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M a t . Čas 24, 1974, N o 4, 337- 314 

THE RECONSTRUCTION OF A CONNECTED GRAPH 
FROM ITS SPANNING TREES 

J]RI SEDLACEK 

Th •ouuhout this paper a graph is to be undeistood as an u directed graph 
without loops and multiple edges. Following the well-known Kelly-Ulam 
conjecture (see [4] and [8]) every graph rS having at least three vertices is 
uniquely reconstructable from its subgraphs CS—x where x passes through 
all the vertices of the graph CS. There exist a number of papers proving the 
Kclh UIam conjecture for special classes of finite graphs. J . F i s h e r [1] 
has proved that the conjecture is not valid for infinite graphs and has so 
gi\cn a counterexample to the question raised by F. H a r a r y [3]. In this 
paper Ave shall deal with a connected graph and all its spanning trees. By 
T spanning tree Jf of a connected graph r& we understand the maximum tree 
contained in rS as a subgraph hi bibliography there already exist references 
dealing Avith the structures of the spanning trees of a given graph. So e.g. 
\\. Z e l i n k a [9] has paid attention to a finite connected graph whose all 
spanning trees are mutually isomorphic and has described all the graphs 
having this property. The investigation of a connected finite graph whose 
no two spanning trees are mutually isomorphic would represent a similar 
problem. Jt can be easily proved that such a graph exists even if in addition 
A\C require for it to have a given number m of the spanning trees (m -*- 2). 
However in this paper Ave will be concerned with another question resembling 
the Kelly-Ulam conjecture - namely Avith the problem whether a graph 
is uniquely determined by the structure of all its spanning trees. In order 
to make the explanation concise Ave shall say that a (finite) tree is of the snake 
type if it lias tAvo vertices of degree \. Moreover, Ave Avill call a tree a Y-graph 
if it lias three vertices of degree 1 (see [7], page 25). If we denote it the vertex 
of degree 3 and v±, V2, and V3 the vertices of degree 1 in a given Y-graph 
Ave shall say that this graph is of the type (d\, d%, ^3), provided d% is the distance 
of v from vt in the usual metric (i = 1, 2, 3). 

We shall say that a connected graph rS is uniquely reconstructable from 
all its spanning trees if the folloAAdng property is t rue: 
1\ Let # * be a connected graph Avith the same number of vertices as <S. Let 
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M — {yft) be an ordered set of all spanning trees of the graph '£ and J /* 
p*'7} an ordered set of all spanning trees of the graph rS*. Moreover 

let \M = |il/*| and tf\ be isomorphic with Jf * for every i. Then 7J and 
£•' are isomorphic. 
I t is trivial to show that each tree and each circuit have the propeity P. 

Unlike the Kelly-Ulam conjecture a finite graph can be found that is not uni­
quely reconstructable from all its spanning trees. An example î  given in 
Fig. 1. Graph ^o plotted on the left-hand side has eight spanning tree-*, of 
which two are of the snake tyrpe and the remaining ones are Y-i>Taphs: two 
spanning trees of the type (1, 1, 6), two of the type (I, 2, 5) and two of tlu 
type (I, 3, 4). The graph CS\ plotted on the right-hand side also has ei^ht 
spanning trees isomorphic in turn with those described above. And yet #„ 
and ^ * are not isomorphic. I t can also be easily seen that 7/o and 37* are 
(with respect to the isomorphism) the sole two graphs determined by the 
structure of the particular eight trees. 

Fig. i 

An example not having the property P can be found also among infinite 
connected graphs. Let us choose the complete bipartite graph 2. Xo and 
prove that it is not uniquely reconstructable in the sense explained above. 
Let us consider thus the graph ^ 2, Xo , whose vertices belono to two 
classes A, B where \A 2, \B — So- Let us put A {u, v} and let w be 
another vertex not belonging to A U B. Let us choose as ^*the graph arising 
from 7? by completing it with the vertex w and the edu'e vie. Obviously 7/ 
and r£* are not isomorphic. 

P]ach of the graphs 7/. <&* has an uncountable number of the spanninu 
trees and \M \M* . Let us order the spanning trees of the oraph Ĉ  an 1 
also the spanning trees of the graph 3/* and prove that two corresponding 
spanning trees are isomorphic. The spanning trees of the ijraph r£ can be 
split into three types. The first type is such that either u or v is an end-vertex 
of a spanning tree. The number of the^e spanning trees i- countable The 
second type is such that either v or v is of a finite decree > I in t\i*> aivei 
spanning t ee, Also here i> the number of the spaniim trees eountTblp At la^t 
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the third t \ pe is a spanning tree, in which both u and v have an infinite decree. 
The number of the cases is uncountable here. The same classification can be 
implemented for the spanning trees of the graph 27* and hence there follows 
what was to be proved. 

