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M A T E M A T I C K Ý ČASOPIS 
ROČNÍK 19 1969 ČÍSLO 1 

ON A NON-LINEAR INTEGRAL EQUATION 

VLASTA PERINOVA, Olomouc 

I n the present paper we shall deal with the homogeneous non-linear integral 
equation 

b b 

(1) u*{z) = X*j$L(x, y, z)u(y)u(z)dydz 
a a 

for the function u(x), where L(x, y, z) is a given function and X is a real para­
meter. 

For equation (1) we shall s tudy: 
1. The existence of a positive solution. 
2. The branching of a solution which exists for a certain value of the para­

meter X. 
3. The continuation of the solution for an arbitrary value of the para­

meter X. 
To solve the first task we shall use the method which is analogical to the 

method used by W. S c h m e i d l e r and D. M o r g e n s t e r n in [1]. The second 
task will be solved by the general method given for example in [2] on which 
is also based the process of continuation of the solution for an arbitrary 
value of X. 

I n this paper we shall study only real solutions. 

1. THE EXISTENCE OF A POSITIVE SOLUTION 

Now we shall study the problem of the existence of a positive eigenvalue 
and a positive eigenfunction of equation (1). Under an eigenvalue of equation (1) 
such a value of X must be und3rstood for which equation (1) has a non-trivial 
normed solution. This solution is called an eigenfunction. 

Theorem 1. If the function L(x, y, z) satisfies the assumptions: 
a) L(x, y, z) is a real function continuous in (a, &> X (a, &> X (a, &>, 
b) L(x, y, z) > I > 0 for all x, y, z, 

then there exist the positive eigenvalue Xo and the real continuous eigenfunction 



uo(x) > k > 0 satisfying equation (1) and 

(1 .1) *> = 

IЦn*.v, 
a a a 

z)uo(y)u0(z)dxdydz 

is valid. 
Proof. Let us make the substitution u2(x) = v(x) in (1) and write it in the 

operator form 

(1.2) v = X2Av 

where 
b b 

Av = jJL(x, y, z)]/v(ij) ]/v(z)dydz. 
a a 

Let us consider the set M of functions v(x) > h > 0 for which \\v\\ = 
b 

= (v(x)dx = 1 in the space of the functions continuous in (a, 6>. Let the 
a 

operator A be defined on the set M. 
To prove the existence of a solution of (1.2) in M we shall use the Brouwer-

Schauder fixed point theorem: If a continuous operator B maps a convex 
set T of the Banach space into a compact part of the set T, then there exists 
such a point x e T that Bx = x. First we shall prove the continuity of the 
operator A. Let us consider the sequence of such functions vn(x) from M that 
||v — tf»|| -> 0 (n = 1, oo) and denote max L(x, y, z) = L. Then for \\Av — Avn\\ 

xtytz 

we obtain, using the Schwarz inequality, 
b b b 

\\Av - Avn\\ = j\Av - Avn\ dx^L(b- a)j(]/v(y) + ]/vn(y)) dy . j\]/v(z) -
a a a 

. L]/(b - af 
— ]/vn(z)\dz< y= ||t; — vn\\; 

from this the continuity of A follows. 
Let us prove that the set of images of A is compact. For this it is necessary 

and sufficient to prove that the image set is composed from functions uni­
formly bounded and equicontinuous. The functions Av are uniformly bounded 
as follows from the relation 

b 

\\Av\\ ^ L(b - a) (j]/v(y) dy)2 < L(b - a)2. 
a 

Let us prove the equicontinuity of functions Av. Let s > 0 be given. Then 
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in consequence of the uniform continuity of the kernel L(x, y, z) there exists 
such 6 > 0 that 

e 
\L(xi, y, z) — L(x2, y,z)\ < 

o — a 

is valid for \xi — x2\ < d and for all y, z from <a, b>. Then 

£ b 

\Av(xi) - Av(x2)\ < - {j]/v(y)dy)2 ^ e 
b — a a 

is valid for every function v(x) e M. Hence, the functions Av are equiconti-
nuous and the operator A is totally continuous on M. As follows from the 
inequality 

\\Av\\ >lk(b-af, 

\\Av\\ is different from zero and so the operator A/\\A \\ is totally continuous 
on M and maps the set M into itself. 

