Pavol Šoltés
A Remark on the Oscillatoriness of Solutions of a Non-Linear Third-Order Equation

Matematický časopis, Vol. 23 (1973), No. 4, 326--332

Persistent URL: http://dml.cz/dmlcz/126579

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.
A REMARK ON THE OSCILLATORINESS
OF SOLUTIONS OF A NON-LINEAR THIRD-ORDER EQUATION

PAVOL ŠOLTÉS, Košice

In [2] a theorem is given (Theorem 2, p. 250) which gives sufficient conditions for a non-oscillatory solution of the equation

\[(1) \quad x'' + p(t)x' + q(t)x^\alpha = 0,\]

with \(\alpha > 1, \alpha = m/n\), where \(m\) and \(n\) are nondivisible odd natural numbers, to have the properties:

\[
\lim_{t \to \infty} x''(t) = \lim_{t \to \infty} x'(t) = 0, \quad \lim_{t \to \infty} |x(t)| = L \geq 0.
\]

It is further shown (in a Corollary) that under the hypotheses of Theorem 2 (in [2]) with the added assumption \(0 < \varepsilon < q(t)\) we have for a non-oscillatory solution \(x(t)\)

\[
\lim_{t \to \infty} x(t) = 0.
\]

In the present remark it is shown that the hypotheses of Theorem 2 (in [2]) are sufficient for \(L = 0\) and thus for \(\lim x(t) = 0\) to hold. A further theorem is presented which gives sufficient conditions for a non-oscillatory solution \(x(t)\) of (1) with \(\alpha = m/n > 0\), where \(m\) and \(n\) are relatively prime odd natural numbers, to have the property

\[
\lim_{t \to \infty} x(t) = 0
\]

or

\[
\lim_{t \to \infty} \inf |x(t)| = 0.
\]

Theorem 1. Let the hypotheses of Theorem 2 in [2] hold, i.e.: Let \(\alpha > 1, \alpha = m/n\), where \(m\) and \(n\) are relatively prime odd natural numbers. Let the functions \(p(t)\) and \(q(t)\) satisfy the following conditions for sufficiently large \(t\):

1) \(q(t)\) is non-negative and continuous:
2) \(p(t), p'(t)\) are continuous and \(p(t) < 0, p'(t) \geq 0;\)
3) for any constants \(A, B \) there exists a \(t_1 > t_0 \) such that for all \(t \geq t_1 \) we have
\[
A + Bt - \int_{t_0}^{t} Q(s) \, ds < 0, \quad \text{where} \quad Q(t) = \int_{t_0}^{t} q(s) \, ds.
\]

Then any non-oscillatory solution \(x(t) \) of the non-linear differential equation (1) has the following properties for large \(t \):

a) \(\text{sgn} \, x(t) = \text{sgn} \, x''(t) \neq \text{sgn} \, x'(t) \), where
\[
\text{sgn} \, x(t) = \begin{cases} 1 & \text{if} \quad x(t) \geq 0, \\ -1 & \text{if} \quad x(t) < 0; \end{cases}
\]

b) \(\lim_{t \to \infty} x''(t) = \lim_{t \to \infty} x'(t) = \lim_{t \to \infty} x(t) = 0; \)

c) \(x(t), x'(t) \) and \(x''(t) \) are monotonous functions.

Proof. We shall prove that \(\lim_{t \to \infty} x(t) = 0 \). Let \(x(t) \) be any non-oscillatory solution of the differential equation (1). Thus there exists a number \(t_1 \geq t_0 \) such that \(x(t) \neq 0 \) for all \(t \geq t_1 \). Since \(-x(t) \) is also a solution of the differential equation (1), without loss of generality, assume that \(x(t) > 0 \) for all \(t \geq t_1 \). Suppose that \(\lim_{t \to \infty} x(t) = L > 0 \). Then from (1) we have:
\[
x''(t) = -p(t)x'(t) - q(t)x^2(t);
\]
now, since for sufficiently large \(t \) \(x'(t) < 0 \), we have
\[
x''(t) \leq -q(t)x^2(t) < -L^2q(t).
\]
Since, by assumption 3), \(\lim_{t \to \infty} Q(t) = +\infty \), this leads to \(x''(t) \to -\infty \) for \(t \to \infty \), which is a contradiction. Thus necessarily \(L = 0 \).

