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MATEMATIOKO-FYZllvÁLXV ČASOPIS SAV. 16, 3. 1966 

ON T H E CALCULATION OF GEOELECTRIC RESISTIVITY 
ANOMALIES OF INFINITE CIRCULAR HALF-CYLINDERS 

SILVESTER KRAJCOVIC, Bratislava 

In the papers [1], [2] formulae have been deduced for the calculation of the 
geoelectric resistivity anomalies for the case of the circular infinite cylinder 
embedded in infinite space and for the case of the circular coaxial half-cylinders 
embedded in infinite half-space, using a point source of steady electric current. 
The deduced formulae have a form of infinite sums of improper integrals 
which cannot be evaluated by known formulae for improper integrals of 
compound expressions of Bessel functions, but it is necessary to determine 
their numerical calculation, which is one of the purposes of this paper. 

Let us have an infinite long circular half-cylinder the resistivity of which 
is Q2 and the radius of which is To = 1 and which is embedded in infinite 
homogeneous and isotropic half-space, 
the resistivity of which is denoted by Oi 
(fig. 1). We are to calculate numerica­
lly the sum of improper integrals for 
such a case where the souce electrode 
A is more removed than the potential 

Fig. 1. 

electrode M and both electrodes lie on the straight line running through the 
origin of the cylindrical coordinate system and being perpendicular to the 
longitudinal axis of the half-cylinder. Then we have for the calculation of the 
potential from [2] the equation: 

(1) Щr, ç, z) 
JQ\ 

27T2 

Kn(rt)Kn(at)fn(t)l'n(t)(Q2 ~- ei)_ 

8lK„(t)l'„(t) — &2l„(t)K(t) 

In(rt)Kn(at) + 

[ X cos ncp cos tz dř, 

where In(x) = i >lJn(ix); Kn(x) inA vHn
l)(ix); l'n(x); K'n(x) are Bessel func-

tions and their derivatives with respect to argument x, while r, cp>, z; a, cp,z 
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are cy l indrical coordinates of t h e potent ia l or t h e source point respectively. 

J is t h e in tens i ty of t h e source current . T h e first t e rm in eq. (1) expresses tlie 

potent ia l of t h e point source embedded in infinite half-space a n d it will b< 

calculated by an e lementary formula. The anomalous potent ia l is expressed 

by t h e second t e r m of equat ion (1) a n d for t h e chosen a r r a n g e m e n t of the 

electrodes will be simplified into t h e form: 

(2) У/*(r, 0, 0) 
J Q\(o> 

2л 2 

Kn(ľt)Kn(«t)In(t )/'„(<) 

o,л'»(0!l(0 Í>2/»CЖ,(0 
l l / . 

which will be t h e subject of our s t u d y . 

W e m a y simplify t h e equat ion (2) by t a k i n g into considerat ion the fornmhu 

o f [ 3 | : 

(3) !-.-„(.»-•) - l»(x): K-a(x) - Kn(x): n - o, 1, 2. . . . . 

by m e a n s of which we h a v e : 

(4) #*(•/•, 0, 0) 
JQ\(QЧ - Q\ Kn(rí)Kn(at)ln(t)Ґn(t) 

ĹПKt)(t)/,',(/) - Q,Гn(t)Kn(t) 
d/ 

KH(rt)KH(at)IH(t)i:,(t) 

o,Ku(t)]'n(t)-oiln(t)K',,(t) 
áf 

The following paramete rs were chosen for the calculation of the anomalous 

po ten t i a l : r0 = 1 ; /• - V2; a --= 2,4; 3.6; 4,(S; 6.0; Q] =, 1 Qm; o2 20f_>m: 

50_9m; 100 Qm\ 200 Qm ; 0,05 Qm\ 0.02 Qm ; 0,01 Qm; 0,005 f>m. F u r t h e r 

we have ])ut — for the sake of simplicity J 2n:2 amperes . We have chosen 

the following values of the pa ramete r f for t he numerical computa t ion of 

in tegra ls : 0,1; 0,2; 0,3; 0,4; 0,5; 0.6; 0,7; 0.8; 0.9; 1,0; 2,0; 3,0; 4 .0; 5.0; 0,0. 