Now we shall show that M is convex, i.e. if functions r(x) and s(x) belong 
to M the function t(x) = Xr(x) + [JLS(X)JX + JU for positive X and p belongs to M, 
too. As for ||r|| = ||s|| = 1 the following is valid: ||t|| = (A||r|| + ft\\s\\)IX + 
+ fi = 1 and for the function t(x) we have t(x) > k, hence t(x) belongs to M 
and M is convex. 

Hence, the assumptions of the above Theorem are satisfied and there exists 
such a function vo(x) tha t 

Av0 
vo = , 

Uvo\\ 
i.e. 

vo = X^Avo 
where 

1 

If we introduce the primary notation Theorem 1 is proved. 

2. THE BRANCHING OF THE SOLUTION 

The couple (Xo, uo(x)) which obeys equation (1) is called the branch point 
for this equation if for every e > 0 there exists such X tha t \X — Xo\ < £ 
and equation (1) has for this X a t least two solutions which lie in the e-neigh-
bourhood of the solution wo(#). 



Theorem 2. Let L(x, y, z) be a real function continuous in (a, by x (a, b> x 
X (a, by and symmetric according to the variables y, z. Let uo(x) be a real conti­
nuous eigenfunction of equation (1) corresponding to an eigenvalue Xo 4= 0 and 
let uo(x) be different from zero in (a, by. Then for a neighbourhood of the point 
X = Xo the following assertions are valid: 

a) If Xl is not an eigenvalue of the kernel 

b 

I r 
G(x, z) = 

Щ(x) 
L(x,y,z)щ(y)dy, 

then there exists the unique real solution of (1), which can be expanded in the 
series 

(d) « ( æ ) = 2 ( * - Д o ) ' « . ( a г ) . 
i-0 

b) If Xl is an n-multiple eigenvalue of the kernel G(x, z) with the continuous 
associated eigenfunctions oa(x) (i = I, n) and if 

b 

(e) f uo(x)oa(x)dx = 0, i = 1, n, 
a 

is valid, then there exist 2n real solutions of (I) in the form (d). 
c) If Xl is the simple eigenvalue of the kernel G(x, z) and the condition (e) 

for i = 1 is not fulfilled, then there exist two real solutions of (1) in the form 

u(x) =^(X-XoWui(x), 
i=0 

which either finish at the point Xo or start from it. 
All these solutions are continuous in (a, by. 
Proof . If we denote 

(2.1) X — X0 = ju, u(x) — u0(x) = p(x), 

equation (1) can be rewritten in the form 

b 

(2.2) p(x) -XI I G(x, z)p(z)dz = g[u0, p], 
a 

where 
1 b b 

g[uo, P] = — — - [ ( 2 V + v?) \ \ L(x> y>z) (My) + p(y)) (M*) +p(z))dydz -f 
2M%) I a 

b b 

+ Xl IJ L(x, y, z)p(y)p(z)dydz - p*(x)]. 
a a 



Let us seek the solution of (2.2) in the form 

(2.3) p(x) = ffiHii(x). 
i=l 

If we substitute (2.3) in (2.2) and compare the coefficients of the same powers 
of /A, we obtain for Ui(x) the system of equations 

b 

(2.4) Ui(x) = XI j G(x, z)ui(z)dz +ft(x), i = 1, oo 
a 

where 
UQ(X) 

