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ON A CONSTRUCTION OF SOME SEMIGROUPS
BLANKA KOLIBIAROVA

Dedicated to Professor Stefan SCHWARZ on the occasion of his sixtieth birthday

The purpose of this paper is to study some properties and a construction of
semigroups, each left ideal of which contains a unique right identity. The main
results are Theorem 6 and 8. This problem was also studied in [1] and [3]: the
results are mentoined below.

In paper [2] a complete set of endomorphisms of the bicyclic semigroup is
given. The present paper describes a construction of all subsemigroups of the
bicyclic semigroup every left ideal of which contains a unique right identity.

Denote by S a semigroup each left ideal of which contains a unique right
identity. The set of all elements which generate the left (right) principal ideal
()L ((%)g) is called the left class L(x) (the right class R(z)). An element e € S
is called a left (right) identity iff ex = x (ze = x) for every « € S. The set of all
idempotents of S will be denoted by I(S). The elements of I(S) will be denoted
by e, with indices if necessary. Further we denote e;le; (esrex) iff (e:)r C (ex)r
((e0)r € (ex)r) in 8.

Remark 1. Evidently the unique right identity of (e)z is e.

Lemma 1. For each e, ex € I(8), e1 ~ ez there holds either ejles or esle; with
(e1)r # (e2)r-

Proof. Consider the left ideal (e1)r U (e2)r, denote its right identity by e.
Then either e € (e1)r, or e € (e2)r.. Let e € (e1)z, hence e = e;. This implies
ez = egeq, therefore (e2)r, C (e1)r, hence eqle;. But (e2)r = (1) means e; = ey,
a contradiction to e; s es. Hence (e2)r < (e1)r. Similarly e € (e2)r implies
ellez .

Theorem 1. ([1], [3]). I(S) s a commutative subsemigroup of S.

Proof. Let eiles, then e; = ejes. Further eqe; is idempotent. Clearly (eze1)r. C
C (e1)r, but (er)r C (e2)r implies (e1)r C (e2e1)r, together (ezer)r = (e1)z,
where e; = eze; is the unique right identity. This togehter with e; = eep
implies eze; = ejez = e1.

Lemma 2. ejles iff erres.
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Proof. ele; implies eje; = ¢;. By Theorem 1 we have further e; = esey,

hence (e1)r C (e2)r. This means ejre;. In the same way we prove that ejre;
implies ejles.
Lemma 1 and 2 imply.

Theorem 2 ([3]). I(8) is a dually well ordered set with respect to the relation 1
(or r by Lemma 2). This ordering will be denoted by <.

Corollary 1. e1 = e iff e1es = e2e1 = €3.

Lemma 3. ([3]). Each element x € S belongs to the class L(e;), where ey is the

right identity of (x)L and to some class R(ez).

Proof. Let e1 be the right identity in (z)z, hence (e1)r C (z)r. At the same
time x = wxe; implies (z) C (e1)r, hence () = (e1)r, therefore x € L(e;).

Further e; = sz, s € § and & = ze; = sz, hence (z)r C (z8)r. Now (zs)r C
C (z)r, consequently (x)r = (xs)r. Since xs = (xe;)s = xsxs, we have zs =
= ¢z € I(S) and we get (x)r = (e2)r; this means x € R(es).

By Lemmas 1, 2, 3, we obtain.

Lemma 4 ([3]). Each class L(e) (R(e)) contains a unique idempotent e.
Remark 2 ([3]). L(e) N R(e) is a maximal group of S.

Remark 3. Each right ideal (z)r with = € R(¢) contains a unique left
identity e.

Lemma 5. Let x € L(e;), ex << e;. Then xex € L(ex).
Proof. Clearly (z). = (e:)r implies (wex)z = (ex)z-

Lemma 6. Let x e L(e;), e1 < ez < e;. Then (xe1)r < (xe2)r and (we1)r <
< (xez)L.

