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Matematický časopis 23 (1973), No. 4 

QUASIGROUPS AND FACTORISATION 
OF COMPLETE DIGRAPHS 

BOHDAN ZELINKA, Liberec 

In the present paper the results of CAYLEY and P R U C H T (quoted in [2]) 
on groups ivill be transferred onto quasigroups and loops. The graph-theoretical 
terminology is that of ORE [2], the algebraic terminology is the translation 
of the terminology of BELOUSOV [1]. The term " loop" will be used here 
in two quite different senses: in the algebraic sense (a quasigroup with a two-
side unit element) and in the graph-theoretical sense (an edge joining a vertex 
with this vertex itself). For avoiding misunderstandings due to this homonymy, 
after the word " loop" we shall always put either "a. s." (algebraic 
sense), or "g. s." (graphtheoretical sense) in brackets. We shall consider 
digraphs without multiple edges, but with loops (g. s.) and with pairs of ed
ges joining the same pair of vertices, but differently directed. 

In [2] the Oayley colour graph of a group is described. Here we shall 
generalize this concept for quasigroups. 

Let Q be a quasigroup of the order n (n can be also infinite). Take a complete 
digraph with loops (g. s.) with n vertices. (This is a digraph in which any two 
distinct vertices are joined by a pair of differently directed edges and at each 
vertex there is a loop (g. s.).) We put the elements of Q and the vertices of 
this graph into a one-to-one correspondence. Then we colour the edges of the 
graph by n colours which are also in a one-to-one correspondence with the 
elements of Q so that for any two elements xeQ, yeQ the edge outgoing 
from the vertex corresponding to x into the vertex corresponding to y obtains 
the colour corresponding to the element y \ x. Then the resulting graph 
with tlio described colouring of edges is called the Cayley colour graph of Q 
and is denoted by C(Q). PJere y \ x denotes the element z EQ for which xz y 
holds. As Q is a quasigroup, this element is uniquely determined for any x and y 
of Q. 

I t is easy7 to prove that the edges coloured by the same colour in C(Q) form 
a linear factor of this digraph. In fact, let us take a vertex x of C(Q); the 
element of Q corresponding to it will be denoted also by x. An edge coloured 
by the colour corresponding to some y e Q outgoing from x leads into xy in 
C(Q). The element xy is exactly7 one for any x and y of Q, therefore exactly 
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one edge of the colour corresponding to y goes out from the vertex x for 
any x and y of Q. An edge of the colour corresponding to y E Q incoming 
into x goes out from the vertex corresponding to xjy e Q; here x/y denotes 
the element z EQ for which zy = x holds. For any x and y of Q the element 
xjy is exactly one, therefore exactly one edge of the colour corresponding 
to // comes also into x. 

Thus the Cayley colour graph C(Q) can be considered as an ordered pair 
(JF, £>, where 3F is a decomposition of the complete digraph K^ with ?̂  vertices 
with loops (g. s.) into edge-disjoint linear factors and f is a one-to-one mapping 
of the vertex set of Kn onto the set of factors of 3F. (As well-known, if Kn is 
decomposed into linear factors, the number of these factors is exactly n.) 

Theorem 1. Let Kn be the complete digraph with n vertices ivith loops (g. s.), 
where n is a finite or infinite cardinal number. Any ordered pair (3P', f , where 
& i& a decomposition of Kn into edge-disjoint linear factors and f is a one-to-one 
mapping of the vertex set of Kn onto the set of factors of 3*, determines a quasigroup 
Q such that the Cayley colour graph C(Q) of Q can be considered as ^', f>, as 
described above. 

Proof . Let the set of elements of Q be the set of vertices of itn• If x EQ, 
y EQ, then xy is the terminal vertex of the edge outgoing from the vertex x 
and belonging to the factor !(?/) e SF. As |(i/) is a linear factor of Kw, this 
edge is exactly one. The element x \ y is such an element ZEQ tha t the edge 
going from y to x belongs to f(z). The element xjy is the initial vertex of the 
edge whose terminal vertex is x and which belongs to the factor £(y). These 
elements are determined uniquely, thus we have obtained a quasigroiip. 