The two presented examples concern the graphs lacking the proper ty P 
but from a few attempts we can see that finite connected graphs with a small 
number of vertices are uniquely reconstructable. Another illustration of the 
graphs with the property P is provided by the results found in [6]: If a graph 
(with at least eight \ ertices) lacks less than five edges in order to be a complete 
graph, then its structure is already determined by7 the number of its spanning 
trees. Or, in other words the ,,nearly" complete graphs have obviously 
the pioperty P. 

In the remaining part of this paper we shall describe in two theorems classes 
of finite connected graphs that are uniquely reconstructable from their spann­
ing trees. 

Theorem I. .4 complete bipartite graph 2, n) lias the property P. 
P roof . The statement is obvious for n 1, 2. Let therefore n > 3. A graph 

2, n hus altogether n2n x spanning trees separable into two groups. The 
first group contains the spanning trees with diameters 3 and the spanning 
trees of the second one have diameters 4, Let a connected graph ^ * on n 2 
vertices have in turn isomorphic spanning trees with these trees. Let us ques­
tion if 2/:,c can contain a circuit of a length at least 6. If yes, let u\, u-z, . . ., H6, 
. . . denote in turn the vertices of this circuit. We can certainly construct 
a spanning tree .Yf containing five edges u\Uz, H2W3, H3H4, U/\u5, UOUQ. However 
J> ' is then of diameter at least 5, winch is impossible. Let us discuss therefore 
the case that 27* contains a pentagon (5*> with the vertices u\, uz, H3, H4, W5. 
From the existence of another vertex w not belonging to $5 and connected 
with some u(- (1 < i < 5) the existence of a spanning tree of a diameter at 
least 5 can be derived. Graph c&* has therefore only 5 vertices and the cal­
culation shows possible numbers of 5, 11, 2V 24, 40, 45, 75 or 125 spanning 
trees. Since none of these numbers is of the form n 2n~x we have 1o reject 
the assumption that CS* contains 6̂ 5. Let r$* contain a quadrangle #4 with 
the vertices u\, u->, 1/3, u<\ in turn. Since n > 3, 27* has to have at least one 
more vertex v. Let it be next to the vertex it\. Then UL is not incident, except 
u\U\, u^u\ (and possibly U2114), with any other edge xu^ where x is outside $4. 
If this case occurred, x could neither coincide with v (a pentagon!) nor be 
v v (a walk of length 5). The same is valid for uz. The vertices outside (9+ 
are next either to it\ or H3 and each of them is either an end-vertex (let k be 
their number) or the next one to U\ coincides with the next one to u-2 (their 
number would be n — k — 2). If namely v were next to u\ and w next to 
^3 (v and tv being outside O4), then neither the edge vw would be possible 
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(a pentagon) nor the edges yv or yw could exist (// is a new vertex;. If ( 
did not contain any of the diagonals z«iH3, Wĵ 4, then r$* would have so many 
spanning trees as the complete bipartite graph 2, n k has i.e. (n k 
. 2" " L Hence k 0 and 3?* is isomorphic with 2, n . Let therefore the 
ed^e u»u\ exist. Then n — k 2 must be zero (a pentagon) and ^ lias eithei s 
or 1(> spanning trees. However, none of these numbers fits the form n 2 
Let itoui do not exist and let the edge U\v^ be here. That leads us to the eon 
sideration: We are calculating the number (H k 2)2" h x of the spanninu 
trees of the gn ph ^ * . But this number does not equal n '2" ] and so the cis( 
with the circui CA is exhausted. I t remains to discuss the case when th ^ nvwi 
mum circuit in r/J* is a triangle 6% witl the veitices ii\, !/j, /fg. Then e i •! 
block of the graph /J* is either composed of one ed^e or of three edues an [ 
the number of its spanning trees is therefore 3 \ where a is the numbe * of 
the triangles in # * . Xor has the equation n 2" ' 3^ in this case a sohitioi 
and so we reject also the last assumption. 