Ins tead of an infinite sum of integrals we have considered only the sum of the 

first eight t e rms . We were able to simplify in this way because the subintegra l 

functions have already for t -- 6 very small values and the series of t h u s 

defined t e rms converges rapidly . Hence we have introduced into the numerical 

calculat ion of integrals a r ranged in tables for paramete rs o\ 20 Qm ; o2 

— 1 Qm; a - 2,4 the following approx imat ing equa t ions : 

'#*(] . :>: 0; (I) 

7Г.0 

.{S0 
* A'o(l,20Л"o(2.40/o(/)/,',(0 

2OA-0(/)/(',(0 !o(/)Л',',(/) 

л A's(l.20Ä'я(2.4/.)/н(0/,',C) ň1 

2OЛ'„(0Л'(0 -• I„(t)K'„(t) 
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For numerical calculation of the given integrals we used the functions: 
Ko(.r): /vi(.r); . . . ; K7(x); I0(x); h(x); . . . ; I7(x) and their first derivatives K'n(x); 

I'M)-
rrhe values of the functions exp (~—x)I0(x); exp (—x)h(x); exp x K0(x): 

exp x K\(x) by means of which we define easily I0(x); I\(x); K0(x); K\(x) 
are tabulated in [4] with accuracy to 7 decimal places and with an interpolation 
error 0,02 in the whole interval 0?00 ;fg x < 16,00. For the calculation of the 
values of the functions of higher orders we have used recurrence formulae: 

In-l(x) ;;- ln(x) = Inл+X); 
2n 

Kn_\(x) + — Kn(x) = Kn]1(x), 

and we have calculated with all decimal places given in the tables and then 

we have rounded off the results to 5 decimal places. We don't give the respective-

tabulation for the sake of brevity. The derivatives of Bessel functions 

/'{)(x) :l[(x); . . . ; I7(x); K'0(x); K[(x); . . . ; K'7(x) were to be calculated yet. This 

was accomplished in an analogical way by means of recurrence formulae: 

l'Q(x) •-= h(x); l'n(x) = %[In-i(x) — In+i(x)] 

K'0(x) = —lh(x); K'n(x) = — ^\Kn^(x) + Kni+x)]. 

Next we have calculated the values of Bessel functions and those of their 

derivatives for small 

bv the formulae: 

^ 0,02) or for great (x ^ 10,0) values respectively 

1)! K0(x) ъ ] g - ~ ; Kn(x) ^ 
л-M) X j-->0 

2 - ( * 

I0(x) fín 1; In(x) t 
.c->0 *->() 

1 

n\ 

/ / . ( • « • : 

exp X 
\гïлx 

1 -f- 0 l Kn(x) ъ exp (—x) 
2x 

l ł 0 | 

Thus we have obtained all necessary data and then we tabulated for the 
above chosen parameters. Finally we have evaluated the ratio of the anomalous 
potential to the potential in the homogeneous half— space and then arranged 
the results into tab. 1, where we denote by Oi the resistivity of the half-space 
and by oo the resistivity of the half-cylindrical embedded body. 

CONCLUSION 

If we take into account the obtained results we may state that the decrease 
in the values of geoelectrical anomalies with increasing distance of the source 
electrode and potential electrode for Di > O2 is very slow. For Oi — 200 Qm ; 
o> — 1 Qm the maximal value of the anomaly is about 24 % and its minimal 
value about 20 %. Though in the case when Oi < O2 the decrease of the values 
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Tab le 1 

oj 

1 Í2m 

200,000 12m 
100,000 12m 

50,000 ü m 
20,000 Í2m 

0,005 £2m 
0,010 Í2m 
0,020 І2m 
0,050 Í2m 

2,4 3,0 4,8 

23,9 
22,5 
20,5 
16,4 

9,3 
9,8 
9,6 
9,3 

23,2 
21,9 
19,2 
15,2 

7,0 
7,7 
8,2 
8,1 

22,9 
20,0 
17,0 
13,8 
4,8 
6,3 
6,2 
5,9 

20,3 
17,8 
14,9 
11,3 
3,9 
5,0 
4,7 
4,7 

of anomalies with increasing distance of the source and potential electrode 
is greater in this case the maximum anomaly is 10 %, the minimum anomaly 
is 5 %, but the anomalies are practically not meausurable. Besides we find 
t h a t for Oi < O2 the magnitude of anomaly for different resistivities of the 
half-cylindrical body varies only insignificantly. The results obtained by the 
above analysis may be summed up as follows: 

1. if the resistivity of the half-cylindrical embedded body is — in comparison 
with resistivity of the surroundings — greater but does not reach tenfold 
value of the resistivity of the surroundings, we may — with an external source — 
neglect the influence of the half-cylindrical embedded body. 

2. if the resistivity of the half-cylindrical embedded body is smaller — even 
ten times — we may neglect the influence of the embedded body. 

3. in the other cases we must take into account the influence of the half-
cylindrical embedded body whereby we must realize that this influence 
decreases very slowly with increasing distance of source and potential electrodes. 
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