Proof. (x)r = (e;)r implies e; = sx for some se€S. Hence (e1)r < (e2)r
implies (ze1)r C (xe2)r. But (ze1)r = (ve2)r implies (swei1)r = (swez)r for some
s with sx = e¢;. We have (eie1)r = (eie2)r, hence (e1)r = (e2)r, i.e. e1 = eg,
a contradiction to e; < ez. Hence (ze1)r < (xez)r. Similarly by Lemma 5 we
get (ze1)L = (e1)L < (e2)r = (wez)r.

We clearly have.

Lemma 7. Let e; < ez. Then (e12)r, < (e22)r.
Denote L(e;) N R(ex) = Hyy.
Lemmas 6 and 7 imply.

Theorem 3. Let «x € Hy. Then for the chains of ideals ordered according to the
inclusion we have (< means the orderisomorphism):

{(ze)rle = e} = {efe < e} = {(ze)rfe < e},

{(ex)fe £ ex} = {ele < ex}.

Denote the set {efex < e < e} by ek, ).
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Denote the orderisomorphic intervals by {a, b> < {¢, d) (if they are finite,
this means that they have the same number of elements).

Denote L*(e;) = U {H{k | ex = ez}.

Theorem 4. L*(e;) is a subsemigroup of S with the two- sided tdentity e;.

Proof. (z)r = (es)r implies (22)r = (@)1 = (esex®)L = (exx)r = ()1 =
= (e;)r (since x € Hy). Similarly (y2)r = (). Further (x). = (y)r implies
(W2 = (@%)1 = (&)L, (wy) = (¥®)r = (er)r. Also (y2)r < (yer)r = (Y)r <
< (ei)r, similarly (xy)r < (e;)r. Hence L*(e;) is a semigroup. Evidently e; is
a right identity of the semigroup L*(e;). We further have ez = z and esx =
= ej(exr) = (eiex)r = exxr = x, this shows that e; is also a left identity of
L*(ey).

Lemma 8. Let x € L*(e;), « € R(ex), e: << e;. Then wxe; € L*(e;), xe; € R(e,),
where {e;, ety = {ex, €s).

Proof. By Lemma 5 ze; € L(e;). By Theorem 3 there holds {(ze;)r, (ze:)r) =
=~ e, ety = ek, €5y, where (xe;)r = (€s)Rr.

Remark 4. If I(S) = w*, then {e;, ex) = (e, €s).

Theorem 5. Let ex < e;. Then the mapping ¢l of L*(e;) into L*(ex) defined
by pix = xey is @ homomorphism of the semigroup L*(e;) into L*(ex)

Proof. By Lemma 8 we have e, yer € L*(ex) for any z, y € L*(e;). Hence
by Theorem 4 we have (xeg)(yer) € L* (ex), (wex)(yer) = zlex(yer)] = wyer.

Using Theorem 5 and Lemma 8 we get

Corollary 2. Let I(S) <~ w*. Let Hy contains exactly one element for each
ex < e;. Then the samigroup L*(ex) is isomorphic to the semigroup L*(e;) and to
I(S). Here L*(e;) is a dually well ordered set according to the inclusion of the right
ideals (namely xz < x1 iff (x2)r C (21)R).

Remark 2 and Corollary 2 imply.
Theorem 6. If S is finite, then S is a chain of groups (namely of groups Hy).

Lemma 9. Let x € Hyy, y € Hye, ex < e;. Then:

xy € Hys, where {e;, e2) = {ex, €s).

Further: a) if ex << e1 < e;, then yx € Hjz, where ey, ex) = {es, €13
b) if e1 < ex < e, then yx € Hiz, where {ex, e1> = ez, €t).
Proof. By Lemma 8 we have xy € L*(ex). By Theorem 3 (¥)r = (e2)r
implies (xy)r = (ze2)r = (€s)r, Where (e, €s> = {(xei)r, (ze2)r) = <1, €;).

a) ex < e1 implies ye, = y, hence (z)g = (e1)r implies (yz)r = (ye1)r = (y)r=
= (e2)r. Further (y)r = (ex). implies (yz)L = (ex%)z = (es)z. By Theorem 3
we get {e1, ex) =~ {(e12)r, (exx)L) = {et, €1).

b) Since e1 < ex, we get exx = z, hence (y) = (¢x)r implies (yz)r = (exz), ~
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= (x)L = (e;)r. Further (x)r = (e1)r gives (zy)r = (ye1)r = (e:)r, where by
Theorem 3 <ex, e1)> ~ {(yex)r, (ye1)r) = <ez, €>.