/ ! ( * ) = • 

Һ 
1 bb 

Z2^) = T~T7-J7 L(x> y> z) (^ouo(y)ui(z) + X2

0U!(y)u!(z))dydz — 
2uo(x) a a 

-ul(x) + M2], 

I b b 

(2.5) ft(x) = —— [(" f £(#, y, z) (2AoWo(y)w<-i(2) + ^i(y)^<-i(2))dydz — 
«0(«) i a 

Mi 
— ui(x)ui-i(x) + Mi] = K[ui-i] H , i = 3, oo 

u0(x) 
and 

Mi = Mi\x; u0, ui, . . . , Ui-2], i = 2, oo. 
Equations (2.4) are non-homogeneous linear integral equations. Solving 

these equations it is necessary to distinguish whether X% is or is not an eigen­
value of the kernel G(x, z). 

a) If X\ is not an eigenvalue of the kernel G(x, z), then there exists the 
continuous resolving kernel r(x, z; X^) and the unique solutions of equations 

(2.4) can be written in the form 

b 

(2.6) Ui(x) = fi(x) +X2
0\ r(x, z; X2

0)ft(z)dz, i = T^S . 
a 

Thus it is possible to determine all the functions Ui(x) and to construct the 
series (2.3) formally. 

Now we shall prove that the constructed series converges absolutely and 
uniformly according to x and /n in (a, by for ju sufficiently small. Let us choose 
such numbers A, B, G, D that for x e <a, 6> 

b b 

1) J J \L(x,y,z)\dydz <A, 



(2.7) 2) 0 < D < |uo(.v)| < B, 

b 

3) j\r(x,z;%)\az <0, 
a 

are valid. Equation (2.2) may be considered as an equation of the same type 
as (2.4) with the resolving kernel r(x, z; X\) and written in the form 

b 

(2.8) p(x) = g[u0y p] + X2
0 J r(x, z; ??0)g[u0, p]dz. 
a 

If the restriction \p(x)\ < P(x e <a, &» is valid, then we obtain for P from (2.8) 
and (2.7) 

(2.9) P = E[(2\X0\fi + ^) (B + PfA + (1 + ^ ) P 2 ] 

where 

Let us seek the solution of (2.9) in the form of the power series expansion 

(2.10) P O ) = f ,!«*,. 
1=1 

Substituting (2.10) in (2.9) and comparing coefficients of the same powers 
of /Lt we obtain 

2.1 1) Ja = 2\h\AB*E, 
Jc2 = (^ABfa + (1 + X2

0A)Jcl + M2)E, 
Jd = (^ABJa-! + 2(1 + Ag.4)iiJfe*-i + Mt)E, i = 3, co, 

where Mi is a majorant for Mi[x; UQ, ..., Ui-2]. From the relations (2.11' 
and (2.4) it can be seen that 

\ui(x)\ < ki for x e (a, by, i = \,co. 

From this it follows that the region of convergence of (2.10) will be the region 
of convergence of (2.3). From (2.9) and P(0) = 0 we obtain 

—d — 1/d2 — 4ec 
(2.12) P{p) = \ , 

2c 

where 
c=E(Af,(f, + 2\X0\) + (\ + ?2

0A)), 
d = 2ABEfx(iA + 2\lo\) - 1, 
e = AB*Efj,([jL + 2|Ao|). 



From the condition d2 — 4=ec ^ 0 we derive the following relation 

„ -m + ]/fw+f 
(2.13) 0<n^ '- , 

J 

where 
f = 4ABE(I + (1 + X2

0A)BE). 
Hence, the series (2.10) converges in the interval (2.13) and because (2.10) 

is a majorant for the series (2.3), the series (2.3) converges absolutely and 
uniformly according to x and [JL to a continuous function p(x) in (a, 6> and 
(2.13). Thus in the neighbourhood of the point X = Xo there exists the unique 
solution of (1) 

u(x) = u0(x) + p(x), 

which tends to Uo(x) for X -> Xo. 
b) Let Xl be an ^-multiple eigenvalue of the kernel G(x, z) with continuous 

