ug in turn. Since n > 3, ¥* has to have at least one
more vertex v. Let it be next to the vertex u;. Then u. is not incident, except
wqity, wgiy (and possibly uzwa), with any other edge xus where x is outside 0.
If this case occurred, » could neither coincide with » (a pentagon!) nor be
¢ v (a walk of length 5). The same is valid for u,. The vertices outside Oy
are next either to u; or wz and each of them is either an end-vertex (let & be
their number) or the next one to wu; coincides with the next one to us (their
number would be n — k& — 2). If namely v were next to u; and w next to
us (v and w being outside @), then neither the edge vw would be possible

o
bel
)
)
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(a pentagon) nor the edges yz or yw could exist (y is a new verten). If (
did not contain any of the diagonals uyus, w0y, then @* would have so many
spanning trees as the complete bipartite graph 2, »n & has ic. (0 &
L2010 Hence & 0 and 9% is isomorphic with 2, n . Let ther~fore the
edge 1oy exist. Then n — & 2 must be zero (a pentagon) and 7% has either S
or 16 spanning trees. However, none of these numbers fits the form » 2
Let wouy do not exist and let the edge w13 be here. That leads us to the con
sideration: We are calculating the number (v & 2) 2% 4 1 of the spannine
trees of the gre ph %, But this number does not equal # 27 T and ~o the ¢
with the circui 0, is exhausted. 1t remains to discuss the case when th maa
mum cireuit in @* is a triangle Oz witl the vertices wy, wy, wg. Then e
block of the graph %* is either composed of one edec or of three edoes an |
the number of its spanning trees is thercefore 3« where 2 is the numbe: of
the triangles in @*. Nor has the equation » 2% ' 3% in this case a <olution
and so we rejeet also the last assumption.

We have thus reached the conclusion that @* 15 isomorphic with the e |

2, n and have proved that 2. % is uniquely reconstructable from its spann
ing trees.

In the second theorem we will deal with _.a wheel™™ (sce c.e. [7]). W an
denoting this graph as # , (n  3) and we are defining it as follows- W
arc choosing a circuit ¢, of a length n and a vertex w outside ¢, and we (e
connecting u with each vertex of the circuit ¢, by an edec.

The construction of the graph #7, is so described. We have proved in |5
the validity of

SR FAVENE BN AV
(1 k() ( e 2

By B

< =

for & (#7) denoting the number of the spanning trees of the craph 7 . We
shall need here also one auxiliary result of [5]. namely the eraph #  and
the formula
B4y —6 |5
20 |5
The eraph .7, is obtained from ¥, by removing one edee of th» ciicuit
o l o o
(¢,. It is convenient to extend the definition of .73 to » FLanl » 2
The graph 71 is the complete graph 2 and 75 is the complete eraph 3
Theorem 2. 4 graph ¥, has the property P.
Proof. We shall distinguish two cases. The first of them comptises » 6,
the second one is for n > 6.
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1) The most composite of the subcases n — 3,4, 5, and 6 is the last one.
Nince the three preceding ones are analogous, we will deal here only with
n 6.

\ccording to (1) the graph ¥ ¢ has 320 spanning trees, each of which is
‘somorphic with one of 11 possible trees on seven vertices (see IFFie. 2). Let

EAe
N
N2

g, 2

Y
o

o

=

the spanning trees of the graph #7¢ be ordered in an arbitrary manuer and
let ¢ be a connected graph on seven vertices having all its spanning trees
isomorphic in turn with the spanning trees of the graph #7. Let us consider
the spanning tree 71 of the graph @, which is isomorphic with the graph
in Fie. 2a, and let « denote the vertex of degree 6in 7"y Let v; (1 — 1, 2. ..., 6)
be the remaining vertices in .#"1. We are asking the question whether « can
b 1 cut vertex of the graph @. If yes, how many blocks are incident with
this cut vertex? We are rejecting immediately the cases of 6 and 5 blocks.
Let 4 blocks be the case. Then either of the patterns 2 + 2 4+ 1 <4 1 and
3 I -1 F 1 1is taken into account. The first pattern indicates that two
of' the blocks are triangles and the remaining two have one edge each. However,
then (%) 9 (a contradiction). The second pattern indicates that three
cdecs being incident with « belong to one block and each of the other blocks
has  ne edge. However, then k(%) << 16 (a contradiction). The case of three
blocks yields the patterns 2 4+ 2 -2 0or 34 2 { 1 or 4+ 1 + 1. We have
to reject the first pattern, for k(%) 27, the sccond onc results in contra-
diction £(%) << 16 . 3 and the third one in k(%) <! 53. The case of two blocks
can be described by the patterns 3 4+ 3, resp. 4 + 2, resp. 5 — 1. The first
one is rejected for k(%) << 16. 16 the second one yields a triangle as a block
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and therefore ends in a contradiction 3 £(%) and the third one will be describd
in more details. The block containing 5 edges wv; cannot be a complete eraph
for then (%) 6% If it lacked one edge in order to be complete,*) we would
cet (%) 864, If it lacked two edges, then k(%) 576 or 540 and if it lacked
three edges, then k(%) would be 360, 336, 324, 300 respectively; if it lacked
more edges than 3, £(%) would be less than 300. On the whole we sec that ¢
cannot be a cut vertex of the graph %.