Lemma 10. Let I(S) < w*. Let x € Hi, y € Hi2, ez < e1. Then
zy € Hi, yxr € Hyx, where {e;, e1) = {ez, ex).
As a consequence of the foregoing results we get

Theorem 7. #(e;) = U {L*(ex)/ex < e:} is a subsemigroup of S containing the
two-sieded identity e;.

The statements concerning R*(e;) = U {Hyilex < e;} will be denoted by
the sign *. They can be obtained similarly as the corresponding statements
for L*(e;).

Now we consider the multiplication between the elements of L*(e;) and
R*(e). Using Theorems 3 and 3* it is easy to prove the following ‘“‘multipli-

cation rules‘‘:

Lemma 11. Let x € H;j, y € Hy;.
1) Let ex < e;. Then xy € Hys, where {e;, exy = {ej, esy. Further:

a) let e < ej. Then yx € Hgy, where {ej, ety < {e;, es);
b) let e; << e;:. Then yx € Hys, where {e¢, ¢;> = {eg, es)y.

2) Let e; < ex, e; << ej. Then xy € Hsj, where ey, e;y < {et, esyand yx € Hyy,
where {e;, e:> = {ei, es).
The foregoing results imply the validity of the following Theorem (here
we use the notations: B is the bicyclic semigroup, L, R, H-classes of J. A
Green [4]):

Theorem 8. Let S be a semigroup each left ideal of which contains a unique
right identity. If 1(S) = o*, then there exists a homomorphism f: 8 — B with
the kernel ker f = H = L N R and the image specified by the Construction C
deso-ribed Lelow:.

Construction C.

Let /4 = {M,/x € I'} be a family of sets My = w* and let J <~ w* with the
ordering <.

I. [The correspondence e; <> L(e;), R(e;) for the largest e; € J for which
L(e;) #0.]
To each ex € J we associate two elements L(ex), R(ex) of # in the following
manner: Let e; be the largest element in J to which we associate L(e;) # 0.
Then for e; > e; we put R(e;) = 0 and for R(e;) we take an arbitrary element
of #.
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11. [The correspondence (z, y) € (L(e;), R(e:)) < (e, €;.]
To each element x € L(e;) we associate «;x = ex < ¢; and if R(e:) % 0, then to-

each y € R(e;) we associate fiy = es < e;, where the following contitions (1—4)
are satisfied:

1) 21, 22 € L(e;), 21 < 22 in L(e;) imply o1 << ogze in oJ .

2) For every z1, a2 € L(e;) there exists an x3 € L(e;), where {o;x1, oias) <
~ {e;, aixey and for every y1, y2 € R(e;) there exists some ys3 € R(e;),
where {Biy1, fiys> < <ei, fiy2>-

3) For every x € L(e;), oyx = e there exists some y € R(e;) .with Sy = ¢
and for every y € R(e:), fiy = es there exists some x € L(e;) with asx = e;.

4) For a fixed e¢; denote the number of elements of <e;, ex)> by dr+1. Then
for every x € L(es), oix = ex, y € R(e;), Psy = es there exist z' € L(ey),
y' € R(e;) with o2’ = fiyf’ = em, where dy, = nd and d is the greatest
common divisor of dy und ds, n = 1, 2, 3, ....

The results of the foregoing considerations show that there is possible to

choose a correspondence satisfying 1—4.

III. [The correspondence ey <= (L(ex), R(ex)) for ep < e;.]
Let ex < e;. Then L(ex) € M, L(ex) # 9. If R(e:) +# 0, then R(er) € 4, R(ex) #
# 0. If R(e;) = 0, then R(ex) is an arbitrary element of /7.