eigenfunctions q>i(x)(l = 1, n) and continuous associated eigenfunctions 
oci(x)(l = l,n). If equations (2.4) are to have solutions it is necessary and 
sufficient that 

b 

(2.14) J f(x)xi(x)Ax = 0, i = 1, oo, I = 1, n, 

is valid. 
Let us consider the case when the condition (2.14) is valid for i = 1. Then 

the solutions of (2.4) can be written in the form 

(2.15) u1(x) = h(x)+ZC]cPj(x), 
?'=i 

where 

(2.16) h(x) =fi(x) + Xl] T(x, z; X2

0)fi(z)dz, 

(i = 1, oo, for i = 2, oo see further) 

where T(x, z; Xl) is the continuous resolving kernel of the kernel 
n 

G(x,z) — — > <P)(x)x,(z). (*'2 ,-Й 
? = 1 

For the determination of the constants Cj we obtain the system of n non­
linear equations 



xi(x) 

щ(x) 
L(x, y, z)(Шю(y) h(z) + > G)ф) + 

Í = I 

(2.17) + Å2
0[h(y) + І C)ф)] • íh(z) + 2 C]Ћ(z)])dydz -

?=1 í - l 

(h(x) + 2 G)ф))2 + M2\dx = 0, l=\,n 
ì=i 

from the conditions (2.14) for % = 2 after substitution (2.15) in f2(x). From 
the system (2.17) we obtain, in general, 2n systems C) (j = 1, ...,n). Thus 
we determine 2n functions ui_(x) 

(2.18) ulk(x) = h(x) + 2 C]kЧ>j(x), k = 1, 2». 
j - i 

The solution of the i-th (i ^ 2) equation of the system (2.4) can be written 

in the form 

(2.19) ut(x) = h(x) + '2G)(pj(x). 
M 

From the conditions (2.14) of solving the (i + l)-th equation from (2.4) 
we obtain the following system of n linear equations for G) 

[ Mt\ . 
xi(x)K[(p]]dx = — xi(x) I K\ti\ -\ I dx = m), l = \,n 

J \ u0(x)J 

(2.20) \ C) 

j=l a a 

From this system it is possible to determine uniquely C)(j = 1, n) in the form 

n 

(2.21) C} = ^ a„m\, 
1=1 

under the assumption that the determinant is different from zero and so the 
functions Ui(x) are determined uniquely. 

Therefore it is possible to construct 2n series (2.3) formally. The convergence 
of these series may be proved in the following way. Let us consider two 
sequences of such numbers u%, Vi, {ui}™, {̂ }o° t n a ^ 

\ui(x)\ < |fa(x)| + 2 |Cj | \<p,(x)\ <uo + v0 

(2.22) ? = i 

\ut+i(x)\ *S \ti+i(x)\ + 2 |oí+1| \<p,(z)\ < Ul + VU i = 1, 00 

x є <a, ò> 

is valid. 
?'=1 



To determine such numbers w., vt let us consider the function 

(2.23) S(w) = — &*-_4fl- + 2ABp{2\Xa\ + fi)w + (1 + .4(|Ao| + , « ) > 2 ] , 
JtU 

where the constants A, B, D are determined by (2.7) 1), 2). If we put instead 
of w 

00 

(2.24) w = 2 i*M(Ui + Vi) 
i=0 

in (2.23) and if we expand the expression obtained in the powers of \x, then 

(2.25) S(w)=2^Si, 
i=2 

where 

82= [AB* + 4AB\Xo\(uo + v0) + (1 + )?0A)(u0 + ^o)2], 
2iU 

(2.26) i 

Si = — {[2AB\Xo\ + (1 + %A)(u0 + t;0)](M*_2 + tX-2) + Jf<}, * = 3, 00; 

Mi is a majorant for Mi. 
From the relations (2.5), (2.22) and from the assumptions (2.7) 1), 2) it 

follows that Si are upper bounds for the functions fi(x)(i = 2, 00). 
Let us further choose such numbers N, T, y that 

1) max \ajti\ = N, 
k,l 

b 

(2.27) 2) A2 j \T(x,z;22
0)\dz<Ti xe(a,b}, 

a 

3) mux (\<pi(x)\, \vi(x)\) <y 

are valid and designate max (l,T) = M. Then we determine Ui (i = 1, 00) 
from the equation 

(2.28) Ui = 2MSi+i. 