Evidently the Cayley colour graphs of two quasigroups Q\ and Qz are 
isomorphic, if and only if Q\ and Qz are isomorphic. (Here we mean the iso
morphism preserving colours of edges.) We shall consider isotopies of quasi
groups. As defined in [1], an isotopy of a quasigroup Q\ onto a quasigroup Qz 
is an ordered triple <a, /3, y> of one-to-one mappings of Q\ onto Qz such that 
for any three elements x, y, z of Q\ the equality oc(x)P(y) = y(z) in Qz is equi
valent to the equality xy — z in Qi. 

Theorem 2. Let Q\ and Qz be two quasigroups on the same set M of n elements. 
The following two assertions are equivalent: 
(1) The Cayley colour graphs of Q\ and Qz can be considered as pairs 3*, £i 

and (JF, |2>, respectively, 3* being the same in both pairs. 
(2) There exists an isotopy of Q\ onto Qz of the form <(e, /?, «s>, where ? is the 

identical mapping of the set M. 
R e m a r k . The pairs of the form (JF, !> are defined above. 
Proof. (1) => (2). We can identify the vertices of Cayley colour Graphs 
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of Q\ and Q2 with the set M. Let /? = £~2£\ "> this *s a permutation of M. Let 
x, y, z be three arbitrary elements of M. If xy = z in Qi, then an edge goes 
from x into z with the colour (of the factor) £\(y) in C(Q\). In £($2) the edge 
going from x into z must then be of the colour £2(t), where t is some element 
of Q2, i. e. of M. We have a:l = z in Q2 • Therefore the factors £\(y), ^(t) of & 
are equal. We have ^(y) = f2(£), which means t = f2_1li(?/) = / % ) • Thus 
xy z in (?i implies e(x)fi(y) = *-(z) in Q2\ analogously we can prove the 
inverse implication and thus the equivalence of these equalities. We have 
proved that (z, /?, £> is an isotopy of Q\ onto Q2. 

(2) -> (1). Let there exist an isotopy of the form (E, /3, e) of Q\ onto Q2. 
Then #t/ = z in Qi is equivalent to xfi(y) = z in Q2 for any three elements 
x, y, z, of M. Let us have two arbitrary edges of Kn, one going from x\ to y\, 
another going from x2 to y2, where x\,y\,x2, y2 are some vertices of Kv, 
i. e. elements of M. These two edges have the same colour in C(Q\) if and only 
if y\ \ x\ = y2 \ x2 in Q\, i. e. if x\z = y\, x2z = y2 for some z. But this is 
equivalent to x\p(z) = 2/1, x2(3(z) -= 2/2 in Q2, wThich means tha t y\ \ x\ = 

yz\x2 also in Q2 a n ( i these edges have the same colour also in C(Q2). 
Therefore the factorisation 2F is the same for both quasigroups Q\, Q2. 

hi this theorem we have considered two quasigroups Q\ and Q2 with the 
same set M of elements. We have done this for the sake of simplicity. But 
these considerations can be transferred to the case of two quasigroups with 
distinct sets of elements, obviously with equal cardinalities. Then we have 
an isotopy of the form <a, /$, a>, where a and /3 are one-to-one mappings 
of Q\ onto Q2. » 

We have here considered Cayley^ colour graphs as pairs (JF, |> . In the 
following it will be more convenient, if we consider them again as complete 
digraphs with loops (g. s.) with some colouring. We shall give a definition 
of isotopy of these graphs (compare [3]), 

Let G\ and G2 be two digraphs whose edges are coloured in some way. 
A colour-preserving isotopy of G\ onto G2 is an ordered triple </ i , /2 , <p>, 
where f\ and f2 are one-to-one mappings of the vertex set Vi of G\ onto the 
vertex set V2 of G2 and <p is a one-to-one mapping of the set of colours of edges 
of G\ onto the set of colours of edges of G2 such that for any two vertices u, v 
of G\ the existence of the edge uv in G\ is equivalent to the existence of the 
<"'dge fi(u)f2(v) in G2 and if uv in G\ exists and has the colour c, then f\(u)f2(v) 
in G2 has the colour 99(c). 