We have thus reached the conclusion that Ci7* is isomorphic with the Li'i I 
2, // and have proved that 2. u is uniquely reeonstruc table from it> spann 

ing trees. 
1n the second theorem we will deal with ..a wheel"" (see e.o. |7 | ) . W» an 

denoting this graph as // n (n 3) and we are defining it as follows- \\\ 
are choosing a circuit Cn of a length n and a vertex u outside Cn and we < u 
connecting u with each vertex of the circuit Cn by an edge. 

The construction of the graph irn is so described. We ha\ e pro\ed in [5 
the validity of 

i 3 + l 5 V ' / 3 

(1) Hi/n) ' l ! ' ГЛ - ľ) 
for k (ffn) denoting the number of the spanning trees of the uraph // . We 
shall need here also one auxiliary result of [OJ. namely the graph // and 
the formula 

(2) Ң.WЫ) 
(3 + | 3 )>< - (3 

•2" | .') 

The graph ,//n is obtained from il \, by removing one edi»e of th ' ciicuit 
Cn. It is convenient to extend the definition of .// • to n 1 an I n 2 
The graph ///1 is the complete graph 2 and .//<± is the complete uraph 3 

Theorem 2. A graph irn has the property P. 

Proof . We shall distinguish two cases. The first of them computes // <>, 
the second one is for n > 0. 
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i) The most composite of the subcases n - 3, 4, 5, and 6 is the last one. 
Since the three preceding ones are analogous, we will deal here only v\ ith 
n 6. 

Vccording to (1) the graph If 6 has 320 spanning trees, each of which is 
isomorphic with one of 1 l possible trees on seven vertices (see Fi<>. 2). Let 

Fig . 2 

the spanning trees of the graph ff\ be ordered in an arbitrary manner and 
let 0 be a connected graph on seven vertices having all its spanning trees 
isomorphic in turn with the spanning trees of the graph 1fr%. Let us consider 
the spanning tree J^i of the graph c3', which is isomorphic with the graph 
in Fio. 2a, and let u denote the vertex of degree 6 in Jf\. Let vt (i — 1,2. . . .. 6) 
be the remaining vertices in Jf i . We are asking the question whether u can 
IK i cut vertex of the graph CS. If yes, how many blocks are incident A\ith 
tins cut vertex? We are rejecting immediately the cases of 6 and 5 blocks. 
Let 4 blocks be the case. Then either of the patterns 2 -f 2 -f- 1 4 1 and 
3 1 -|- 1 f- 1 is taken into account. The first pattern indicates that two 
of the blocks are triangles and the remaining two have one edge each. However, 
then k(3) 9 (a contradiction). The second pattern indicates that three 
ed<»o being incident with u belong to one block and each of the other blocks 
has ne edge. However, then h(cS) < 16 (a contradiction). The case of three 
blocks yields the patterns 2 -f 2 -p 2 or 3 -\ 2 \ 1 or 4 -f- 1 -f- 1. We have 
to reject the first pattern, for k(c3) 27, the second one results in contra­
diction k(c3) < 16 . 3 and the third one in k(c3) < 53. The case of two blocks 
can be described by the patterns 3 ^ 3 , resp. 4 + 2, resp. 5 ^ 1 . The first 
one is rejected for k(c3) < 16 . 16 the second one yields a triangle as a block 
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and therefore ends in a contradiction 3 k((S) and the third one will be described 
in more details. The block containing 5 edges uvt cannot be a complete uraph 
for then k((S) 61. If it lacked one edge in order to be complete/") we A\ould 
get k(($) 864. If it lacked two edges, then k((S) 576 or 540 and if it lacked 
three edges, then k((S) would be 360, 336, 324, 300 respectively; if it lacked 
more edges than 3, k((S) would be less than 300. On the whole we see that i 
cannot be a cut vertex of the graph (S. 