If we take into account that 

b 

\ti+i(x)\ < max |/*+i(s)|(l + A2 f |T(a, z; A2)|dz) < 2Jfflf,+1 

then |f«+i(-r)| < Ui. The constants Vi(i = 1, 00) can be determined from the 
equation 



(2.29) 

where 

1 + — (2AB\Xo\ + (1 + %A)(«o + vo)) VІ = dSi+2, 

d = n2y2(Ь — a)N. 

As the following is valid 

where 

|c)+ 1 | < N § K | < Nyn(b - a)Q, f |cj+ 1 | \Ví{x)\ < dQ, 

Q = — [(2AB\Xo\ + (1 + %A)(uo + t*))t*. + Jtfi+a] 

and from (2.29) we obtain v% = dQ, then 

n 

2 i^;:+1i iw(*)i < »« 
j - i 

and thus |w$+i(:r)| <«*< + «;<. 
If we introduce the notation 

00 

(2.30) 

then 

u = 2 /wi+1tøí, v = ^ A***1*;*, 
i= l ѓ=l 

w = ^(г^o + v0) + u + v 

and the determination of Ui, vi from (2.28) and (2.29) is equivalent to the 
solving of the following system for u, v 

u = 2MS([JL(UO + vo) + u + v), 

(2.31) 1 + — (2AB\X0\ + (1 + XlA)(u0 + v0)) џv = 

= d[S{p{uo + v0) + u + v) - fflS2] 

n the form (2.30). If we carry out the substitution 

u = \iU, v = pV 

in (2.31) and devide the first equation by /u and the second by [i2, we obtain 
for U, V the system 

M 
0i= U [JJLAB2 + 2ABfjL(2\Xo\ + [*)(uo + v0 + U + V) + 

10 



(2.32) Ф2 = 

+ ^1 + Cl-Яol + џ)Ы)u(Ua , 
' ЛWM<> + ч + u + ғp] = o, 

u 
d 

[2AB(2\Xo\ + /»)(uo + v0 + U + V) + 
2D 

+ (1 + (|Ao| + t*)2A)(uo + vo + U + V)2 -

- (4AB\X0\ + (1 + X2

0A)(u0 + v0))(u0 + v0)] = 0. 

For (2.32) we shall use the implicit function theorem. If the system (2.32) 
is to determine unambiguous continuous functions U(fi), V(f*) in a neigh­
bourhood of the point ^ = 0, it is necessary and sufficient tha t 

D(01,02) 
A = — 4= 0 for u = U = V = 0 is valid. 

D(U, V) 
As for i M = U = V = 0 we have A = — 1, the assumptions of the above 
Theorem are fulfilled and the system (2.32) has only one solution U, V in the 
form of the series 

oo oo 

U = ^^Ui, V = 2/M%j, 
i=l i=l 

which have a finite radius of convergence in a neighbourhood of the point 
ft = 0. The same is valid for the series (2.24). As this series is the majorant 
for (2.3), the series (2.3) converges absolutely and uniformly according to x 
and ii in <<z, by and in a neighbourhood of the point ju = 0 and because of the 
continuity of the single terms the limit functions ujc(x) are continuous. 