A colour-preserving isotopy of a digraph G onto itself is called a colour-
preserving autotopy of G. If moreover cp is an identical mapping of the colour 
set of G, this autotopy is called strongly colour-preserving. 

Theorem 3. Let Q\, Q2 be two quasigroups, let there exist an isotopy of Q\ 
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onto Q2. Then there exists a color-preserving isotopy of C(Qi) onto C(Qz) and 
vice versa. 

Proof . Let <a, /?, y> be an isotopy of Q\ onto Q2. If xy — z in Q±, then 
a(x)P(y) = y(z) in Q2 • In C(Qi) the edge outgoing from x and incoming into z has 
the colour corresponding to y (we may say shortly that it has the colour //), 
In C(Q<2) the edge outgoing from oc(x) and incoming into y(z) has the colour 
(l(y). If xy •=/- z, then this evidently does not hold. Therefore <a, y, j#> is the 
corresponding colour-preserving isotopy of C(Q\) onto C(Q%). On the other 
hand, let there exist a colour-preserving isotopy </ i , /2 , <p> of C(Q\) onto C(Q>). 
If xy = z in Qi, then in C(Qi) an edge of the colour y goes from x into ::. 
Therefore in C(Q%) an edge of the colour cp(y) goes from/i(^) into ^(2) , which 
means that fi(x)cp(y) = /2(z) in Q2 holds. Thus </ j , 99,/2> is an isotopy of (?L 
onto Q2. 

Now we define the colour-preserving isomorphism of 6?i onto Gz (wheie 
C7i and 6?2 are again digraphs with coloured edges) as an isotopy < / i , / 2 . 7 , 
where/1 = />. Colour-preserving and strongly colour-preserving automorphisms 
are defined analogously. After defining these concepts we can express a further 
theorem. 

Theorem 4. Let Qi, Q2 be two quasigroups, let there exist an isotopy ofQi onto Q$ 
of the form <a, /?, a>. Then there exists a colour-preserving isomorphism of C(Q\) 
onto C(Q%). 

The proof follows from Theorems 2 and 3. 
The aim for which Cayley colour graphs of groups were defined was to 

construct a graph whose group of colour-preserving automorphisms is iso
morphic to a given group. If H is a group, then the group of strongly colour 
preserving automorphisms of C(H) is isomorphic to H. We shall investigate 
the group of strongly colour-preserving automorphisms of C(Q), where Q is 
a Quasi group. 

Theorem 5. Let Q be a quasigroup, let C(Q) be its Cayley colour graph. The 
group of strongly colour-pre serving automorphisms of C(Q) is isomorphic to the 
group of all autotopies of Q having the form <a, e, a>, where F is the identical 
mapping of Q. 

Proof . Let </ , / , £o> he a strongly colour-preserving automorphism of C(Q), 
where ,co is the identical mapping of the colour set of C(Q). If x, y, z are three 
elements of Q, then the edge outgoing from x and incoming into z has the 
colour y if and onlyr if xy = z. If and only if this holds, the edge outgoing 
from/(^) into/(z) has also the colour y and thus f(x)y — f(z). If we put a / , 
we have an autotopy of Q of the form <a, e, a>. On the other hand, let us have 
an autotopy <a, e, a> of Q. Then the edges xz and oc(x)oc(z~) must have the same 
colour corresponding to z \ .r and therefore /a , a, £o> is a strongly coloiu-
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preserving automorphism of C(Q). Thus we have obtained a one-to-one-
correspondence between strongly colour-preserving automorphisms of C(Q) 
and autotopies of Q of the form (a, e, a>. This correspondence is formed by 
a simple exchange of two co-ordinates in ordered triples, thus it is easy to 
prove that it is j)reserved by the superposition of these strongly coloui-
preserving automorphisms or autotopies, and the assertion holds. 

Theorem 6. Let Q be a quasigroup, let C(Q) be its Caijley colour graph. The 
group of colour-preserving automorphisms of C(Q) is isomorphic to the group 
of all autotopies of Q having the form <a, /?, a>. 