Theorem 2. Let \(\alpha = m/n > 0 \), where \(m \) and \(n \) are relatively prime odd natural numbers. Let the functions \(p(t), p'(t) \) and \(q(t) \) be continuous and for sufficiently large \(t_0 \) let for all \(t \geq t_0 \)
\[
p(t) \geq 0, \quad q(t) \geq 0, \quad p'(t) \leq 0.
\]
If for any constants \(A \) and \(B \)
\[
\lim_{t \to \infty} (A + Bt - \int_{t_0}^{t} Q(s) \, ds) = -\infty,
\]
where \(Q(t) = \int_{t_0}^{t} q(s) \, ds \), then a solution \(x(t) \) of (1) for which
is either oscillatory or \(\lim_{t \to \infty} x(t) = 0 \).

Proof. Let \(x(t) \) be any non-oscillatory solution of the differential equation (1) satisfying (3). Thus there exists a number \(t_1 \geq t_0 \) such that \(x(t) = 0 \) for all \(t \geq t_1 \). Since \(-x(t)\) is also a solution of the differential equation (1), assume without loss of generality, that \(x(t) > 0 \) for all \(t \geq t_1 \). Then from (1) we have

\[
\frac{x''(t)}{x(t)} + \frac{1}{2} \frac{x'^2(t)}{x^2(t)} + \int_{t_1}^{t} \frac{p(s)x'(s)}{x^2(s)} \, ds + \frac{1}{2} \frac{\alpha(x+1)}{\alpha} \int_{t_1}^{t} \frac{x^3(s)}{x^{x+1}(s)} \, ds = K_1 - \int_{t_1}^{t} q(s) \, ds.
\]

An integration from \(t_1 \) to \(t \geq t_1 \) equality (4) gives

\[
\frac{x'(t)}{x(t)} + \int_{t_1}^{t} \frac{(t-s)p(s)x'(s)}{x^2(s)} \, ds + \frac{\alpha(x+1)}{2} \int_{t_1}^{t} \frac{(t-s)x^3(s)}{x^{x+2}(s)} \, ds \leq K_2 + K_1 t - \int_{t_1}^{t} Q(s) \, ds.
\]

This implies that there is no number \(t_2 \) such that \(x'(t) \geq 0 \) holds for any \(t \geq t_2 \). Thus we have two possibilities:

1) There exists a number \(t_2 \geq t_1 \) such that \(x'(t) \leq 0 \) for any \(t \geq t_2 \).
2) For any \(t_2 \) there exists a number \(t_3 \geq t_2 \) such that \(x'(t_3) > 0 \). Now let \(t_2 \) be such number that for all \(t \geq t_2 \geq t_1 \) we have \(K_2 + K_1 t - \int_{t_1}^{t} Q(s) \, ds < 0 \). We shall prove that then we have \(x'(t) \leq 0 \) for any \(t \geq t_2 \), i.e. the possibility 2) does not hold. Let \(t_3 \geq t_2 \) be such number that \(x'(t_3) > 0 \) and let \(x'(t_4) = 0 \) for any \(t_1 \geq t_1, t_4 < t_3 \).

Then from (1) we have:

\[
x''(t)x(t) - \frac{1}{2} x'^2(t) + \frac{1}{2} \frac{p(t)x^2(t)}{x(t)} + \int_{t_4}^{t} q(s)x^{x+1}(s) \, ds =
\]
\[
= x''(t_0)x(t_0) - \frac{1}{2} x'^2(t_0) + \frac{1}{2} p(t_0)x^2(t_0) + \frac{1}{2} \int_{t_0}^{t} p'(s)x^2(s) \, ds ,
\]
thus for all \(t \geq t_0 \)
\[
x''(t)x(t) - x'^2(t) \leq x''(t)x(t) - \frac{1}{2} x'^2(t) \leq 0
\]
and therefore for all \(t \geq t_1 \)
\[
\frac{d}{dt} \left[\frac{x'(t)}{x(t)} \right] \leq 0.
\]
An integration from \(t_4 \) to \(t_3 \) gives
\[
\frac{x'(t_3)}{x(t_3)} \leq \frac{x'(t_4)}{x(t_4)} = 0,
\]
which is impossible, because \(x'(t_3) > 0 \). Hence \(x'(t) \leq 0 \) for all \(t \geq t_2 \). Thus \(x(t) \) is a non-increasing function with a finite lower bound so that \(\lim_{t \to \infty} x(t) = L \geq 0 \).