We shall thus start to construct the graph % without cut veitices in such
a way that we shall successively complete the above mentioned tree 4
by edges. Without loss of generality we can take the edges vivs, vorg. Tt
us ask the question whether @ can then also have both cdges vovy, vors. It
ves, then v2vs does not exist, for @ would have at least two isomorphic spann
ing trees with the graph in Fig. 2a. The so far constructed graph has 16 spann
ing trees that are isomorphic with the graph in Fig. 2¢, whereas # ¢ has only
12 of them. There exists therefore at most one of the edges wvavy, tary. 20
let it be vy, Let us discuss the case that v; and v (apart from ) are then
connected with one additional common vertex (e.g. with v,). However. the
o far constructed graph has 10 spanning trees of the type d) in Fig. 2, whercas
#/ "¢ has only 6 of them. So we are proceeding to the case that vs and ve (apt
from ) are connected each with a different vertex, e.g. with the edees v5:,4.
vev1r. The so far constructed graph is not yet ¥, for it has only 10 spanninz
trees of the type b) in Fig. 2, whereas # s has 12 of them. We cannot dd
the edge vs06 to it, for the resulting graph would already have 18 spanuing
trees of the type ¢) in Fig. 2, whereas # ¢ has only 12 of them. The attachn ent
of the edge v3v; results in 14 spanning trees of the type ¢) instead of 12 spann
ing trees in the graph ¥ s and it follows from the symmetry that it is impossible
to attach »srg as well. Can we add v125? This attachment also results in 16
spanning trees of the type c) instead of the correct number 12. We are rejecting
vavs for the same reasons. Let us add wsry and we see that the originated
graph has 10 spanning trees of the type d), whereas # ¢ has 6 of them. We
cannot add wvsvy as well (symmetry). The last matter in this discussion i~
the attachment of vyvy. It would yield 11 spanning trees of the type d) instead
of those 6 in ¥/ '¢. So we are returning in our discussion to the graph that aro-e
by completing the spanning tree .#"; with the edges vive, vorz and we assume
that none of the edges vavy, wovs, vvs exists. Without loss of generality we
can suppose the edge vzvs. The vertex v; cannot be connected with vz. for
we would obtain the above rejected case by renumbering the vertices @,

*) We are using here the formulas derived in [6] and listed in a table on the page 222
The assumption in the quoted reference 1s > 8 but it is obvious that those entuies
of the table that are needed here are valid also for 0 6.
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Let us assume the first edge of the two symmetric cases vyv;, v1v5. The vertex
v can also be connected only with v; or v1. We see immediately that we have
to introduce both considered connecting edges and we thus obtain a graph
isomorphic with # 7s. And that concludes the case n = 6.

b) Let n — 7 and let & be a graph on (n -+ 1) vertices, the spanning trees
of which are isomorphic in turn with the spanning trees of the graph v~,.
There exists a vertex w of degree n in the graph @, for #”, has a spanning
tree with a vertex of degree n. Let us construct ¥--u and ask the question
whether there exists a vertex of degree at least 3 in this graph. If yes, let it
be denoted vy and let the three edges incident with it be viv2, vivs, vivs. With
recard to the assumption n > 7 there still exist the vertices vs, vs, v; in the
eraph @ u, each of which is connected in 4 by an edge with the vertex w.
In the graph % we can construct the spanning tree .%"» containing all the edges
ey, r1v2, v, V1, UVs, uvg, uv7. However, /s has two neighbouring vertices
i, 1, each of which is of a degree at least 4; therefore .7’ is not isomorphic
with any spanning tree of the graph ¥7,. That is a contradiction and so cach
vertex of the graph @ — wu is of degree 0,1 or 2. If ¥ — u were a disconnected
eraph, its components would have either one point each or they would be

eraphs of the snake type (with the lengths dy, da, ..., dy in turn) or circuits
(with the lengths Dy, Ds, ..., Dy in turn). Let us discuss here bricfly only

the ,.general” case when the two last mentioned component types of the
oraph ¥ — w exist (then r > 1, s > 1). Let a(n), resp. b(n) denote the right-
hand side**) of the equation (1), resp. (2).

Then we have

k@) — TJaD)TT b + 1).
1 Jj 1

We can readily find that

ﬁ bdj + 1) = b(r ++ > d&j) < alr + > dj).
j 1 , 1

Since

"—i-,zdj-f—zpi < n,
)1 i1

we obtain for the number (%) the following inequalities:

) The number a(i) was defined only for n > 3, but let us here oxtend (1) also to n

1]
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r 1

M%) “(Z Dia(r + > dy) < a(r + > d; Z D) < a(n

il J1 i i

-

That is a contradiction, for (%) «a(nr). The graph %  u is thereforc cou-
nected. Since (-7 ,) < k(¥ n), 9 — w is a circuit of leneth » and % i~ i~o-
morphic with ¥ °,. This completes the proof.
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