The p r o o f is analogous to the proof of Theorem 5 and Theorem 2 is used 
in it. 

We have proved some theorems concerning Cayley colour graphs of quasi -
groups in general. Now we shall study special cases of quasigroups — loops 
(a. s.) and groups. 

A loop (a. s.) is a quasigroup coataining a two-side unit element, i. e. an 
element e such that ex = xe = x for each element x of this quasigroup. 

Theorem 7. Let L be a loop (a. s.). Then its Cayley cofair graph C(L) can be 
considered as a pair (2F, f >, where 3' is a decomposition of Kn into edge-disjoint 
linear factors and f is a one-to-one mapping of the vertex set of Kn onto the set 
of factors of ^ and ^vhich has the following properties: 
(1) One of the factors of 3F is formed by all loops (g. s.) of Kn-
(2) There exists a vertex of Kn such that any edge outgoing from it belongs to the 
factor £(v), where v is its terminal vertex. 

Any pair < ^ , £> ^vith the described properties determines a Cayley colour 
graph C(L) of some loop (a. s.) L. 

Proof . Let e be the unit element of L. Then xe = x for each x e L, therefore 
any edge of C(L) of the colour corresponding to e is a loop (g. s.). Thus <~(e) 
is the factor consisting of all loops (g. s.) of Kn • But also ex = x for each x e L, 
therefore any edge outgoing from e and incoming to some x has the colour 
corresponding to x. On the other hand, let (JF, f> be some pair with the abovo 
described properties. We construct the loop (a. s.) L so that the vertex set 
of Kn ia taken as the set of elements of L, the vertex from (2) is taken as e and 
the factor from (1) is taken as |(e). For two elements x and y we define xy 
as the terminal vertex of the edge outgoing from x and belonging to the 
same factor of F as the edge outgoing from e and incoming into y. Analogously 
as in the proof of Theorem 1 we can prove that L is a quasigroup and the 
equalities ex - x, xe ~— x follow directly from the properties (1) and (2). 

Corollary. To any decomposition £FQ of a complete digraph with n vertices 
without loops (g. s.) into pair wise edge-disjoint linear factors and for any 
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arbitrarily chosen vertex v of it there exists a loop (a. s.) L s^tch that the pair 
,F, £>, where (F is obtained from (F$ by adjoining a linear factor consisting 

of loops (g. s.) at each vertex and £ is a suitable one-to-one mapping of the vertex 
set of this graph onto the set of factors of (F, is its Cayley cofair graph and the 
vertex v corresponds to the unit element of L. 

As defined in [I], the left kernel of a quasigroup Q is the set of elements a 
ofQ such that (ax)y = a(xy) for any two elements x and y of Q. The left kernel 
of a loop L is a group under the multiplication in L. 

Theorem 8. The group of strongly colour-preserving a^Uomorphisms of the 
Cayley colour graph C(L) of a loop (a. s.) L is isomorphic to the left kernel of L. 

Proof . According to Theorem 5 the group of stronglyr colour-preserving 
automorphisms of C(L) is isomorphic to the group of all autotopies of L 
of the form <a, s, a>. Let us have some autotopy of this form. Let e be the 
unit element of L, let x be some element of L. We have ex = x, thus oc(e)e(x) 
— oc(e)x = oc(x). As x was chosen arbitrarily, wre have oc(x) = oc(e)x for any 
,r e L. If we denote a(e) as a, we have oc(x) — ax. Therefore each autotopy 
of L of the form <a, e, a> has the property that a is a left translation [1] by 
some element a e L. Now let x e L, y e L. We have oc(x)y = oc(xy), which 
means (ax)y = a(xy) and a belongs to the left kernel of L. Wow let us have 
two autotopies <a, s, a>, </5, e, /?> of L. We have oc(x) = ax, j3(x) — bx for 
some a and b of the left kernel of L and for each x e L. Then ocfi(x) — a(bx) 
and this is equal to (ab)x, as a is in the left kernel of L. Thus if we assign to 
any autotopy of the form <a, e, a> the element a of the left kernel of L such 
that oc(x) — ax for each x e L, this assigning is an isomorphism between the 
set of autotopies of L of the form <a, e, a> and the left kernel of L. 