Now suppose that \(\lim_{t \to \infty} x(t) = L > 0 \). Then (1) yields
\[
x''(t) = x''(t_2) + p(t_2)x(t_2) - p(t)x(t) + \int_{t_2}^{t} p'(s)x(s) \, ds - \int_{t_2}^{t} q(s)x^3(s) \, ds,
\]
where \(t \geq t_2 \). Therefore
\[
x''(t) \leq K_3 - Lx \int_{t_2}^{t} q(s) \, ds
\]
and from this it follows that \(x''(t) \to -\infty \) for \(t \to \infty \), which contradicts the assumption that \(x(t) > 0 \) for \(t \geq t_2 \).

Theorem 3. Let \(\alpha = m/n > 0 \), where \(m \) and \(n \) are relatively prime odd natural numbers. Let the functions \(p(t), p'(t), q(t) \) and \(f(t) \) be continuous and for sufficiently large \(t_0 \) let for all \(t \geq t_0 \)
\[
p(t) \geq 0, \quad q(t) \geq 0, \quad p'(t) + |f(t)| \leq 0.
\]
Suppose that (2) holds and that \(x(t) \) is a solution of the equation
\[
x''(t) + p(t)x'(t) + q(t)x^3 = f(t),
\]
for which

329
\(x''(t_0)x(t_0) - \frac{1}{2} x'^2(t_0) + \frac{1}{2} p(t_0)x^2(t_0) + \frac{1}{2} \int_{t_0}^{\infty} |f(t)| \, dt \leq 0. \)

Then \(x(t) \) is either oscillatory or \(\lim_{t \to \infty} |x(t)| = 0. \)

Proof. Let \(x(t) > 0 \) for all \(t \geq t_1 \geq t_0 \), let \(x(t) \) satisfy (6) and let \(\lim_{t \to \infty} x(t) = L > 0 \). Thus there exists a number \(t_1^* \geq t_1 \) such that \(x(t) \geq L_1 = L/2 \) for all \(t \geq t_1^* \). From (5) we have for \(t \geq t_1^* \geq t_1 \)

\[
\frac{x''(t)}{x^3(t)} + \int_{t_1^*}^{t} \frac{p(s)x'(s)}{x^3(s)} \, ds + \frac{\alpha(x + 1)}{2} \int_{t_1^*}^{t} \frac{x'^3(s)}{x^{x+2}(s)} \, ds \leq K_1 - \int_{t_1^*}^{t} q(s) \, ds + \frac{1}{L_1^2} \int_{t_1^*}^{t} |f(s)| \, ds
\]

which, analogously as in the proof of Theorem 2, implies the existence of \(t_2 \geq t_1^* \) such that for all \(t \geq t_2 \) \(x'(t) \leq 0 \); thus \(\lim_{t \to \infty} x(t) = L. \)

Using (5), we have for \(t \geq t_2 \)

\[
x''(t) \leq K_3 - \frac{L^2}{t_1} \int_{t_1}^{t} q(s) \, ds + \int_{t_1}^{t} |f(s)| \, ds
\]

and using (2), we see that \(x''(t) \to -\infty \) for \(t \to \infty \), which contradicts the assumption that \(x(t) > 0 \) for all \(t \geq t_2 \). Therefore \(\lim_{t \to \infty} x(t) = 0. \)

Now let \(x(t) < 0 \) for all \(t \geq t_1 \geq t_0 \), let \(x(t) \) satisfy (6) and let \(\lim_{t \to \infty} |x(t)| = L > 0 \). Integrating (7) from \(t_1^* \) to \(t \geq t_1^* \), we get

\[
\frac{x'(t)}{x^3(t)} + \int_{t_1^*}^{t} \frac{(t - s)p(s)x'(s)}{x^3(s)} \, ds + \frac{\alpha(x + 1)}{2} \int_{t_1^*}^{t} \frac{(t - s)x'^3(s)}{x^{x+2}(s)} \, ds \leq K_2 + K_1 t - \int_{t_1^*}^{t} Q(s) \, ds.
\]