Hence, in a neighbourhood of the point X = Ao there exist 2n real solutions 
of equation (1) in the form (2.3) which converge to uo(x) for A-> Xo. 

c) If some of the conditions (2.14) for i = 1 are not fulfilled, it is not 
possible to solve (2.4) and the problem of determination of the number of 
solutions of equation (1) for X from a neighbourhood of Xo becomes more 
complicated. Such solutions can be sometimes sought in the form 

CO 

(2.33) u(x) = J^ (X - X0)Wui(x), 
1=0 

where I is a natural number. The functions ut(x) can be determined from 
a system of linear integral equations obtained with the aid of substitution 
(2.33) in (1) and comparison of coefficients of the same powers of v = (X — Ao)1/7. 
For example, for I = 2 we obtain, in the case where AQ is a simple eigenvalue 

11 



of the kernel G(x, z), the following system 

(2.34) 

ui(x) = ^o í @(x> z)ui(z)dz, 

щ(x) = Л2, [ G(x, z)щ(z)dz + gĄx), i = 2, oo, 

where 

fltofø) = 
1 ъ ъ 

(2.35) 

9І(X) 

2џo(x) 

1 

щ(x) 

[li j j L(x, y, z)(u0(y)u0(z) + ui(y)ui(z))dydz — u\(x)] 

a a 

b b 

[2.*j JL(x, y, z)ui(y)ui-i(z)dydz — UI(X)UÍ-I(X) + 

+ Ni[x; u0, ..., Ui-2]], i = 3, co. 

The solution of the first equation from (2.34) can be written in the form 

(2.36) ui(x) = Dicpi(x); 

the constant Di will be determined later. 
If the other equations of the system (2.34) are to have solutions it is necessary 

and sufficient to fulfil the condition 

(2.37) ígi(x)oci(x)dx = 0, i = 2, co. 

If we substitute (2.36) in (2.37) we obtain for i = 2 

-2Ei 
(2.38) 

where 

(2.39) 

m 
Eo 

b b b 

Г 
Ei = Xo 

oci(x) 

щ(x) 
L(x, y, z)u0(y)uo(z)dydzdx, 

Eъ 
oci(x) 

щ(x) 

b b 

Á0 L(x, y, z)cpi(y)(pi(z)dydz — <ft(x) dx. 

If E2 4= 0 we obtain two values for Di distinguished only by the sign and so 
we have two functions ui(x) 

12 



uik(x) = Dnc(pi(x), k=\,2. 

I n general the solution of the i-th equation from (2.34) can be written 

(2.40) Ui(x) = n(x)+Dm(x), 

where 
b 

n(x) = gi(x) + XI j 0(x, z; Xl)gt(z)dz, i = 2, oo; 
a 

0(x, z; Xl) has the same meaning as T(x,z;X^) for n=\ from section b). 
For Di we obtain, on the basis of the condition (2.37) for gi+i(x), the linear 
equation 

(2.41) 

where 

(2.42) 

mDi + щ = 0, 

m = 
<xi(x) 

щ(x) 

ь ь 
r r 

L(x, y, z)ui(y)(pi(z)dydz — ui(x)cpi(x) dx, 

щ = 
oci(x) 

b b 

Г 
; 2 

^ o 
a a 

щ(x) 
a 

+ NІ+I[X; щ, ...,UІ_I] 

L(x, y, z)ui(y)vi(z)dydz — ui(x)n(x) + 

dx, i = 2, oo. 

From this equation we shall determine Di unambiguously under the assump­
tion m 4= 0 and thus Ui(x) are determined. 

Hence if I = 2, two series (2.33) can be formally constructed. The proof 
of convergence of these series in a neighbourhood of the point v = 0 will 
be carried out analogically as the one in section b). Let us choose such a con­
stant UQ that 

(2.43) \m(x)| < u0 for x e <a, 6> 

is valid. Further, let us consider the function 

1 
(2.44) F(w) = [(2|A0| + v*)(B + 2w)ABv* + (1 + (\X0\ + v*yA)w*], 

2iL) 

where A, B, D are determined by (2.7) 1), 2). If we put instead of w 

00 

(2.45) w = vuo + 2 vM (ui + Vi) 

13 



in F(w) and if we expand the expression obtained in the powers of v we obtain 

00 

(2.46) F(w) =^vtFi9 

where Ft are upper bounds for the functions gt(x) if (Ui-i -f- v*_i) are majorants 
for m(x) (i = 2, oo). 