IV. [The correspondence (z, y) € (L(ex), R(ex)) < (es, e:) for ex < e:.]
To each z € L(e;) we associate oz = e; < e; and if R(e;) 7 0, to each y € R(e;)
we associate fry = e; = er in such a way that the above Condition 1—4 and
moreover the following Conditions 5—6 are satisfied:
5) For every z € L(ex), y € L(e;) there exists y’ € L(e;), where {auy, oy’> ~
~ {ex, axry. Analogously for elements of R(e;) and R(e:).
6) If there exists y € L(e;) with oy = e;, then there exists « € L(ex), where
{ei, ety = {eg, apx).
Now, adjoin to every L(e;), R(e;) the element e; as its greatest element.

V. [Multiplication in L(e;).]
We define the multiplication in L(e;) by the rule: zjzs = @21 = 3 € L(ey),
where {a;x1, aixs) =~ {ei, aix2).

VI. [Multiplication of couples € L(e;), L(ex); ex < ei.]
We define the multiplication between the elements of L(e:), L(ex), ex < e as
follows: Let x € L(e;), aux = en; y € L(ex), axy = e;, then:

a) zy € L(ex), ax(xy) = e:, where {ei, ¢;> = {en, €r);
bl) Ifer < en < e;, thenyx € L(e;), where {ex, ex> = {ei, €ty and a;(xy) = ¢;;
b2) If en < ex, then yz € L(e;), a;(yz) = e:, where {ex, en) = <e;j, €.
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VII. [The “dual multiplication‘‘.]
We define the multiplication in R(e;) dually to that in L(e;).
Next we define the multiplication between the elements of R(e;) and R(ex),
e << e; as follows: Let x € R(e;), fix = en; y € R(ex), fry = e;; then:
a) yx € R(ex), Pr(yx) = e:, where {eq, €;> < {en, €r);
bl) If ex < en = e4, then zy € R(e:), where {e;, ;> < {ex, ex,> fe(xy) = e;;
b2) If er < e, then zy € R(e;) and fi(xy) = e, where {ex, ex> < {e;, er).

VIII. [Multiplication of couples € L(e;), R(ex).]
We define the multiplication between the elements of L(e;) and R(ex) as follows:
Let z € L(eg), cux = e;5; y € R(ex), Pry = en.
A. If ex £ e;, we define:
a) zy € L(es), on(zy) = es, where (e, ex> < {ej, €5);
bl) If ex < e;, then yx € R(er), Br(zy) = e:, where (e;, ex> < ey, er);
b2) If e; < en, then yx € L(e;), as(yx) = e¢, where {ex, €;> = {ex, €.

B. If e; << ex, we define:
a) zy € R(ey), Bi(ry) = es, where {ex, e1> = {en, €s);
bl) If e, < e;, then yx € R(ex), fr(xy) = e:, where (e;, er) < ey, e1);
b2) If e; < en, then yx € L(e;), ai(xy) = es, where {en, ;> < {ex, €s).
Remark 5. Warne [2] has described all bicyclic subsemigroups of B. The
present, construction describes (among others) a larger class of subsemigroups
of B, namely all those subemigroups, the left ideal of which contains a unique
right identity.
Of course, the class of semigroups described above is much larger as the
bicyclic semigroup.
Finaly we remark that it clearly follows from the above construction that
in this way we obtain all semigroups in which any left ideal contains a unique
right identity.

REFERENCES

{1] PETRICH, M.: Semigroups certain of whose subsemigroups have identities. Czechosl.
Math. J. 16 (91), 1966, 186 —198.

[2) WARNE, R. J.: Homomorphisms of d-simple inverse semigroups with identity.
Pacif. J. Math. 14, 1964, 11111122

13] KOLIBIAROVA, B.: A note on the structure of some types of semigroups. Mat. Cas.
17, 1967, 131 —141.

{4] CLIFFORD, A. H.—PRESTON, G. B.: The a.lgebra.lc theory of semigroups. Providen-
ce 1964.

Received March 28, 1972 Katedra matematiky a deskriptivnej geometrie
Stavebnej fakulty SVST
Gottwaldovo ndm. 2
884 20 Bratislava

144



		webmaster@dml.cz
	2012-07-31T19:41:00+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