Since for all \(t \geq t_1^* \) \(x^3 < 0 \) holds, we have from the last inequality that there exists a number \(t_2 \geq t_1^* \) such that \(x'(t) \geq 0 \) for all \(t \geq t_2 \). In fact, let \(x'(t_3) < 0 \) and \(x'(t_4) = 0 \), where \(t_1 \leq t_4 < t_3 \). Then from equation (5) we have:
\[x''(t)x(t) - \frac{1}{2} x'^2(t) + \frac{1}{2} p(t)x^2(t) \leq x''(t_0)x(t_0) - \frac{1}{2} x'^2(t_0) + \]
\[+ \frac{1}{2} p(t_0)x^2(t_0) + \int_{t_0}^{t} |f(s)| \, ds + \int_{t_0}^{t} [p'(s) + |f(s)|] x^2(s) \, ds , \]

and therefore

\[x''(t)x(t) - x'^2(t) \leq x''(t)x(t) - \frac{1}{2} x'^2(t) \leq 0 \]

for all \(t \geq t_0 \). If \(t \geq t_4 \), then \(x^2(t) \neq 0 \) and

\[\frac{x'(t)}{x(t)} \leq \frac{x'(t_4)}{x(t_4)} \]

for all \(t \geq t_4 \). For \(t = t_3 \) we have a contradiction.

This proves the existence of \(t_2 \geq t_1^* \) such that for \(t \geq t_2 \) \(x'(t) \geq 0 \). Then from (5) we have

\[x''(t) \geq K_3 + L^2 \int_{t_2}^{t} q(s) \, ds - \int_{t_2}^{t} |f(s)| \, ds \]

which, owing to (2) and (6), implies \(x''(t) \to +\infty \) for \(t \to \infty \) which again contradicts the assumption that \(x(t) < 0 \) for \(t \geq t_2 \). This completes the proof.

Theorem 4. Let the hypotheses be the same as in Theorem 2 with condition (2) replaced by

(2') \[\int_{t_0}^{\infty} p(t) \, dt = +\infty . \]

If \(x(t) \) is a solution of the equation (1) which satisfies the condition (3), then it is either oscillatory or \(\lim_{t\to\infty} x(t) = 0 \).

Proof. Suppose that the hypotheses hold and that \(x(t) \) is not oscillatory. Thus there exists a number \(t_1 \geq t_0 \), such that \(x(t) \neq 0 \) for all \(t \geq t_1 \). Then from (1) we have

\[x''(t)x(t) - \frac{1}{2} x'^2(t) + \frac{1}{2} p(t)x^2(t) \leq x''(t_0)x(t_0) - \frac{1}{2} x'^2(t_0) + \]
\[+ \frac{1}{2} p(t_0)x^2(t_0) + \int_{t_0}^{t} p'(s)x^2(s) \, ds , \]
thus for $t \geq t_1$

$$x''(t)x(t) - x'^2(t) \leq x''(t)x(t) - \frac{1}{2} x'^2(t) \leq -\frac{1}{2} \rho(t)x^2(t)$$

and

$$\frac{d}{dt}\left[\frac{x'(t)}{x(t)}\right] \leq -\frac{1}{2} \rho(t),$$

and also there exists a number $t_2 \geq t_1$ such that $x'(t)x(t) < 0$ for every $t \geq t_2$.

Now let $x(t) > 0$ and $x'(t) < 0$. Then

$$\lim_{t \to \infty} x(t) = L \geq 0$$

and hence $x(t) \geq L$ for all $t \geq t_2$. For all $t \geq t_2$ we have

$$\frac{x'(t)}{x(t)} \geq \frac{x'(t)}{L}$$

from which using (8) and (2') we get $lim_{t \to \infty} x''(t) = -\infty$, which is again contradictory to the assumption that $x(t) > 0$ for all $t \geq t_2$.

Now let $x(t) < 0$ and $x'(t) > 0$. Then

$$\lim_{t \to \infty} x(t) = L \leq 0.$$

Analogously as in the first case we prove the impossibility of $lim_{t \to \infty} x(t) = L < 0$.

This completes the proof.

Evidently the following theorem also holds:

Theorem 5. Let the hypotheses be the same as in Theorem 3 with condition (2) replaced by (2'). If $x(t)$ is a solution of the equation (5) which satisfies the condition (6), then it is either oscillatory or $lim_{t \to \infty} x(t) = 0$.

REFERENCES

Received June 6, 1972

Katedra matematiky
Prírodovedeckej fakulty Univerzity P. J. Šafárika
Košice