We shall thus start to construct the graph rS without cut vertices in such 
a way that we shall successively^ complete the above mentioned tree A \ 
by edges. Without loss of generality we can take the edges v\V->, v->vs. Let 
us ask the question whether (S can then also have both edges v>v±, v->r^. If 
yes, then V-?VQ does not exist, for (S would have at least two isomorphic spann 
ing trees with the graph in Fig. 2a. The so far constructed graph has 16 spann 
ing trees that are isomorphic with the graph in Fig. 2c, whereas 1f\ has onl\ 
12 of them. There exists therefore at most one of the edges v-2^4, v->v0. r^r-
let it be v->vi. Let us discuss the case that v5 and vQ (apart from H) are then 
connected with one additional common vertex (e.g. with v\). However, the 
so far constructed graph has 10 spanning trees of the type d) in Fig. 2, -whereas 
y/~ehas onl}T 6 of them. So we are proceeding to the case that v0 and VQ (aput 
from n) are connected each with a different vertex, e.g. with the edges r0i^. 
VQV\. The so far constructed graph is not yet (S, for it has only 10 spanuhu 
trees of the type b) in Fig. 2, whereas 1f\ has 12 of them. We cannot idd 
the edge V0VQ to it, for the resulting graph would already have 18 spanning 
trees of the type c) in Fig. 2, whereas if 'Q has only 12 of them. The attachn ent 
of the edge Vsv0 results in 14 spanning trees of the type c) instead of 12 spann 
ing trees in the graph if V> and it follows from the symmetry that it is impossible 
to attach V^VQ as well. Can we add V1V5I This attachment also results in 1 6 
spanning trees of the type c) instead of the correct number 1 2. We are rejecSnu 
v±vQ for the same reasons. Let us add vgvi and we see that the originated 
graph has 10 spanning trees of the type d), whereas 1f\ has 6 of them. We 
cannot add v$v\ as well (symmetry7). The last matter in this discussion is 
the attachment of V\V/\. I t would yield 11 spanning trees of the type d) instead 
of those 6 in 1f\. So we are returning in our discussion to the graph that arose 
by completing the spanning tree .if\ with the edges V\V->, V-1V3 and we assume 
that none of the edges v-yv±, v^v0, V-ZVQ exists. Without loss of generality we 
can suppose the edge v3^4- The vertex v$ cannot be connected with V3. foi 
we would obtain the above rejected case by renumbering the vertices r( 

*) We are using here the formulas derived in [()] and listed in a table on the page '222 
The assumption in the ({noted reference i s w > 8 but it is obvious that those entne^ 
of the table that are needed here are valid also for a o\ 
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Let us assume the first edge of the two symmetric cases V4V5, V\v^. The vertex 
Vc, can also be connected only with v5 or V\. We see immediately that ŵ e have 
to introduce both considered connecting edges and we thus obtain a graph 
isomorphic with 11 \ . And that concludes the case n = 0. 

b) Let n ^ 7 and let rS be a graph on (n -f- 1) vertices, the spanning trees 
of which are isomorphic in turn with the spanning trees of the graph irn . 
There exists a vertex u of degree n in the graph rS, for irR has a spanning 
tree with a vertex of degree n. Let us construct <3—u and ask the question 
whether there exists a vertex of degree at least 3 in this graph. If yes, let it 
be denoted V\ and let the three edges incident with it be V\Vz, V\V3, V\V±. With 
regard to the assumption n > 7 there still exist the vertices v&, v$, v-i in the 
graph <& u, each of which is connected in ^ by an edge with the vertex u. 
In the graph 3? we can construct the spanning tree -vf̂  containing all the edges 
uv\, v\V-i, V\V3, V\V\, uv$, UVQ, uv~?. However, rjf2 has two neighbouring vertices 
u, v\, each of which is of a degree at least 4; therefore Jf 2 is not isomorphic 
with an\T spanning tree of the graph iVn. That is a contradiction and so each 
vertex of the graph <S — u is of degree 0,1 or 2. If rS — u were a disconnected 
uraph, its components would have either one point each or they would be 
uraphs of the snake type (with the lengths d\, do, . . ., dr in turn) or circuits 
(with the lengths D\, Dz, . . ., Ds in turn). Let us discuss here briefly only 
the ,.general*' case when the two last mentioned component types of the 
graph 2? — u exist (then r > 1, s > 1). Let a(n), resp. b(n) denote the right-
hand side**) of the equation (I), resp. (2). 
Then we have 

W -fla(A)lW; + l). 
' i i i 

We can readily find that 

n«(A) ̂  «d», 
i \ i 1 

f l W + 1) H b(r + 2 d,) < a(r + £ d}). 
; i ; i j i 

Since 

M- i> + 2A ^ n, 
.) 1 i 1 

we obtain for the number k(&) the following inequalities: 

'**) The number a(») was defined only for n ^ 3, b u t let us here extend (1) al&o to n 2). 
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k(9) O(V l)i)a(r -f ^ dj) < a(, + ^ <h 1 I>i) < «(" 
/ i j i J i / i 

That is a contradiction, for lc(&) a(n). The i>raph «£ ?/ is therefore con­
nected. Since 1c(-//n) < k(if~n), *& — u is a circuit of leimth n and # is iso­
morphic with Y/\{. This completes the proof. 
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