Let us choose such numbers 0 and /? tha t 

b 

1) X2j\0(x,z;l2)\dz<0, xe<a,b}, 

(2.47) 

2) max(|pi(aO|, |«i(a?)|) < j8 

are valid and designate max (1,0) = L. Then we shall determine m, v% from 
the equations 

m = 2LFt+i, 

(2.48) \m\ + (1 + P0A)uAvi = /52(6 - a)Fi+2, i = 1, oo. 

We can easily see that 

ki+i(a?)| < ut, |Dw^i(a;) | < vt for a; e <a, &>. 

If we introduce the notation 

(2.49) U = J y%i, V = J i*<, 

then the determination of ut, vt (i -= 1, oo) from equations (2.48) is equivalent 
to the solving of the equations for U, V, 

L 

(2.50) 0i= U - — [(2|Ao| + v2)(B + 2v(u0 + U + V))vAB + 

+ (1 + (\h\ + v2)*A)v(u0 +U+ 7)2] = 0, 

02 = 

ßҢb - a) 
M + - — (1 + %A)uo 

ßҢЬ - a) 
U — — X 

2D 

X [v2AB* + 2ABv(2\fa\ + v*)(u0 + U + V) + 

+ (1 + (|Ao| + v*)*A){uo +U+ F)2] = 0 

in the form (2.49). 

14 



For the system (2.50) we use again the implicit function Theorem. As for 
v = U = V = 0 the following is valid 

80i 80! 802 802 -BHb — a) 
= 0, = 1 , = | m | , = — — -(l+X2

0A)u0, 
8U 8V 8U 8V D ° 

we have A = — \m\ 4= 0. Hence, it is possible to determine U and V from 

(2.50) as unambiguous and continuous functions of v. That means t h a t the 

series (2.45) has a finite radius of convergence. As (2.45) is a majorant for the 

function (u(x) — uo(x)), the series (2.33), if I = 2, converges absolutely and 

uniformly according to x and v to the continuous functions ujc(x) in <a, 6) 

and in a neighbourhood of the point v = 0. 

This proves that in a neighbourhood of X = Xo there exist two solutions 

of equation (1) in the form (2.33) if I = 2. From the relation (2.38) it is obvious 

that if the quantities (2.39) have different signs then for X > Xo there exist 

two real solutions and for X < Xo there exists no real solution. Two branches 

of solution start from the point Xo. If the quantities (2.39) have the same signs, 

then for X < Xo there exist two real solutions and for X > Xo there exists no 

real solution. Two branches of the solution finish at the point Xo. To prove 

the assertion for X < Xo we must seek the solution u(x) in the form of the series 

in the powers of jlXo — X and apply the above considerations. 

3. THE CONTINUATION OF THE SOLUTION 

On the basis of results from the second section it is possible to continue 
the solution uo(x, Xo) corresponding to the value X = Xo as follows: For X 
from a neighbourhood of Xo it is possible to construct a solution u(x, X) in t h e 
form of a power series of (X — Xo). This solution will be only one (i. e. (Xo, uo(x, Xo)) 
is not a branch point) if X% is not an eigenvalue of the kernel 

L(x,y,z)щ(y,Xo)dy. 
uo(x, Xo) % 

a 

If AQ is an eigenvalue of the above mentioned kernel, we can obtain more 
than one solution. For further continuation it is necessary to continue each 
of these solutions. If we continue successively the solution u(x, X) for the 
whole real axis X, we obtain with the aid of this method the solution of (1) 
for an arbitrary value of the parameter X. 
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