Now we come to groups. 

Theorem 9. Let H be a group. Then its Cayley colour graph C(H) can be 
considered as a pair (JF, £>, where F is a decomposition of Kn into edge-disjoint 
linear factors and £ is a one-to-one mapping of the vertex set of Kn into the set 
of factors of (F and ^ohich has the properties (1) and (2) from Theorem 7 and 
a further property: 
(3) In each acyclically directed triangle T of Kn the factors of (F to which two 
edges of T belong determine ^lniquely the factor of (F to ^vhich the third edge 
of T belongs. 

Any pair (JF, £> with the described properties determines a Cayley co^tr 
graph C(H) of some group II. 

Proof . The pair (JF, £> must have the properties (1) and (2), because every 
group is a loop (a. s.). Let us have an acyclically directed triangle T in C(II). 
The vertices of T can be totally ordered by the ordering determined by the 
orientation of T; let x be the first of them in this ordering. If the edge outgoing 
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from x and incoming to the second vertex of T belongs to the factor !(?/) e &"> 
this second vertex is xy. If the edge outgoing from the second vertex of T and 
incoming to the third belongs to the factor f (z) e 8F, the third vertex is xyz. 
Thus the edge going from the first vertex of T into the third must belong 
to the factor £(yz); this factor is uniquely determined by y and z independently" 
on x. Now if the edge going from the first vertex of T into the second belongs 
to g(y) and the edge going from the first vertex of T into the third belongs 
to f (z), then the second vertex of T is xy, the third is xz and the edge going 
from the second vertex ofT into the third belongs to £(y~lz); this is also uniquely 
determined by y and z independently on x. Analogously we could prove this 
for the situation when the factors of 3F to which the edge going from the first 
vertex of T to the third and the edge going from the second vertex of T to 
the third belong. Thus (3) is satisfied. On the other hand, let us have <3F, f> 
satisfying (1), (2), (3). According to Theorem 7 it determines a Cay ley colour 
graph of some loop (a. s.) L. Let us have an acyclically directed triangle T 
in Kn, lot its first vertex be x, let the edge going from the first vertex of T 
into the second belong to £(y), let the edge going from the second vertex of T 
to the third belong to £(z). Then the second vertex of T is xy, the third is 
(xy)z. The edge going from the first vertex of T into the third belongs to the 
factor £(l), where t is uniquely determined by y and z (independently on x). 
Therefore the third vertex of T is xt and we have xt = (xy)z for each x e L. 
Especially for x = e, where e is the unit element of L, we have et = (ey)z, 
which means t = yz. Therefore x(yz) = (xy)z for any three elements x, y, z 
of L and X is a group. 

The group of strongly colour-preserving automorphisms of C(H) is well-
known (see [2]); it is isomorphic to H itself. In [2] also from a Cayley colour 
graph of a group its Frucht graph is derived by substituting the edges by 
suitable graphs, edges of the same colour being substituted by the same graphs. 
To strongly colour-preserving automorphisms of the Cayley colour graph there 
correspond automorphisms (without further conditions) of the Frucht graph. 
The reader who knows the last chapter of [2] can easily make himself these 
considerations for quasigroups as well. 

We have proved some theorems on quasigroups and factorisations of complete 
digraphs. These results are no surprising discoveries, but theyr show the 
interrelations between quasigroups and these factorisations, which, maybe, 
could be useful in a ftirther investigation of these topics. 

Finally we shall give an example of the Cayley colour graph of a quasigroup. 
Let Q be the quasigroup whose Cayley tabic is in [1], p. 13. 
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a Ъ c d e 

a c a d b e 
Ъ e Ъ c a d 
c a d b e c 

d d e a c b 
e ь c e d a 

The factors of the Cayley colour graph of this quasigroup Q are shown in Fig. I. 

й 

çf(a) 
cл ř=> 

{(b) 

c? 

{(c) {(d) 

{(*) 
Yщ. 1. 
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